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Abstract. Feature selection and classifier parameter optimization are critical for im-
proving classifier performance. Traditionally, these two problems have been addressed
separately. However, recent advancements in evolutionary optimization computing tech-
nology have allowed for the simultaneous optimization of feature selection and parameter
tuning. In this paper, we propose a novel approach called PSO-SVM, which combines bi-
nary PSO with SVM parameter optimization. We evaluate the effectiveness of the PSO-
SVM scheme through extensive experiments that demonstrate its ability to effectively
identify feature subsets and SVM parameters that are well-suited for the given task, re-
sulting in superior classification outcomes. Furthermore, we compare our algorithm with
other algorithms and find that the PSO-SVM algorithm offers a wider range of feature
reduction capabilities, enabling a more efficient representation of input data. Addition-
ally, the PSO-SVM algorithm demonstrates higher computational efficiency, making it a
more practical choice for real-world applications.
Keywords: Parameter optimization, Feature selection, PSO-SVM algorithm; Intelligent
optimization algorithm; Binary particles swarms optimization.

1. Introduction. The classification problem is a fundamental challenge in pattern recog-
nition, involving tasks such as selecting the appropriate classifier model [1], feature se-
lection, and optimizing classifier parameters [2]. As research in pattern recognition pro-
gresses, the complexity of the objects under study has increased [3], resulting in higher-
dimensional feature spaces [4]. Many high-dimensional datasets contain redundant or
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noisy features, which can negatively impact classification accuracy and significantly in-
crease computational complexity [5]. Therefore, feature selection algorithms are neces-
sary to identify a feature subspace with good separability, reducing dimensionality and
mitigating the complexity of machine learning processes [6]. In recent years, there has
been a growing trend to simultaneously address feature selection and parameter opti-
mization problems [7]. Traditionally, these two problems were studied independently,
but researchers have recognized the benefits of integrating them. For example, genetic
algorithms and particle swarm optimization have been employed to synchronize feature
selection and classifier parameter optimization, yielding promising results. This research
paper proposes a concurrent approach that combines feature selection and parameter opti-
mization using Binary particles swarms optimization (BPSO) [8]. PSO is an emerging op-
timization technique inspired by artificial life and evolutionary computation theories [9]. It
iteratively updates the positions of particles in a swarm, guided by the best solution found
by any individual particle and the overall swarm. PSO has been successfully applied in
various fields, including pattern recognition and data mining [10]. To address the challenge
of synchronizing optimal feature selection, this paper presents a PSO-SVM algorithm that
combines binary PSO for the feature selection with synchronization optimization. The
algorithm seamlessly integrates feature selection and parameter optimization, improving
classification performance, reducing computational time and complexity, and enhancing
the interpret ability of the resulting models [11]. This research paper contributes a con-
current framework that uses Binary PSO to integrate feature selection and parameter
optimization, a fitness function that efficiently evaluates classification performance, and
an experimental evaluation that compares the proposed approach with existing meth-
ods. The experimental results demonstrate the effectiveness of the proposed approach
in improving classification accuracy and interpret ability. Overall, this research paper
presents a novel approach that synchronizes feature selection and parameter optimiza-
tion, improving classification performance and advancing the field of pattern recognition.
The proposed scheme offers enhanced feature reduction capabilities and computational
efficiency compared to existing methods, opening up new avenues for optimizing classifier
performance.

2. Related Work.

2.1. Feature Selection Techniques. Techniques for selecting elements that are the
most pertinent are essential for enhancing classification performance. Filter, wrapper,
and embedded methods are some of these strategies. While wrapper approaches utilize
a particular classification algorithm to evaluate feature subsets, filter methods use sta-
tistical metrics or information theory to analyze feature significance. Feature selection
is integrated into the learning algorithm itself in embedded approaches. Parameter op-
timization techniques, on the other hand, seek to maximize classification performance
by determining the ideal values for algorithm parameters [12]. Conventional techniques,
such as random and grid search, investigate a predetermined range of parameter values;
however, they can be computationally costly and may not always identify the global opti-
mum. Metaheuristic techniques such as PSO and GA have been widely employed to tackle
these problems. By effectively exploring the parameter space, these methods enhance the
optimization procedure.

