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Abstract. In recent years, methods have been implemented that allow pruning a model
trained with a dataset to reduce its size and/or its computational cost. It is clear that as
the pruning of the model increases, its performance decreases, for example in terms of
accuracy or F1-score. However, to date, the impact of dataset complexity on the pruned
model, which in some cases allows further pruning without a significant change in its
performance, has not been explored. For this reason, this study uses a metric to measure
dataset complexity and evaluates the impact of pruning on the same network for different
image classification problems (i.e., datasets of different complexity). It has been estab-
lished that if the data set is of high complexity, the pruned model will lose performance
faster, compared to the same network trained and pruned with the same pruning method,
but with a lower complexity dataset. This allows for a better selection of the pruning
percentage of the model, according to the complexity of the dataset.

Keywords: pruning, dataset complexity, Convolutional Neuronal Network(CNN),
deep learning, model compression, pruning evaluation, Spectral metrics.

1. Introduction. In the field of artificial intelligence dedicated to image classification
and object detection, convolutional neural networks (CNNs) have evolved as essential
tools that enable machines to recognize and classify images. Despite their achievements,
the challenge is to optimize these networks, making them more efficient without sacrificing
their precision in the tasks assigned. The strategy of pruning neural connections and filters
stands as a solution to reduce the computational cost of these networks, while maintaining
their performance.

Pruning, or selective elimination of neural connections and filters, is presented as a
key strategy in the optimization of CNNs. By reducing the complexity of these models,
improved efficiency is achieved in terms of model size, inference latency, and computa-
tional resource usage. This process often involves identifying and removing connections or
parameters that contribute minimally to the model’s loss function, without significantly
compromising its performance [1]. Additionally, there are structured and unstructured
pruning techniques, with the former being preferable to maintain hardware efficiency by
preserving regular connectivity patterns [2, 3].

Methods such as random pruning demonstrate that sparse networks can be obtained
by randomly removing connections, as long as the sparsity level is carefully preselected
[4]. Masked pruning addresses the challenges of federated learning by generating compact
representations by combining pruning masks from different nodes [5]. On the other hand,
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techniques such as one-shot pruning leverage knowledge from previously trained mod-
els to efficiently extract subnetworks for new tasks [6]. Taken together, these advances
make it possible to implement complex neural networks on constrained platforms without
compromising their performance too much.

However, it is important to note that the performance of a pruned CNN may depend on
the complexity of the classification task to be performed, i.e., the dataset. For example,
a high pruning rate may very slightly affect the performance of a pruned network that
had been trained for a low complexity dataset, but significantly affect the performance of
the same type of network if the classification problem (dataset) changes. In other words,
assessing the complexity of the dataset is crucial in determining the impact of pruning
on CNNs. Therefore, it is important to be able to identify the complexity of the dataset
prior to pruning in order to determine an appropriate pruning rate, not only for the type
of network, but also for the specific classification problem to be addressed.

According to the above, this work examines how dataset complexity impacts pruning
techniques and model efficiency. Comparative experiments utilize pre-trained models on
CIFAR-10, CIFAR-100 and STL-10 to analyze adaptability across datasets of varying
complexity. The central goal is investigating whether pruning can keep efficiency without
compromising performance, even as data complexity increases. The experiments aim to
provide insights into the interplay between dataset diversity, pre-trained models, pruning
techniques and network optimization. By analyzing model adaptability and robustness to
complexity changes, this work explores pushing the boundaries of efficiency gains through
optimized pruning.

2. Background.

2.1. Convolutional Neural Networks. Convolutional neural networks (CNNs) have
revolutionized the field of deep learning, especially in image processing and computer vi-
sion applications. Inspired by the organization of the visual cortex of biological organisms,
the architecture of CNNs takes advantage of the properties of translational invariance and
hierarchical compositionality present in image and video data. Unlike fully connected
networks, CNNs incorporate two key ideas: convolutions and pooling. Convolutions use
filters that glide over the input extracting local features, allowing invariant patterns to
be detected in small translations. As for pooling, it summarizes the information on lo-
cal characteristics, identifying the most discriminating characteristics and reducing the
dimensionality of the representations.

