
Journal of Information Hiding and Multimedia Signal Processing ©2023 ISSN 2073-4212

Ubiquitous International Volume 14, Number 3, September 2023

An approach based on optimizing speed of the binary
algorithm Otsu

Trung Nguyen Tu*

Faculty of Information Technology, Thuyloi University, 175 Tay Son, Hanoi, Vietnam

Email: trungnt@tlu.edu.vn

Received March 2023; revised June 2023

Abstract. Binaryization plays an important role in digital image processing, mainly in
computer vision applications. Threshold generation is an effective technique in the binary
encoding process. The choice of threshold technique is very important in the process of
binaryization. Some threshold algorithms have been studied and proposed to determine
optimal threshold values such as Otsu or Sauvola. In this study, the paper presents an
improvement of the Otsu threshold algorithm based on MapReduce model to Improved
performance when working on large images. Experimental results show that the speed of
the improved algorithm is much better than the Otsu algorithm on many different types
of images.
Keywords: Otsu, Binary image, Binarization, Threshold generation, MapReduce.

1. Introduction. Binary images are useful in many image processing applications due
to their simplicity and efficiency. Binary images are created by quantizing the image’s
grayscale levels into two values, usually 0 and 1. For many years, binary coding has been
an active field of research in the field of processing. digital images such as recognizing text
and symbols, identifying objects with special shadows and determining the orientation
of objects... [3]. Binarization generally involves two steps including determination of
a gray threshold according to some objective criteria and assigning each pixel to one
class of background or foreground. If the pixels intensity is greater than the determined
threshold then it belongs to foreground class and otherwise to the background [1]. The
main problem in the binaryization process is the choice of threshold creation technique [2].
Several threshold algorithms have been proposed to determine the optimal threshold value.
Threshold algorithms can be classified into six classes: histogram shape-based methods,
clustering-based methods, entropy based methods, object attribute-based methods, the
spatial methods and local methods based on the local characteristics of each pixel [6].
Among these classes, many threshold algorithms are based on a minimum variance [4].
The Otsu threshold technique is a classification-based method to find the threshold for
minimizing internal variance, defined as the sum of the weighted variance of two classes [5].
The Gaussian Otsu method is an extension of the Otsu method and it uses the maximum
variance between classes as the optimal threshold value. In [10], the authors experienced
and compared two binary algorithms Otsu and Gaussian Otsu. In [11], Sauvola et al.
proposed a locally adapted document binaryization algorithm, called the Sauvola binary
algorithm. The Isauvola algorithm is an improvement of the Sauvola [12] algorithm. In
[13][14], Romen et al. proposed a locally adaptive binary algorithm based on the integral
image whose runtime does not depend on the local window size to compute the average
in the local window.

113



114 Tu-Trung Nguyen

However, the Otsu algorithm is still time-consuming when working with large images.
Current imaging equipments is created towards the creation of high-resolution and large-
scale images. The current remote sensing satellites also produce large images... Therefore,
if the execution time of Otsu algorithm can be improved on large images, it will meet the
new demand with big data...

Currently, with the development of information technology, the Industrial Revolution
4.0 has led to the explosion of data (Big Data). Big data and its analysis play an important
role in the Information Technology world with applications of Cloud Technology, Data
Mining, Hadoop and MapReduce [7]. Traditional technologies only apply to structured
data while big data includes both structured, semi-structured and unstructured data. His
method to effectively handle big data has become big challenges in the new age and there’s
a great need for new processing methods. MapReduce is a highly efficient distributed data
processing model that has been widely used in large data processing [8]. In [9], the authors
presented a parallel algorithm for boundary detection in images based on the Otsu-Candy
operator. In [15], authors presented an method of optimizing Cross-Entropy Thresholding
for image segmentation. In [16], author used the improved Swarm Algorithm to find the
optimal thresholds for segmenting Medical images. In [17], authors proposed the Design
of Real-time Face Position Tracking and Gesture Recognition System.