Table 1 provides a general overview and the advantages and applications of the selection
technique that may vary depending on the specific problem and dataset. Both feature se-
lection and parameter optimization are essential for enhancing classification performance.
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Table 1. An outlining different feature selection techniques

Technique Description Advantages Applications
Filters Methods
[7]

Evaluate feature rele-
vance based on statis-
tical measures or in-
formation theory

Computationally ef-
ficient, independent
of classification algo-
rithm

Text mining, bioin-
formatics

Wrapper Meth-
ods [13]

Use a specific clas-
sification algorithm
to evaluate subsets
of features based on
their performance

Incorporates classi-
fication algorithm
feedback, can capture
feature interactions

Medical diagnosis,
image recognition

Embedded
Methods [7]

Incorporate feature
selection within the
learning algorithm
itself

Simultaneously opti-
mizes feature selection
and model parameters

Natural language
processing, senti-
ment analysis

Genetic Algo-
rithms (GA) [14]

Optimization algo-
rithm inspired by
biological evolution

Can handle large
search spaces, global
optimization capabil-
ity

Data mining, finan-
cial forecasting

Particles
Swarms Op-
timization
(PSO) [9]

Optimization algo-
rithm inspired by
social behavior of bird
flocking

Efficiently explores
parameter space, fast
convergence

Image segmen-
tation, pattern
recognition

Feature selection techniques help identify the most relevant features, reducing dimen-
sionality and computational complexity. Parameter optimization methods ensure that
the algorithm is fine-tuned to achieve the best possible classification results. By com-
bining these two techniques, researchers can further improve classification accuracy and
efficiency.

2.2. Particles Swarms Optimization (PSO). The PSO algorithm is a computational
technique inspired by the behavior of bird predation [9]. It was proposed by Eberhart
and Kennedy and is used to search for optimal solutions through iterative processes. Un-
like genetic algorithms, PSO does not employ crossover and mutation operations. Instead,
particles in the algorithm follow the current optimal particle to explore the solution space.
PSO has several advantages over genetic algorithms, such as its simplicity, ease of imple-
mentation, and fewer adjustable parameters. Consequently, PSO has been widely applied
in various domains, including function optimization, neural network training, and fuzzy
system control. In PSO, each particle represents a potential solution to the optimization
problem and is treated as a point in the search space. The fitness of each particle is eval-
uated using an evaluation function. By sharing information about the current optimal
particle, particles collectively explore the solution space. In order to represent random
solutions, the PSO initializes the particle swarm with a collection of random particles
that looks for the best answer through successive rounds. Particles use the evaluation
function to compute their fitness values and update their current positions depending
on their velocities at each iteration. The particles then use the following speed update
formula to update their velocities.

V elid = V elid + co1× rand()× (p id − Sid) + co2 × rand()× (pgd − Sid) (1)
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Where V el is a particles possess velocities, determine the direction and magnitude of their
movement.

S id = Sid + V elid (2)

where Si is current position in the solution; Pid is the local optima particle’s; Every
particle has attributes, denoted as Si = (si1, si2, .., siD), which represent its current po-
sition in the solution space. Pid = (pi1, pi2, .., piD) represents the local optimal particle,
existing the best point that particle in search space so far, Pgd = (pg1, pg2, ..pgD) represent
the global optimal value of the entire particle swarm, that is, the best point the entire
particle swarm has hit in the search space so far. co1 and co2 are two positive constants,
called learning factors. rand represents a random number between 0 and 1. Formula (2)
is a position update formula of a particle. In order to adapt to the applied PSO algorithm
in binary PSO, each particle is encoded as a binary vector. In binary particles, velocity
defines the probability that each position of the particle is assigned a value of 1, so the
velocity is converted to the interval [0.0, 1.0] by a transfer function. The sigmoid function
was used in this study. The binary particle update formula is as follows:

pij =

{
1, if rand() ≤ S (vij)