The hierarchical combination of these operations allows the extraction of more abstract
and semantically higher-level features as the depth of the network increases. CNNs learn
during training the filters and bias that best represent the input data for the desired task.
Due to their ability to capture local and global patterns, CNNs have driven significant ad-
vances in image classification and segmentation tasks, object detection, scene recognition,
among many other computer vision applications.

2.2. Prune and Pruning Methods. Pruning in neural networks is a strategic process
that consists of reducing connections and parameters within the network, thus reducing its
internal complexity. This procedure not only increases processing speed, but also decreases
the size of the model, making it especially valuable in edge computing applications or on
resource-constrained devices [7, 8].

Pruning of convolutional neural networks can be performed at different levels: channel,
layer, weights, and connection. Pruning by channel removes irrelevant channels in con-
volutional layers [9], pruning by layer removes redundant layers [10], pruning by weight
removes weak connections, and pruning by connection simplifies the network topology.
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On the other hand, there are various pruning approaches, including structured pruning,
which are used in convolutional neural networks to reduce the number of filters and neu-
rons in the convolutional layers [11]. In the case of unstructured pruning, it involves the
elimination of individual connections, resulting in a network with an irregular structure
[10].

Pruning can also be classified as local and global pruning, where local pruning removes
connections at a specific layer, while global pruning removes connections across the entire
network. Local pruning is usually applied to reduce the complexity of the convolutional
layers, while global pruning seeks to reduce the complexity of the network as a whole [12].

The key advantages of network pruning include reducing computational parameters
and operations, speeding up inference, reducing memory requirements, and improving
performance by mitigating overfitting. However, excessive pruning can degrade model
performance.

2.3. Complexity assessment spectral metric. Image classification is a fundamental
task in computer vision that has seen tremendous advances in recent years thanks to deep
convolutional neural networks (CNNs). However, training effective CNN models requires
large labeled image datasets, the development of which takes significant effort. Because
of this, it is crucial to be able to assess the inherent complexity of a given classification
problem and determine the minimum data size required.

Several metrics have been proposed to measure the complexity of classification prob-
lems, but most of them were designed for nonimage problems and small datasets [13].
Recently, some work has explored methods for image ensembles, but they still have im-
portant limitations.

In this context, an approach called Cumulative Spectral Gradient (CSG), specifically
designed to evaluate complexity in modern image classification problems had been pre-
sented. The CSG method employs spectral clustering on image features to derive a mea-
sure of inter-class overlap. A strong correlation of CSG with classification performance
has been demonstrated using various CNN models on a variety of image sets. In addi-
tion, CSG is computationally efficient and shows significant improvements over existing
techniques. The CSG metric allows characterizing the inherent difficulty in an image clas-
sification problem, with multiple potential applications such as data reduction, complex
class analysis, model selection, etc. [14].

2.4. Pre-trained models and transfer learning. The use of pre-trained models and
transfer learning has become an indispensable strategy in the field of convolutional neural
networks and deep learning applied to computer vision. Transfer learning leverages pre-
trained models on huge datasets (e.g. ImageNet) to significantly improve learning and
performance on new tasks where data is limited.

Demonstrated benefits include significantly reducing the data and computational re-
source requirements on the target task, drastically speeding up training and improving
the final performance, especially when data is sparse. Transfer learning has been widely
adopted in the deep learning community, showing significant improvements in various
computer vision applications such as image classification, object detection and segmenta-
tion. Finally, the use of pre-trained models enables efficient knowledge transfer between
related tasks.