This paper presents the new binary algorithmMR Fast Otsu with the using MapReduce
model to overcome the disadvantage of computation time of Otsu algorithm with large
size image like remote sensing images without losing binary quality. The MR Fast Otsu
algorithm promises to effectively support binary large images, saving a lot of execution
time in the current data explosion.

The rest of the paper are presented as follows: Part II presents related studies, Part III
presents proposed algorithms, Part IV presents some experiments on large image data.
Finally, the conclusion is presented.

2. Related Work.

Figure 1. Flowchart of MapReduce model [8].

2.1. Overview of MapReduce model. MapReduce is a model of parallel and dis-
tributed computing model that is proposed by google (Figure 2). It includes two basic
functions: “Map” and “Reduce” which are defined by the user [8]. Through the MapRe-
duce library, the program fragments the input data file. Machines include: master and



MapReuduce-Otsu 115

worker. The master machine coordinates the operation of the MapReduce implementa-
tion process on the worker machines, the worker machines perform the Map and Reduce
tasks with the data it receives. Data is structured in the form of key and value.

The formal representation of MapReduce model
According to [8] [13], we have the formal representation of the MapReduce model as

follows:

• map: (K1 k1, V1 v1) → list(K2 k2, V2 v2)
• reduce: (K2 k2, list(V2 v2)) → list(K3 k3, V3 v3)

Where:

• K1, V1 are the input key and value types of the map function; k1, v1 are the
corresponding objects with the types K1, V1.

• K2, V2 are the output key and value types of map function and still are the input
key and value types of reduce function; k2, v2 are the the corresponding objects with
the types K2, V2.

• K3, V3 are the output key and value types of the reduce function; k3, v3 are the the
corresponding objects with the types K3, V3.

In other words, we can see:

• If k1, v1, k2, v2 are identified, we have the input and output of map function.
Commonly, with text data, k1 is offset value of a data row, v1 is the content of a
data row.

• If k2, v2, k3, v3 are identified, we have the input, and output of reduce function.

The formal Representation may be rewritten only with k1, v1, k2, v2, k3, v3 as follows:

map : (k1, v1) → list(k2, v2) (1)

reduce : (k2, list(v2)) → list(k3, v3) (2)

Figure 2 illustrates the diagram of the MapReduce job execution and data conversion
from types (K1, V1) to types (K2, V2) and types (K2, V2) to types (K2, V3).

Figure 2. Flowchart of MapReduce model [12].

2.2. The binary algorithm Otsu. Otsu is the name of a Japanese researcher [5] who
came up with the idea of calculating threshold automatically based on pixel value instead
of using fixed threshold.

• Step 1: Calculating Histogram of the input image:

pi =
L−1∑
i=0

ni

M ∗N
(3)



116 Tu-Trung Nguyen

Where:
– ni: the number of pixels whole gray level is i.
– : L = 256.
– p0 + p1 + ...+ pL−1 = 1

• Step 2: With every threshold Tk = k, (0 < k < L − 1) to divide the input image
into 2 classes C1 (a set of pixels whole gray level is smaller than k) and C2 (a set of
pixels whole gray level is bigger than k)
– Step 2.1: Calculating P1(k) and P2(k) corresponding is the ratio of the number
of pixels in the class C1 and C2 that compared with the total number of pixels:

P1(k) =
k∑

i=0

pi (4)

P2(k) =
L−1∑

i=k+1

pi (5)

– Step 2.2: Calculating m1, m2 that are the mean values of the classes C1, C2:

m1(k) =
k∑

i=1

iP (
1

C1

) =
1

P1(k)ipi
(6)

m2(k) =
L−1∑

i=k+1

iP (
1

C2

) =
1

P2(k)ipi
(7)

– Step 2.3: Calculating σB is the variance of the two classes C1 and C2:

σ2
B = P1(m1 −mG)

2 + P2(m2 −mG)
2 (8)

σ2
B = P1P2(m1 −m2)

2 (9)

Where:
∗ mG: mean value of the image:

mG =
L−1∑

i = 0ipi (10)

hay mG = P1m1 + P2m2

∗ mk: the mean value to the threshold k:

mk =
k∑

i = 0ipi (11)

• Step 3: According to Otsu, k* is calculated that the value of σ2
B(k

∗), the difference
between the two paragraphs (background color and character color), reaches the
maximum value:

σ2
B(k

∗) = max0<=k<=L−1σ
2
B(k) (12)

Note: If having the biggest values σ2
B that they are equal, k* is the biggest value k

whole σ2
B is max.

