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ABSTRACT. This study classified images of the spine using three different models: the
classical neural network, the quantum neural network, and the hybrid quantum neural
network with and without principal component analysis. The models were trained on an
image size of 32*32 pixels, with similar parameters in terms of range, and the Adam opti-
mizer was used with a learning rate of 0.001. The training took place for 10 epochs, then
for 20 and 30 epochs, where a single qubit was used in the quantum and hybrid neural
network, which is a small number for this size, which demonstrated the power of quantum
neural networks to deal with images of large sizes with the restrictions of using a single
qubit, as it showed an accuracy exceeding 97% after many attempts because it depends
on a random value for theta. The use of principal components analysis with models has
also been strengthened in improving accuracy in neural networks and reducing training
time. The successful application of using a single qubit in achieving high accuracy makes
quantum neural networks an effective tool. in image classification, which highlights the
low computational resources required for quantum computing.

Keywords:Image classification; Neural network (NN); Quantum neural network (QNN);
Hybrid quantum neural network (HQNN); Spine image classification; Principal compo-
nent analysis (PCA)

1. Imtroduction. The process of classifying images is intricate and subject to several
influences [1]. Within the field of computer vision, image classification is a well-known
machine-learning problem. To achieve state-of-the-art performance, various methodolo-
gies and techniques have been evaluated on the image classification task [2,3]. Classifying
medical images is a crucial use of machine learning in healthcare [4].

A new field of study that blends conventional machine learning (ML) and quantum
processing is called quantum machine learning (QML). Using quantum phenomena to
improve traditional machine learning algorithms’ performance is the main goal of QML.
Motivated by the remarkable performance of classical neural networks (NNs), there is a
plethora of research being done on their quantum counterpart, which is dubbed quantum
neural networks (QNNs). The literature still doesn’t provide any conclusive proof that
QNNs are better than their classical equivalents, despite the considerable interest in the
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subject [5].Combining quantum computing and neural networks has created a new neural
computing paradigm known as (QNNs), which are based on the ideas of quantum me-
chanics [6] Combining the best features of both classical ANN and quantum computing,
a (QNN) comprises a sequence of quantum operations and either quantum or classical
weight parameters between neurons [7].

One subclass of variational quantum algorithms is quantum neural networks, which
comprise quantum circuits with parameterized gate operations [8,9]. Quantum circuits
with parameters PQCs are widely used in quantum machine learning and quantum opti-
mization because of their ability to be trained and optimized for tasks. A parameterized
quantum circuit (PQC) is essentially a kind of quantum circuit in which some parameters
can be changed, like rotation angles, to accomplish different goals or improve circuit per-
formance. Real numbers are used to represent these parameters, while unitary matrices
are used to represent the quantum gates [10].

The latest developments in variational quantum circuits (VQC) have opened a new age
of immense potential for quantum computing, which for a long time was only acknowl-
edged for its potential [11]. VQC is a significant class of quantum algorithms that encode
data using parameterized quantum circuits and update the circuit parameters using a con-
ventional optimizer. They serve as function approximators, mapping the quantum state
holding issue features to the state containing the labels by a unitary evolution, much like
classical neural networks [12].

Designing quantum neural networks for completely quantum learning tasks has become
a significant challenge with the impending arrival of quantum technology. Neural networks
have been widely successful in research and industry [13]. Understanding both classical
neural networks and quantum computing methods is necessary for building a quantum
neural network [14] given the current state of QNN research, a more comprehensive exam-
ination of the mismatch between unitary dynamics in quantum computing and dissipative
dynamics in neural computing is highly desirable. In addition, the existing QNN is lim-
ited by the fact that it can only be trained for larger samples at low latitudes, and there
is still work to be done on improving prediction accuracy and performance generalization
[15].

The quantum bit, or Qubit Unlike classical bits, which can only be either 0 or 1, quan-
tum bits can exist as both 0 and 1. Superposition is the name given to this phenomenon.
In wave physics, the phrase ”superposition” refers to the interference of two or more
waves. According to quantum physics, a particle is in a superposition state when it be-
comes incredibly small and begins to behave like a wave. This phenomenon is known as
wave-particle duality. The distinction between the two, nevertheless, lies in the fact that
this wave collapses and turns into a classical particle when the quantum particle is viewed
or measured. Physicists have been unable to comprehend the theory and mechanism un-
derlying this phenomenon, known as the quantum measurement problem, until recently
[16,17].

Quantum computers have an operating design that is essentially distinct from classical
computers. Unlike classical computers, which use binary digits (bits: 0 or 1) as their
operating unit, quantum computers use quantum bits (qubits) [18].

Because of their powerful processing powers, (QNNs) have currently seen some success
in the picture categorization space. But unfortunately, when QQNNs have more layers,
the training procedure is more complicated and the accuracy tends to be lower, which
leads to a less stable network. To tackle these obstacles, this manuscript suggests Hybrid
quantum neural network (HQNN) [19].