0, otherwise ,
(3)

In order to obtain better optimization efficiency and effect, this study made some im-
provements to the PSO algorithm, and mutated the worst 10% particles in each iteration.
Experiments show that these 10% particles waste computing resources. After mutation,
the particle swarm can find the optimal value faster, and avoid the situation where it is
easy to gather in the local optimum.

2.3. Support Vector Machine (SVM). Statistical pattern recognition methods have
traditionally relied on the assumption that the number of samples available is sufficient to
ensure that the proposed method’s performance can be theoretically guaranteed, provided
that the number of samples approaches infinity [15]. However, in reality, the number of
available samples is often limited, which poses a significant challenge to the development
of effective pattern recognition methods. In recent years, the field of statistical learning
theory has emerged as a specialized pattern recognition theory that focuses on small
sample learning [11]. It has provided a more robust theoretical framework for studying
statistical pattern recognition and a broader range of machine learning problems when
faced with limited samples. One of the most promising new pattern recognition methods
to emerge from this field is the support vector machine (SVM), which has proven to
be highly effective in addressing the challenges of small sample, non-linear, and high-
dimensional pattern recognition [16]. SVM has several unique advantages that make it
particularly well-suited for small sample learning and classification. The following section
provides a brief overview of the principles of SVM for pattern learning and classification
[12]. Suppose that the input pattern set D contains Mn-dimensional samples that are
divided into two categories [1]. Samples belonging to the first category are labeled as 1,
while those belonging to the second category are labeled as -1. This can be mathematically
expressed as:

D =

{
(xi, yi) |i ∈ {1, 2, . . . ,M}
xi ∈ Rn, yi ∈ {1,−1} , (4)

Assume that the samples in the input pattern set D can be correctly classified by a
hyperplane described as (w × x)− b = 0 that is expressed as follows.{

(w × xi)− b ≥ 1 , if ( yi = 1)
(w × xi)− b ≤ 1, otherwise , if yi = −1

, (5)



176 T.G. Ngo, N. C. Hoan, T. T.T. Nguyen, T. K. Dao

Figure 1. An example of a encode particle

The above formula can be simplified to yi [(w × xi)− b] ≥ 1. It can be easily concluded
that solving the optimal hyperplane problem that satisfies condition can be expressed.

MinimizeΦ(w) = w2 (6)

The optimization problem is transformed into the form as follows.

f (x) = sign

(∑
k

akykK (xk, x) + b

)
(7)

Among them, K(x, y) is the kernel function, b is the threshold value determined according
to the training samples, and ak is determined by the quadratic programming. In the
SVM, the decision surface’s characteristics are determined by the choice of the kernel
function. The SVM utilizes this decision surface to classify samples effectively. There
are various types of kernel functions available for use in SVM, including linear kernel
functions, polynomial kernel functions, radial basis kernel functions, and more. Each
kernel function has its own unique properties and is suitable for different types of data
and classification tasks [2]. The selection of the kernel function is crucial in determining
the SVM’s performance and its ability to accurately classify samples.

3. Optimal Feature selection with parameter synchronization. A powerful tool
for optimal feature selection with BPSO[17] is designed to optimize both the feature subset
and the SVM parameters simultaneously. This section discusses the particle design, fitness
function, and algorithm flow of the PSO-SVM algorithm. Particle design is implemeted
with the PSO-SVM algorithm, particles are represented by a binary bit string. The
structure of the particle is determined based on the kernel function used in the SVM [18].
For instance, in this study, the radial basis function (RBF) is used as the kernel function
for the SVM is defined as follows.