3. Materials and methods. The essence of this research lies in the exploration of how
parameter pruning in convolutional neural networks (CNN) influences the performance
of models intended for image classification tasks. In order to evaluate this impact, three
image datasets widely used in computer vision were selected. The classification complexity
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of each of these datasets was evaluated using a metric that does not require training
models. Subsequently, classification performance was evaluated using pre-trained models
for each of the datasets. Complementarily, these pre-trained models were pruned and
their classification performance was also evaluated. These results allowed comparison
and analysis of performance as a function of dataset complexity. The steps that guided
this study are described below (see Figure 1):

3. PRE-TRAINED
MODELS

DATASETS1.

CIFAR-10

CIFAR-100

STL-10

2. DATASET
COMPLEXITY
EVALUATION

CIFAR

STL-10

4. PRUNING WITH
PYTORCH (RATE %)

ANALYSIS
5. PERFORMANCE

EVALUATION

PRUNED MODEL

Figure 1. Outline of the proposed methodology.

3.1. Datasets. In this study, we have selected three datasets: CIFAR-10, CIFAR-100
and STL-10. They differ from each other in two fundamental aspects: number of classes
and image resolution. CIFAR-10 and STL-10 have 10 classes each, and CIFAR-100 has
100 classes. Therefore, the complexity of the datasets is different, as it is much easier
for a model to identify patterns within a classification problem of 10 classes, than of 100
classes. Regarding image resolution, CIFAR-10 and CIFAR-100 have small images of
32× 32 pixels, while STL-10 stands out with larger images of 96× 96 pixels. Increasing
the size of the images provides a richer and more detailed visual representation, adding
perceptual complexity to the task.

Therefore, the selected datasets will allow us to assess the impact of pruning in different
scenarios of data complexity.

3.2. Dataset Complexity evaluation. The CSG metric based on the spectral analysis
of the correlation matrix between data samples was used to assess the complexity of the
selected datasets. It allows one to reveal crucial information about the structure and
distribution of the different classes in a vector space, and thus to better understand the
impact of the dataset complexity on the performance of the pruned model. The result
of this metric is a scalar, where higher values represent higher complexity and variability
in the data; whereas, lower values suggest a simpler and more uniform structure. The
results obtained using the spectral metric for the three datasets are shown in Table 1.

The spectral metric applied to the CIFAR-10 dataset returned moderate values of 3.76
for the training data and 4.50 for the test data. These values reveal a medium complexity
in the correlation structure between the CIFAR-10 samples. The 10 classes that make
up this dataset appear to have a reasonably uniform variability and distribution, without
large disparities. The fact that the test set gets a slightly higher value could be due to
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Table 1. Complexity metrics for the three selected datasets.

CIFAR-10 CIFAR-100 STL-10

Training / test data 3.76 / 4.50 26.08 / 29.64 3.48 / 3.67
Dataset complexity Medium Very high Low

random fluctuations between the selected training and test samples. Overall, moderate
complexity was expected in this balanced dataset.

On the other hand, the spectral metric showed a significantly greater complexity in
CIFAR-100, with values of 26.08 and 29.64 for training and testing respectively. This was
predictable given that CIFAR-100 has 100 classes, which introduces greater diversity and
variability between categories. The high value likely reflects disparities in the distribution
and frequency of certain classes. Even similar classes could manifest distinctive patterns
of variation, increasing the overall complexity of the dataset. Again a slightly higher value
is observed in the test samples.

Finally, the spectral metric applied to STL-10 returned low values of 3.48 and 3.67 for
training and testing. Although STL-10 has the same number of classes as CIFAR-10, the
higher resolution of the images (96 × 96 pixels) provides a richer visual representation.
Therefore, it is the least complex dataset compared to CIFAR, according to the spectral
metric. A possible explanation is that the classes in STL-10 are perceptually very different
(planes, birds, cars, etc.), so the higher resolution does not increase the confusion between
categories.