• Step 4: Perform the image binarization according to threshold k*:

gOut(x, y) =


1 if

gIn(x, y) > k∗
0 if

gIn(x, y) < k∗

(13)

Where:



MapReuduce-Otsu 117

– gIn(x, y): value of input pixel
– gOut(x, y): value of output pixel

3. Propose the binary algorithm MR Fast Otsu.

3.1. Analyze limitations of the binary algorithm Otsu. Although the Otsu algo-
rithm is very efficient in binary image, it still has limitations, for example: The execution
speed is very slow with large images. As presented in Section 2.2, the computation time
of this algorithm focuses mainly on the steps:

• Calculating Histogram: Browsing all the pixels to calculate the amount of each
grayscale.

• Calculating the quantities P1(k), P2(k),m1(k),m2(k) follow as the fomulas (6), (7),
(8), (9)

3.2. The algorithm MR Fast Otsu. In this section, the author presents an improve-
ment of the Otsu binary algorithm that is based on the MapReduce model and a quick so-
lution of the quantities P1(k), P2(k),m1(k),m2(k), called MapReduce Fast Otsu (MFO).
The MFO algorithm still consists of 4 steps that are the same as the Otsu algorithm but
making improvements in steps 1 and 2 corresponding to the calculation of Histogram and
the quantities P1(k), P2(k),m1(k),m2(k).

3.2.1. Calculating Histogram using the MapReduce model. In this section, the author pro-
poses algorithm MR Hist (MapReduce Histogram) to fix the problem of time when cal-
culating the frequency of the Histogram level. Figure 3 is the diagram of the gray level
calculation algorithm MR Hist:

According to the algorithm flowchart, the input image is first converted to a list of gray
levels of pixels suitable for MapReduce processing. Next, the system will divide the data
into input splits, each processed in parallel by MapTask (which does a 1 count for the
gray level value for the pixel being considered) to obtain the intermediate data. After
all input splits are processed by MapTask, the intermediate data will be sorted, mixed,
and grouped by gray level. Next, the grouped data will be processed by ReduceTask
to calculate the total number of occurrences corresponding to the gray level in k2. The
algorithm ends when all ReduceTasks are completed.

• Formal representation for procedures map Hist and reduce Hist Input: Each data
element is a gray level value gij (of each pixel at the position of row i and column j).
Output: A couple: Gray level values and the corresponding frequency of occurrence
(g, count(g)). Then, we determine the pairs k1, v1 and k3, v3 as follows:
– k1 is null or offset, v1 is gij.
– k3 is the gray level value g, v3 is count(g). The Map function performs counting
1 for each gray level stored in v1 and so k2, v2 are inferred as follows:

– k2 is gij, v2 is 1 At that moment, it has the form representation of the Map and
Reduce procedures as follows:

map Hist = (offset, gij) → list(gij, 1) (14)

reduce Hist = (g, list(1)) → list(g, count(list(1))) (15)

• The procedure map Hist Table 1 describes the algorithm of the procedure map Hist.
The purpose of the map Hist algorithm is to count 1 for the occurrence of the gray
level to be considered.

• The procedure reduce Hist Table 2 describes the algorithm of the procedure re-
duce Hist. The purpose of the algorithm reduce Hist is to sum the numbers 1 which
grouped by each grayscale.



118 Tu-Trung Nguyen

Figure 3. The flowchart of the algorithm MR Hist.

Table 1. The algorithm of function map Hist.