K (s, z) = exp
(
−γs− z2

)
, γ > 0 (8)

For SVM with RBF kernel function, there are two parameters that need to be optimized:
kernel parameter nγ > 0 and penalty parameter (penalty parameter) C > 0. In addition,
feature selection must be performed simultaneously. Therefore, the particle should contain
three parts, namely parameter C, parameter γ, and feature mask, as shown in Figure 1.
The first nC bits of the particle represent the parameter C, the middle nγ bits represent the
parameter γ, and the last nF bits represent the feature mask. nC and nγ are determined
according to the accuracy requirements, and nF is determined by the number of features
in the data set. Schematic diagram of particle is structured as follows.

The binary bit strings representing the parameters C and γ in the particles can be
converted into their decimal equivalents using Eq. (9), where p represents the decimal
value of the parameter, minp and maxp represents the minimum and maximum value of
the parameter, and l represents the length of the binary bit string for the parameter C
and γ are nC and nγ, respectively; d denote the decimal value of the binary bit string
representing the parameter. The precision of the parameter can be adjusted by changing
the length of the bit string, while the range of the parameter can be set by specifying its
minimum and maximum values.
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Step 1: Initialize the particle swarm with random binary bit strings.

Step 2: Evaluate the fitness of each particle using the SVM classifier
with the current feature subset and SVM parameters.

Step 3: Update the personal best position and the global best position
of each particle based on the fitness value.

Step 4: Update the velocity and position of each particle using the
PSO algorithm.

Step 5: Evaluate the fitness of each particle with the updated feature
subset and SVM parameters.

Step 6: Repeat steps 3-5 until the stopping criterion is met.

Step 7: Select the particle with the highest fitness value as the final
solution.

p = minp +
maxp −minp

2l − 1
× d (9)

In the feature mask section, each binary bit corresponds to a feature in the feature set.
A bit of 1 indicates that the corresponding feature is selected in the feature subset, while
a bit of 0 indicates that the corresponding feature is not included in the selected feature
subset. The fitness function of the PSO-SVM algorithm evaluates the performance of the
SVM classifier by measuring its classification accuracy on a given dataset. It is calculated
as the ratio of correctly classified samples to the total number of samples in the dataset.
A higher fitness value indicates better performance of the SVM classifier [19]. The goal
of the algorithm is to optimize the SVM parameters of the feature subset to improve
classification accuracy while minimizing the number of selected features. As a result, a
smaller number of features corresponds to a higher fitness value. Eq. (10) defines the
particle fitness function used in this study.

fitness = wa × svm− accuracy + wf ×

(
nF∑
i=1

fi

)−1

(10)

Among them, wa represents the weight of classification accuracy; svm-accuracy represents
the classification accuracy of SVM; wf represents the weight of the inverse of the number
of features; fi represents the corresponding bit of the i-th feature in the feature mask, 1
represents the feature is selected, and 0 represents not Select; wa and wf are determined
according to actual needs. The PSO-SVM algorithm works by iteratively updating the
particle positions and velocities based on the fitness function. The algorithm flow can be
summarized as follows:

The PSO-SVM algorithm’s main advantage is its ability to simultaneously optimize
the feature subset and SVM parameters, leading to improved classification accuracy and
reduced computational complexity.

4. Experimental Results and Discussion. Experimental data and experimental envi-
ronment is setted as for assessing the effectiveness of the algorithm, several UCI datasets
were utilized for experimental research. The datasets’ names and relevant information
are presented in Table 1. All experiments were conducted on a computer equipped with
an Intel Pentium 4 3.0G CPU and 512M memory. The algorithm was implemented using
Matlab programming, and the SVM utilized LIBSVM [12].
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Table 2. UCI Datasets Used in the Experiment

Names Number of
classes

Number of
instances

Nominal
features

Numeric
features

Total fea-
tures

The cases dia-
betes

2 768 0 8 8

Heart disease 227 0 7 6 13
Ionosphere 2 351 0 34 34
Sonar 2 208 0 60 60
Iris 3 150 0 4 4
Vehicle 4 990 0 18 18

The UCI datasets chosen for the experiment vary in terms of the number of instances,
features, and classes. This diversity ensures a comprehensive evaluation of the algorithm’s
performance across different types of datasets. The experimental environment’s specifi-
cations indicate the computational resources available for running the experiments. The
Matlab programming language and the LIBSVM library were selected for implementation,
ensuring reliable and efficient execution of the algorithm.