To obtain good classification performance in image classification issues, the descrip-
tiveness and discriminative capability of features extracted are essential [20]. Principal
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component analysis, or PCA, is regarded as a crucial method for reducing the dimensions
of data in a variety of AI/ML applications. Computer vision and image classification
are two of the most significant applications. Owing to its advantages and significance in
the categorization of images, principal component analysis (PCA) is utilized not only to
uncover significant or recurrent characteristics within high-dimensional data sets but also
to reduce their dimensionality. Because of this, PCA is among the finest methods for
classifying images and producing extremely accurate results [21].

Like its conventional counterpart, the quantum neural network is trained using a
dataset. When the target data is compared with the model’s predictions, a loss func-
tion is calculated. An optimizer, operating on a conventional computer, iteratively runs
the quantum circuit and modifies the parameters 6 to find the least loss [22].

This paper compares spinal image classification using three models: classical neural
network, quantum neural network, and hybrid quantum neural network with and without
principal components analysis to find out which is the most accurate. It tests the ability
of a single-qubit quantum neural network to classify images of large sizes relatively large.
And test the effectiveness of combining quantum computing and classical computing in
image classification and the impact of using principal components analysis with these
models. These experiments were performed in the Google Colab environment using a

CPU.

2. Problem Formulation. In the field of computer vision, image classification is a
well-known problem in machine learning. To achieve advanced performance, different
methodologies and techniques have been evaluated in the image classification task. In
this work, we examined three different computational models: classical neural network
(NN), quantum neural network (QNN), and Hybrid Quantum (HQNN) for spinal im-
age classification to obtain the highest accuracy using the least resources. Furthermore,
this study seeks to highlight the potential benefits and limitations of applying quantum
computing principles to the image classification problem by exploring the capabilities of
QNNs and HQNNs using a single qubit to classify Pictures are of large size.

Each experiment was implemented in the Google Colab environment using CPU resources,
ensuring repeatability and accessibility of our results. The computing environment in-
cludes the following device specifications:

Python Version: 3.10.12

CPU: Intel(R) Xeon(R) CPU @ 2.20GHz

Physical Cores: 1

Total Cores: 2

3. Proposed Methodology. The general description of the Proposed Methodology is
shown in figurel [23].
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3.1. Data preparation. We started by obtaining a set of vertebral X-ray images from
Kaggle to prepare the data. King Abdullah University Hospital served as a site for
collecting X-ray images of the vertebrae. We normalized the images into each of the two
categories to which each group of images belonged to achieve balance. 80% of the data of
each dataset was used for training, and the remaining 20% was used to test the model.
The first set of images is the training set. There were 230 images in our collection, of
which 112 showed a normal spine and 118 showed a curved spine. The second group is the
test group. We used 60 images, including 30 images of the normal spine and 30 images
of the curved spine. We pre-processed the image data during the data preparation phase
before sending it to the neural network. This involved adjusting the pixel values to ensure
they lay between 0 and 1, which improved model convergence and efficiency.

3.2. Image pre-processing. In image processing, picture enhancement is a crucial sub-
ject that has seen great success [24]. Figure 2 shows the steps taken for the image pre-
processing process, where the images are inserted and resized to the required pixels, such
as 32*32 pixels, and they are converted to grayscale images and then normalized Be-
tween 0-1 rendering them suitable for seamless processing by the PyTorch framework and
the quantum simulator, Principal component analysis (PCA) was then applied to further
compress the images.
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FIGURE 2. Schematic representation of Image pre-processing

3.3. Building a classical neural network (NN). Before the images are fed to the
network, the images are pre-processed as mentioned before, such as converting the images
to grayscale, shrinking them to a fixed size, and normalizing them, which makes them
suitable for seamless processing and feature extraction. The model was built using Kera’s
framework and TensorFlow, where the network consists of:

(1) The input and flattening layer, where the construction of the network begins with
a flat layer, which converts the input images from a two-dimensional matrix to a one-
dimensional matrix, and this process prepares the spatial image data for processing
through dense layers.

(2) (Dense layer 1) The ReLU activation function is used. The choice of ReLU is due to
its effectiveness in introducing non-linear properties to the network, allowing it to learn
complex patterns by passing only positive values and nullifying negative values.