In-depth analysis of the spectral values for each dataset reveals findings consistent
with the distinctive characteristics of each dataset, confirming CIFAR-100 as the most
complex. This information laid the foundation for a better understanding of the impact of
complexity on the performance of models subjected to pruning and retraining experiments.

3.3. Pre-trained models. In this research, it was decided to take full advantage of
the power and versatility of pre-trained models. This strategic choice not only opti-
mizes resources, but also significantly improves the effectiveness and breadth of anal-
ysis in research. The models used come from the “pytorch-playground” repository on
GitHub (https://github.com/aaron-xichen/pytorch-playground). Pre-trained on
large datasets and tested in various applications, these models offer improved accuracy
and efficiency. Having been fine-tuned in different situations, these models prove to be
more accurate and efficient in a variety of use cases. In particular, pre-trained models
were used for the CIFAR-10, CIFAR-100 and STL-10 datasets. This choice is based on
confidence in the quality of the models trained in the “pytorch-playground” repository,
which simplifies the implementation and improves the quality of the results obtained in
the research [15, 16, 17].

3.3.1. Pre-trained models for CIFAR-10 AND CIFAR-100. For the classification of CIFAR-
10 and CIFAR-100 data, the same pre-trained architecture is used. In the first block of
this architecture, a convolution layer with 3 input channels and 128 output channels
is used, followed by batch normalization and a ReLU activation function. Subsequent
blocks (second through seventh) follow a similar pattern, gradually increasing the num-
ber of channels to capture more complex features in deeper layers. Blocks 2, 4, 6 and 7
use a Max Pooling layer to reduce dimensionality. The network culminates with a fully
connected layer that performs the final classification. The number of inputs of this dense
layer is 1024 and the output corresponds to 10 or 100, representing the output classes for
the CIFAR-10 and CIFAR-100 datasets, respectively (see Figure 2).

https://github.com/aaron-xichen/pytorch-playground
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Figure 2. Pre-trained model use to classify CIFAR-10 and CIFAR-100 data.

3.3.2. Pre-trained model for STL-10. The pre-trained architecture used to classify STL-
10 data is slightly different from the architecture for CIFAR, due to the larger dimensions
of the input data. In the first block of the architecture, a convolution layer with 3 in-
put channels and 32 output channels is used, followed by batch normalization, a ReLU
activation function and a MaxPooling layer to reduce dimensionality. Subsequent blocks
(second through sixth) follow a similar pattern, gradually increasing the number of chan-
nels to capture more complex features in deeper layers. Finally, the network culminates
with a fully connected layer that performs the final classification. This linear layer has
256 inputs and 10 outputs, representing the output classes.

Figure 3. Pre-trained model use to classify STL-10 data.

The reuse of established and optimized CNN architectures for each dataset, through
pre-trained models, represents a sound methodological decision that facilitated experi-
mentation by focusing on the impact of pruning these models at different levels of data
complexity.

3.4. Pruning with PyTorch. In the present investigation, progressive pruning of the
models was performed, reducing from 20% to 90% (in increments of 10). The pruning
was applied to the Conv2D layers of the pre-trained models in order to improve their
computational efficiency. As explained so far, the procedure was developed in several
stages, starting with both the selection of the model and the corresponding dataset.

Once the model and dataset were defined, the Conv2D layers to be pruned were iden-
tified. These layers were specified as a list of tuples that together with the parameter to
be pruned (weights) and the pruning percentage, serve as inputs to the pruning PyTorch
class.

The pruning technique used was “unstructured global pruning”, which globally prunes
certain tensors by applying a specific pruning method. In our case, we defined the pa-
rameters to be pruned as the weights of the convolutional layers and the pruning method
was based on the L1 norm. In this way, the selected pruning technique eliminates the
individual connections (weights) that have the lowest values in terms of magnitude, thus
preserving the most significant [10].
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3.5. Performance evaluation. This section presents the performance results of the
original model and of the pruned models for different pruning percentages, in the three
classification problems of this study. We start by showing the performance of the model
without pruning, which we will denote as “baseline” and arrive at the pruned model with
a pruning percentage of 90%. In all cases, we will show the accuracy reduction with
respect to the baseline model.