4.1. Experimental Evaluation. Cross-validation was used in the experimental evalu-
ation of the PSO-SVM algorithm. The PSO-SVM technique was applied k times to each
of the k subsets randomly selected from the dataset. The remaining k-1 subsets were
used as the training set, and one subset was used as the test set for each run. The final
classification result for the dataset was calculated by averaging the outcomes of the k
runs. In this investigation, k was set to 10. The performance of the PSO-SVM algorithm
was compared to that of SVM without feature selection or parameter optimization, as
well as the GA-SVM technique suggested in [1], to provide a comprehensive comparison.
The cross-validation technique was also used to assess the SVM and GA-SVM approaches.
The performance of the PSO-SVM algorithm was evaluated using the particle fitness func-
tion and the classification accuracy index, svm-accuracy. The svm-accuracy is defined as
the ratio of correctly identified samples to all samples in the dataset. It is a commonly
used performance metric in classification tasks, measuring the algorithm’s accuracy in
classifying data. The effectiveness of the PSO-SVM method in feature selection and pa-
rameter optimization can be assessed by comparing its classification accuracy with that
of SVM and GA-SVM. The algorithm performs better as the categorization accuracy in-
creases. Below is a description of the classification accuracy index, svm-accuracy, used in
the particle fitness function. This article initially specifies three hit rates for the second-
type dataset, where there are only two types of samples (positive instances and negative
examples): positive hit rate, reverse hit rate, and overall hit rate. rp = nump/Nump

rn = numn/Numn

rn = (numn + nump)/(Numn +Nump)
(11)

where rp is the positive hit rate; rn is the counter hit rate; rn is the overall hit rate;
nump represents the number of positive examples correctly classified by the classifier;
numn represents the number of negative examples correctly classified by the classifier;
Nump represents positive examples in the data set The total number of samples; Numn

represents the total number of negative examples in the data set. For a data set with two
categories, rp × rn instead of ra is used to measure the classification accuracy. Because a
good classifier not only has a high overall hit rate, but also performs uniformly, that is,
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Table 3. Number of particles used in each data set

Names Total Features Particle No. Cases
The diabetes 8 100
Heart disease 13 100
Ion ophere 34 200
Sonar 60 300
Iris 4 50
Vehicle 18 150

Table 4. Performance comparison of three methods of SVM, PSO-SVM
and GA-SVM on the experimental data set

the classification accuracy of different classes cannot be very different. This is especially
important for the second type of data set. Therefore, it is more scientific to use rp × rn
for svm- accuracy. For multi-class datasets, the overall hit ratio ra is used to represent
its svm — accuracy.

4.2. Experimental Parameter Settings. The experimental parameters for the algo-
rithm are as follows: co1 = co2 = 2: These are the acceleration coefficients used in
the PSO algorithm [20]. They control the balance between the particle’s personal best
position and the global best position when updating the velocity and position.

- Initial value range of particle velocity: [-5, 5]; this range determines the initial velocity
of each particle in the PSO algorithm. The velocity affects how particles explore the search
space and find the optimal solution.

- Number of particles: The number of particles varies depending on the dimensionality
of the dataset. The specific values are shown in Table 2. A larger number of particles
is used when the dimensionality of the dataset is high to ensure thorough exploration of
the search space, while a smaller number of particles can be used for lower dimensional
datasets.

- Stopping criterion: The PSO algorithm stops when either the number of iterations
reaches 300 or the global optimal fitness value remains unchanged for 100 consecutive
iterations. This ensures that the algorithm terminates when it has reached a satisfactory
solution or when it has converged.