(3) (Dense layer 2) acts as the output layer and contains several neurons equal to the
classification categories. The softmax activation function is applied here to transform
the linear output of the class into a probability distribution over the respective classes.
The model was assembled with the following specifications to prepare it for the training
phase. The binary loss and entropy function was chosen due to its suitability for binary
classification problems. Optimizer the Adam optimizer was used with a learning rate of
0.001, the batch size was set to 1, and training was conducted over a period of 10 epochs
and then for 20 epochs. Accuracy was chosen as a typical performance to measure per-
formance. Therefore, the general design of the neural network (flat layer, dense layers,
output layer) is as it is shown in Figure 3.
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FIGURE 3. Structure of a neural network (NN)

3.4. Building a quantum neural network (QNN). After preprocessing, flattening,
and converting images into one-dimensional matrices, a new quantum neural network ar-
chitecture is presented to leverage a simplified quantum circuit for the image classification
task. This method uses 1 qubit to encode and process image data.

A fundamental quantum circuit with Hadamard gates was used to generate superpo-
sition states. And RY spin gates, whose parameters are determined by inputting flat
image data and parameters (X and Theta parameters), where classical data is encoded
into quantum states, using quantum mechanics to process and classify images, and the
quantum circuit ends with the process of measuring and translating quantum states into
classical outputs, which is used to predict the image category. Based on the probability
distribution obtained from quantum measurements. The quantum circuit concludes with
a measurement process that transforms quantum states into classical outputs necessary
for predicting image classification. Using probability distributions derived from quantum
measurements, a quantum neural network undergoes recursive training. During training
iterations, the rotation gate (RY) parameters are optimized to reduce classification er-
rors. Training involves performing forward passes, during which the output probabilities
for each class are calculated and the parameters are updated accordingly. Adjustments
to quantum circuit parameters are made using a direct update rule, which is based on
differences between expected and actual labels and aims to minimize classification loss.

The quantum neural network was trained for 10 epochs and then for 20 epochs using
the QASM simulator and the Adam optimizer, with a learning rate of 0.001 and a batch
size of 1. Figure 4 shows a quantum circuit designed for a single qubit, with the number
of blocks determined dynamically. By image size or number of features, expressed.

e N =( Image size * Image size (or )number of components)

e ¢ (control): The number of control qubits involved in a gate operation.

e ¢ (qubit): The number of qubits the circuit operates on.

Control qubits regulate the impact of a gate operation on other qubits inside the circuit.
In essence, they function similarly to a switch, with the ability to switch the action on or
off based on their status.
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FIGURE 4. Quantum circuit for 1 qubit

3.5. Building a hybrid quantum neural network (HQNN). In this model, there is
a new approach to image classification, where the principles of quantum computing are
combined with the structure of classical neural networks, which leads to the creation of a
hybrid quantum neural network (HQNN).

This model takes advantage of the strengths of both models, such as the strength of
the classical neural network in processing high-dimensional features and potential com-
putational advantages. Which is provided by quantum circuits, where the network begins
with a series of fully connected layers and converts the input image data into a form that
can be processed by the quantum layer. These layers include:

(1) An input layer (flattening) that flattens the image and places it in an area with
higher dimensions.

(2) Intermediate layers with Relu activations to enhance the network’s ability to learn
complex patterns

(3) The pre-quantum layer, which works to condense the information into one-dimensional
outputs prepared for quantum processing.

The HQNN is constructed using Qiskit for the quantum elements and PyTorch for
classical components, aiming to harness the strengths of both computational approaches
in tackling image classification tasks implement a quantum circuit with Hadamard gates
to generate superposition states, followed by spin gates (RY), which encode the outputs
of the classical layers into qubits. Finally, the measurement process takes place, and the
quantum state is transformed into classical outputs that reflect the processed features.
The network was trained to the same data set using Qiskit Aer simulator, using only
1 qubit, and an Adam optimizer with a learning rate of 0.001, The batch size is set to
1, Figure 5 shows the layers of the hybrid quantum neural network structure Where it
means:

e Flatten-1 :Takes the image data and flattens it into a 1D vector.

e Linear-2:Fully-connected layer that performs a linear transformation on the flat-
tened data.

e Linear-3:Another fully-connected layer that further processes the data from the
previous layer.

e Linear-4: the final fully-connected layer in the classical part, generating features for
the quantum circuit.

e Hybrid:This layer integrates the classical neural network with the quantum neural
network The circuit in the hybrid layer is the 1-qubit quantum circuit that was used.
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FIGURE 5. Structure of hybrid quantum neural network (HQNN)

4. Results and Discussion.

4.1. Model results after 10 epochs. This study focused on comparing the performance
of classical neural network (NN), quantum neural network (QNN), and hybrid quantum
neural network (HQNN) models with and without applying principal component analysis
(PCA) in image classification, where all models were trained. With a single batch size
and a number of parameters close in range. A single qubit was used in quantum and
hybrid models, making use of a randomly generated theta parameter, which was optimized
through a learning and training process. All models were tested on a baseline dataset of
32*32 pixels, which is a large size considering the context of quantum computing. A
feature number of 100 was used for all models with PCA The training was conducted for
10 training periods (epoch) as shown in Table 1, where the results showed that:

1- With PCA, the accuracy of the classic neural network test improved from 70% to
93%, and the time decreased from 24 seconds to 13 seconds, which indicates the ability
of PCA to enhance the efficiency of the model.
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2- The quantum neural network model that works with a single qubit achieved a test
accuracy of 53%, with a PCA of 57%, and a decrease in time from 300 seconds to 75
seconds, because it relied on a random value of theta.