Performance results of pruned models
Table 2 shows the results in terms of accuracy of the pruned models, for the selected

datasets.

Table 2. Evaluation of the performance of pruned models before fine-
tuning. Negative values imply a decrease in accuracy with respect to the
reference model (data shown in the first row, i.e., when the pruning per-
centage is 0%); while a positive value implies an increase in accuracy.

Pruning percentage CIFAR-10 CIFAR-100 STL-10

0 91.82 70.75 76.16
20 -0.01 0.07 0.25
30 -0.13 -0.37 0.23
40 -0.38 -1.39 0.12
50 -1.22 -3.24 -0.68
60 -2.78 -7.82 -13.23
70 -5.93 -17.97 -1.51
80 -16.93 -35.55 -3.78
90 -55.24 -59.28 -13.51

According to the results, the loss in accuracy is similar between the pruned models
that were trained with the CIFAR10 and CIFAR100 datasets, for the different pruning
percentages. Whereas, the pruned models that were trained with STL10 (the less complex
dataset), had much lower losses for the same pruning percentages than the first two cases.

4. Results and Discussion. The experiments carried out by applying progressive elim-
ination of parameters (from 20% to 90%) in CNN models trained with CIFAR-10, CIFAR-
100 and STL-10 yield revealing results on the impact of data complexity on these opti-
mization processes. We discuss how controlled parameter removal differentially affects
and degrades classification accuracy based on the inherent complexity of the dataset.

4.1. CIFAR-10. The metric applied to CIFAR-10 delivered a value of 3.766834 in the
training set, revealing a moderately complex structure in the relationships between classes
and visual patterns. Extending this evaluation to the test set, the metric reached a value of
4.50780272, observing a slight increase in complexity. This increase could be attributed
to specific variations in class distribution or to the presence of less frequent and more
challenging patterns. The discrepancy between the training and test metrics underscores
the importance of understanding the diversity of data that a model will face in different
situations.

In terms of accuracy, the initial value of 91.82% obtained by the CNN model trained
on the CIFAR-10 dataset is indicative of a good fit and generalization capability on this
moderately complex dataset. For the untrained model, as the percentage of parameter
pruning in the convolutional layers increased from 20% to 90%, a gradual decrease in
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model accuracy was observed, which is to be expected as synaptic connections are re-
moved. However, analyzing the rate of decline in detail, it was remarkably small for
pruning percentages less than or equal to 60%. In other words, the inherently not very
high complexity of CIFAR-10, with only 10 classes and low image resolution, appears to
allow the CNN model to preserve competitive accuracy even when subjected to aggressive
parameter reduction through pruning. For percentages equal to or higher than 70%, the
reduction is more than five percentage points, and is even reduced by more than half for
pruning of 90%.
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CIFAR-10 CIFAR-100 STL-10

Figure 4. Performance (accuracy) versus percentage of pruning for pruned
models and the three selected datasets.

4.2. CIFAR-100. The spectral metric returned a remarkably high value of 26,088 for
the CIFAR-100 training data and 29,644 for the test data. These values, are substantially
higher than those obtained for CIFAR-10, are indicative of a markedly higher inherent
complexity in CIFAR-100. The higher value for the test data also suggests a slightly
higher complexity for the evaluation samples. Taken together, these findings provide
strong quantitative evidence that CIFAR-100 represents a significantly more complex
classification challenge, given that it incorporates 10 times more classes than CIFAR-10.
The substantially increased complexity captured by the spectral metric allows for a better
understanding of why models trained with CIFAR-100 show an increased sensitivity to
the pruning process.