Other parameters used in the experiment are not specified in the given information.
wa = 0.8, wf = 0.2, nR = nS = 20.C ∈ [2(−5), 500], γ ∈ [2(−15), 1].

4.3. Experimental Results. The experimental outcomes and classification accuracy for
each data set for the SVM, GA-SVM, and PSO-SVM algorithms are displayed in Table 4.
The average value is the mean of the outcomes of executing the algorithm ten times on a
given batch of data. Table 5 is a comparison of the GA-SVM method and the PSO-SVM
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Table 5. Comparison of the average number of feature selections of the
PSO-SVM and GA-SVM methods on the experimental data

Datasets PSO-SVM Average
number of selected
features

GA-SVM Average
number of selected
features

Diabetes (8) 1.4 3.7
Heart disease (13) 4.1 5.4
Ionosphere (34) 3.9 6.0
Sonar (60) 5.8 15.0
Iris (4) 1.0 1.0
Vehicle (18) 9.7 9.2

method in feature selection. It shows that the two algorithms are run 10 times on the
same data set. Table 4 Comparison of the average number of feature selections of the
PSO-SVM and GA-SVM methods on the experimental data

Table 5 with the experimental results and classification accuracy of the SVM algo-
rithm, GA-SVM algorithm, and PSO-SVM algorithm on each dataset. Based on the
experimental setup and evaluation method described earlier, the average classification
accuracy values can be calculated by averaging the results obtained from running each
algorithm 10 times on each dataset. These average values would provide insights into the
performance of the algorithms and allow for comparison among them.

4.4. Discussion Results. Based on the experimental results shown in Table 3, the fol-
lowing three methods (SVM, GA-SVM, and PSO-SVM) will be compared and analyzed
in terms of classification accuracy, feature selection ability, and algorithm operation effi-
ciency.

• Classification Accuracy: The PSO-SVMmethod demonstrates significantly improved
classification accuracy compared to the SVMmethod. On each experimental dataset,
the PSO-SVM method outperforms the SVM method in terms of classification ac-
curacy. For example, on the Heart dataset, the positive hit rate, negative hit rate,
and overall hit rate of the SVM method are 0.8000, 0.867, and 0.880, respectively.
In contrast, the PSO-SVM method achieves higher hit rates of 0.9417, 0.9267, and
0.9333, respectively, which are 17.71%, 14.88%, and 16.13% higher than the SVM
method. Similarly, on the Vehicle dataset, the average hit rate of the SVM method
is 0.7634, while the PSO-SVM method achieves a hit rate of 0.9256, representing
a 21.25% improvement over the SVM method. Moreover, the PSO-SVM method
produces a more balanced classifier, with similar hit rates for different classes, as
evident in the Sonar dataset.

• Feature Selection Ability: On average, the PSO-SVM method selects fewer features
compared to the GA-SVM method on most datasets. For example, on the Ionosphere
dataset with 34 features and the Sonar dataset with 60 features, the average number
of features selected by PSO-SVM is only 3.9 and 5.8, respectively. In contrast, the
average number of features selected by GA-SVM is 6.0 and 15.0, which are 1.54 times
and 2.57 times higher than PSO-SVM, respectively. Despite the similar classification
accuracy of both methods, this indicates that the PSO-SVM method has a better
feature selection effect compared to GA-SVM.

• Algorithm Operation Efficiency: In terms of efficiency, the SVMmethod is the fastest
during the training phase since it does not require an optimization algorithm like
PSO or GA for feature selection and parameter optimization. However, the lack of
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Table 6. A comparison of the PSO-SVM with the SVM and GA-SVM
schemes in terms of classification accuracy, feature selection ability, and
algorithm operation efficiency.

Method Classification Ac-
curacy

Feature Selection
Ability

Algorithm Opera-
tion Efficiency

SVM Good, but can be im-
proved with feature
selection. Prone to
overfitting with many
irrelevant features.