3- With PCA, the accuracy of the hybrid quantum neural network test also improved
from 85% to 95%, and the time decreased from 174 seconds to 137 seconds. This indicates
that it is the highest model in terms of accuracy over 10 epochs, and this indicates
the effectiveness of integrating and benefiting from quantum computing with classical

networks.
TABLE 1. Model results after 10 epochs.
Model Batch Time Training Test learning
size (sec) Accuracy% Accuracy% rate
NN 1 24 81 70 0.001
NN PCA 1 13 100 93 0.001
QNN 1 300 50 53 0.001
QNN PCA 1 75 50 o7 0.001
HQNN 1 174 87 85 0.001
HQNN PCA 1 137 100 95 0.001

Figures 6, 7, 8, 9, 10, 11, and 12 show the accuracy and loss curves for the classical
neural network model, the quantum neural network, and the hybrid quantum neural

network with and without principal components analysis after 10 epochs.
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FIGURE 6. Loss function and accuracy of training and testing data for the
NN model for 10 epochs.
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FIGURE 7. Loss function of training and testing data for NN (PCA) model
for 10 epochs.
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4.2. Model results after 20 epochs. We note that the accuracy of all models increased
with the increase in the number of iterations, especially the noticeable increase in quantum
neural networks, whose accuracy increased from 53% to 97% after many attempts because
it depends on the random value of theta. Therefore, it achieves the highest accuracy of all
models, and this is considered a major achievement, as a single qubit was used to manage
a data set of 32 * 32 pixels, which confirms the ability of quantum models to process
high-dimensional data, and this is a promising direction for quantum computing Using a
single qubit for image classification tasks, especially at relatively large sizes, has proven
to be more effective than expected. Quantum models have handled the complex feature
space of high-resolution images using a single qubit, a strong testament to the potential
of quantum computing for future developments in quantum computing. The integration
of principal components analysis (PCA) with quantum models also led to shedding light
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on the process of balancing between reducing features and retaining information. The use
of PCA with models also led to enhancing accuracy and reducing time. Table 2 shows

the model results after 20 epochs.

TABLE 2. Model results after 20 epochs

Model Batch Time Training Test learning
size (sec) Accuracy% Accuracy% rate
NN 1 32 92 87 0.001
NN PCA 1 11 100 95 0.001
QNN 1 594 98 97 0.001
QNN PCA 1 132 48 o7 0.001
HQNN 1 323 92 88 0.001
HQNN PCA 1 261 100 93 0.001

Figures 13, 14, 15, 16, 17, 18, and 19 show the accuracy and loss curves for the classical
neural network model, the quantum neural network, and the hybrid quantum neural
network with and without principal components analysis after 20 epochs.
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4.3. Model results after 30 epochs. Training was conducted for 30 epochs following
this work [25]. Table 3 shows the results of the models after 30 epochs.

TABLE 3. Model results after 30 epochs

Model Batch Time Training Test learning
size (sec) Accuracy% Accuracy% rate
NN 1 81 96 90 0.001
NN PCA 1 22 100 92 0.001
QNN 1 564 53 45 0.001
QNN PCA 1 225 50 45 0.001
HQNN 1 515 87 90 0.001
HQNN PCA 1 451 100 92 0.001

5. Conclusion. In conclusion, in this paper, we compared the classical neural network
with the quantum neural network and the hybrid quantum neural network with and
without principal component analysis for classifying spinal images. The results of this
study confirmed the capabilities of quantum computing in image classification, as the use
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of a single qubit in quantum and hybrid neural networks proved its effectiveness. In dealing
with relatively large sizes, a high accuracy was obtained for the quantum neural network
model with 1 qubit, exceeding 97% this after several attempts, and this is because it
depends on a random value of theta that is updated. The hybrid quantum neural network
model also showed better accuracy than the classical neural networks, which indicates
the success of integrating quantum computing with classical ones. The use of principal
components analysis with models also led to enhancing performance while preserving
information and reducing training time. It was also noted that the accuracy depends
on the number of epochs. This sets a standard for future investigations into quantum
computing applications and demonstrates the fundamental benefit. For quantum models
to navigate complex feature spaces. Our results go beyond the limits of conventional
computing and herald a new era of data processing and analysis capabilities emerging
from quantum neural networks, especially the elegant, powerful, and direct one-qubit
QNN.
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