Regarding accuracy, the baseline CIFAR-100 model achieved an accuracy of 70.75%,
considerably lower than the 91.82% achieved in CIFAR-10. This initial metric reflects
the greater complexity of discriminating 100 classes instead of 10. As the percentage of
pruning increased, accuracy decreased more rapidly than in CIFAR-10, to a reduction of
approximately 60 percentage points when 90% pruning is applied. This dramatic drop,
provides tangible evidence of the model’s marked sensitivity to parameter removal when
trained on substantially more complex data. The additional complexity of CIFAR-100,
captured quantitatively with the spectral metric, appears to cause the model to be unable
to retain sufficient discriminative information under intense levels of pruning.

4.3. STL-100. The spectral metric values obtained for the STL-10 training and test data
were 3.48 and 3.67, respectively. These values are indicative of a low inherent complexity
in the STL-10 dataset. Despite containing higher resolution images than CIFAR-10, the
spectral metric suggest that the perceptual complexity in discriminating the 10 classes
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in STL-10 is lower compared to that in CIFAR-10. Again, the slightly higher value for
the test samples could reflect small fluctuations between the training and testing data.
Together, these quantitative results provide evidence of the low complexity of the STL-10
dataset in relation to CIFAR.

While the spectral metric suggested low complexity in STL-10, the initial accuracy of
the CNN model was only 76.16%, notably lower than the 91.82% achieved in CIFAR-10.
This could be because the higher resolution of the images introduces representational
challenges despite having the same number of classes. When pruning was applied, the
drop in accuracy was more similar to that of CIFAR-10, except for a sudden drop when
pruning at 60%. Even for pruning higher than 60%, the reduction in accuracy is lower
than in the two previous cases. These results agree with the complexity value calculated
for this dataset.

4.4. Performance evaluation after fine-tuning of pruned models. When using
a pruning library, it is important to take into account the way in which the pruning
process cancels the contribution of the pruned elements. Most of the available pruning
libraries are based on setting minor parameters to zero, without restructuring the network
[18]. Accordingly, once the model is retrained, it is possible to achieve similar levels of
performance to the base model, which is mainly because the PyTorch pruning functions
do not actually remove the connections of the pruned weights, but rather set them to
zero.

That is, since the parameter connections were not really eliminated, when training is
performed, these connections will again obtain a non-zero value, so that after a given
retraining it is possible to achieve a performance similar to that of the baseline model.
But in this case, such performance does not really correspond to a pruned model, but
to an unpruned model (re-established connections). Either way, the reduction in model
performance from pruning has implications for the performance of the retrained model,
as Figures 4 and 5 show.
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Figure 5. Performance (accuracy) versus percentage of pruning for fine
tuned models (re-established connections)

5. Conclusion. Experiments using progressive parameter removal on several CNN mod-
els trained on the CIFAR-10, CIFAR-100, and STL-10 datasets reveal observations on the
impact of data complexity on optimization processes. This analysis indicates that the re-
moval of controlled parameters affects the classification accuracy differently, depending
on the complexity of the dataset. Specifically, CIFAR-10, characterized by moderate
complexity, shows robust resistance to degradation in accuracy even under progressive
parameter pruning, indicating successful capture by the model. However, in CIFAR-100,
significantly higher complexity leads to notable sensitivity to pruning, resulting in a dra-
matic decrease in accuracy, highlighting the challenges posed by datasets with greater
class diversity. In STL-10, the least complex dataset according to the CSG metric, the
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decrease in accuracy is similar to that observed in CIFAR-10, although less pronounced
(except when the percentage of pruning is 60%, where the decrease is greater). In conclu-
sion, it was found that for the three datasets evaluated, pruning percentages lower than
30% largely preserved the performance of the classification model, reducing its perfor-
mance by no more than one percentage point. When the pruning percentage is greater
than 30%, it was found that there is a direct relationship between the complexity of the
dataset and the reduction in model performance. That is, the higher the complexity of
the data set, the greater the reduction in performance of the pruned model.
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