Input: key k1 is the values offset or null, value v1 is gray level gij
Output: lstK2V2 is list of couples (k2,v2): k2 is gij, v2 is 1
Step 1: Assigning k2 = gij
Step 2: Assigning v2 = 11
Step 3: Add the couple (k2,v2) into lstK2V2
Step 4: return lstK2V2

3.2.2. Quick calculation of Coefficients P1(k), P2(k),m1(k),m2(k). According to fomulas
(6) and (7) it could deduce as follows:

P1(0) = hist(0) (16)

P1(k) = P1(k − 1) + hist(k), k > 0 (17)

P2(k) = totalP ixel − P1(k) (18)

Where, totalPixel is the total number of pixels in the input image.
Attention: If it’s considered:

m1 =
k∑

i=0

iPi (19)



MapReuduce-Otsu 119

Table 2. The algorithm of function reduce Hist.

Input: key is the value of gray level g, value is a list of values of 1 corresponding
to the number of occurrences of the gray level g
that is considered in the procedure map, it means list(1)
Output: A couple (k3,v3): k3 is the gray level g, v3 is the sum of the elements in list(1)
Step 1: Initializing the variable sum = 0
Step 2: Assigning k3 = g
Step 3: Foreach list(1)
Step 3.1: Increasing sum = sum + 1
Step 4: Assigning k3 = sum

m2 =
L−1∑

i=k+1

iPi (20)

then:

σ2
B = P1P2(

m1

P1

− m2

P2

)2 = P1P2(
m1P2 −m2P1

P1P2

)2 =
(m1P2 −m2P1)

2

P1P2

(21)

It’s also deduced:

m1(0) = 0 ∗ hist(0) = 0 (22)

m1(k) = m1(k − 1) + k ∗ hist(k), withk > 0 (23)

m2(255) = 0 (24)

m2(k) = m1(k + 1) + (k + 1) ∗ hist(k + 1), k < 255 (25)

With the above argument, it is easy to see that:

• P1(k) can be calculated based on P1(k − 1) according to the fomula (16) or (18)
instead of having to recalculate the whole thing like the formula (6) and it should
save a lot of time.

• P2(k) can be calculated based on P1(k) according to the fomula (18) instead of having
to recalculate the whole thing like the formula (7) and it should save a lot of time.

• Similar to m1(k), m2(k) can be calculated based on the fomulas (22-25) and it should
save a lot of time.

4. Experiment. The author tested the proposed binary algorithm MFO and compared
with binary algorithm Otsu.

Experimental data includes 3 types of images: Remote sensing (RS), Document (Doc)
and Landscape (LS) images. Due to the limitation of the paper, the author demonstrates
the experiment with different input image samples as shown in figure 4a, 4b, 4c and Table
3. In this experiment, i use the tool Spark to implement the algorithm MFO.

Table 3. Some representative samples and experiencing results.

width height Otsu Time MFO Time Otsu/MFO
7173 7202 13236 1395 9.49
4456 4465 5506 633 8.70
2479 3508 4722 509 9.28
2550 2300 4392 611 7.19
3264 2448 1205 527 2.29
2448 3264 2784 474 5.87



120 Tu-Trung Nguyen

Figure 4. Illustrating some image binary results with remote sensing images.

Averaging times of Otsu and MFO are 5307.5 691.5 correspondingly. And Otsu/MFO
time is 7.68.

Comments: From the above table is shown that:

• The largest time difference between Otsu and MFO is 9.49.
• The largest time difference between Otsu and MFO is 2.29.
• In the most tests, the time difference between Otsu and MFO is about 6 times or
more.

• The average time difference between Otsu and MFO is 7.68
• The execution time of the algorithmMFO is much smaller than the original algorithm
Otsu.



MapReuduce-Otsu 121

Figure 5. Illustrating some image binary results with document images.



122 Tu-Trung Nguyen

Figure 6. Illustrating some image binary results with landscape images.