No inherent feature
selection. All features
used.

Fast computation
once training is com-
plete. Training can
be slow for large
datasets.

GA-SVM Higher than SVM due
to feature selection.
Reduces overfitting.

Good at selecting
relevant features and
removing irrelevant
ones. Improves classi-
fication.

Slower than SVM due
to additional genetic
algorithm steps for
feature selection.

PSO-SVM Higher than SVM due
to feature selection.
Reduces overfitting.

Good at selecting
relevant features and
removing irrelevant
ones. Improves classi-
fication.

Faster than GA-SVM
but slower than SVM
due to additional par-
ticle swarm optimiza-
tion steps for feature
selection.

feature selection in the training phase can lead to reduced classification accuracy
in the use phase, while an excessive number of features can slow down the SVM’s
runtime. In the long run, the efficiency of the SVM method is poor. Comparatively,
the PSO-SVM method achieves similar classification accuracy with fewer iterations
in the training phase (300 iterations compared to 600 iterations for GA-SVM) and
adapts the number of particles based on the dataset’s feature count (ranging from
50 to 300). This demonstrates that the PSO-SVM algorithm has better operation
efficiency compared to GA-SVM.

Table 6 compares the PSO-SVM with the SVM and GA-SVM schemes regarding clas-
sification accuracy, feature selection ability, and algorithm operation efficiency. From a
comprehensive analysis of classification accuracy, feature selection capability, and algo-
rithm operation efficiency, the PSO-SVM algorithm proves to be superior to the SVM and
GA-SVM algorithms. It achieves higher classification accuracy, better feature selection,
and improved operation efficiency, making it a more effective method for classification
tasks. GA-SVM and PSO-SVM have higher accuracy than SVM due to feature selection
which reduces overfitting. All three methods have feature selection ability, but GA-SVM
and PSO-SVM are designed to explicitly select features while SVM does not. The trade-
off is improved accuracy vs increased computational cost for the hybrid GA/PSO based
approaches compared to native SVM. SVM is the most efficient, followed by PSO-SVM,
with GA-SVM being the slowest due to its evolutionary algorithm operations for feature
selection. All three methods have feature selection ability, but GA-SVM and PSO-SVM
are designed to explicitly select features while SVM does not. The trade-off is improved
accuracy vs increased computational cost for the hybrid GA/PSO based approaches com-
pared to native SVM.

5. Conclusions. This study presented a PSO-SVM technique that combines PSO syn-
chronization for feature selection and SVM parameter optimization, aiming to improve
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feature selection performance. The experimental findings have validated the efficiency
and effectiveness of the PSO-SVM algorithm in enhancing classification accuracy. The
PSO-SVM algorithm demonstrated its ability to identify optimal solutions by efficiently
searching the search space and selecting relevant feature subsets. The feature reduc-
tion capability is crucial in real-world applications as it reduces dataset dimensionality,
improves computational performance, and prevents overfitting. Furthermore, the PSO-
SVM algorithm outperformed the GA-SVM algorithm regarding operating efficiency. The
PSO-SVM method balances accuracy and efficiency by dynamically adjusting the num-
ber of particles based on the dataset’s characteristics. Overall, the PSO-SVM approach
presented in this study offers a viable solution for feature selection and SVM param-
eter optimization in classification tasks. It overcomes the limitations of the GA-SVM
algorithm by providing a more comprehensive feature reduction range and increased op-
erational efficiency. These results contribute to the advancement of machine learning
and provide practitioners and researchers with a valuable tool to enhance classification
accuracy across various domains. Future studies can further explore the potential of the
PSO-SVM algorithm in broader machine-learning domains and evaluate its efficacy on
more extensive [21] and diverse datasets [22]. The findings of this study lay the founda-
tion for further research and development in the field, opening up new possibilities for
improving classification outcomes.
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