5. Conclusions. In this paper, the author proposed an improvement of the Otsu binary
algorithm for large images. The proposed algorithm uses the MapReduce model and a
fast computation solution for the key components of the Otsu algorithm. The test results
on three different types of images showed an average increase of about 7.7 times the
execution speed compared to the original algorithm. In the next research, the author will
continue to study binary algorithms and image classification.



MapReuduce-Otsu 123

Acknowledgment. This work is partially supported by Department of Information
Technology, Thuyloi university and Institute of Information Technology, Vietnamese Acad-
emy of Science and Technology. The authors also gratefully acknowledge the helpful
comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] Jain B. D, ”Goal directed evaluation of binarization methods”, IEEE Transactions on Pattern Anal-
ysis and MAchine Intelligence, 17:11911200, 1995.

[2] Melgani F, ”Robust image binarization with ensembles of thresholding algorithms”, J. Electron.
Imaging, 15, 2006.

[3] Luck Fletcher, ”Emg tutorial Technical report”, Available at http://users.cecs.anu.edu.au/ Luke.
[4] Z. H. Nowinsk, ”On minimum variance thresholding”, Journal of Pattern Recognition Letters,

15:17321743, 2006.
[5] N. Otsu, ”A threshold selection method from gray level histograms”, IEEE Trans. systems. Man.

and Cybernetics, VOL. SMC-9, NO. 1, JANUARY 1979.
[6] B. S. Sezgin, ”A survey over image thresholding techniques and quantitative performance evalua-

tion”, Journal of Electronic Imaging, 13:146165, 2004.
[7] Nandhini.P, ”A Research on Big Data Analytics Security and Privacy in Cloud, Data Mining, Hadoop

and Mapreduce”, Int. Journal of Engineering Research and Application, 2018.
[8] Jeffrey Dean and Sanjay Ghemawat, ”MapReduce: Simplified Data Processing on Large Clusters”,

USENIX Association OSDI ’04: 6th Symposium on Operating Systems Design and Implementation,
2004.

[9] Jianfang Cao et al, ”Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-
Canny Operator on the Hadoop Platform”, Computational Intelligence and Neuroscience, May 2018.

[10] Yousefi, Jamileh, ”Image Binarization using Otsu Thresholding Algorithm”, 2015.
10.13140/RG.2.1.4758.9284.

[11] Sauvola, J., Seppanen, T., Haapakoski, S., and Pietikainen, M.: ”Adaptive document binarization”.
Proc. 4th Int. Conf. on Document Analysis and Recognition, Ulm Germany, 1997, pp. 147–152

[12] Zineb H. et al, “ISauvola: Improved Sauvola’s Algorithm for Document Image Binarization”, ICIAR
2016, LNCS 9730, pp. 737–745, 2016, DOI: 10.1007/978-3-319-41501-782.

[13] Tom White, ”Hadoop: The Definitive Guide : The Definitive Guide”, 2009.
[14] T.Romen Singh et. al, “A New Local Adaptive Thresholding Technique in Binarization”, Interna-

tional Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011.
[15] Jeng-Shyang Pan, Thi-Lan-Phuong Nguyen, Truong-Giang Ngo, Thi-Kien Dao, Thi-Thanh-Tan

Nguyen, Trong-The Nguyen, “An Optimizing Cross-Entropy Thresholding for Image Segmentation
based on Improved Cockroach Colony Optimization”, Journal of Information Hiding and Multimedia
Signal Processing, Vol. 11, No. 4, pp. 162-171, December 2020.

[16] Trong-The Nguyen, Trinh Dong-Nguyen, Truong-Giang Ngo and Vinh-Tiep Nguyen, “An Optimal
Thresholds for Segmenting Medical Images Using Improved Swarm Algorithm”, Journal of Informa-
tion Hiding and Multimedia Signal Processing, Vol. 13, No. 1, pp. 12-21, March 2022.

[17] Teh-Lu Liao, Han-Chang Chen and Jun-Juh Yan, “Design of Real-time Face Position Tracking
and Gesture Recognition System based on Image Segmentation Algorithm”, Journal of Network
Intelligence, Vol. 5, No. 4, pp. 226-239, November 2020.


