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ABSTRACT. Wireless communication systems heavily depend on signal classification for
applications including spectrum monitoring, cognitive radio, and signal intelligence. Ac-
curacy of artificial intelligence based signal classification models are deeply dependent on
the used dataset for training these models. This paper explores a signal dataset synthe-
sizing framework, where the selected signal types have different common communication
standards in various applications. These signals have relevant features that modulation
recognition is not sufficient for classifying them. For analysis and comparison purposes,
multiple dataset versions are synthesized based on software defined radio (SDR) that vary
in inclusion of communication propagation channel conditions and hardware effects. The
proposed framework incorporates signal impairment sources to precisely simulate real-
world RF propagation environment scenarios. A meural network model ResNet is used
for training and testing several versions of the dataset to examine its performance in sev-
eral case studies. Simulation results and analysis demonstrate that the proposed dataset
that considers real-world communication scenario, for SNR wvalues greater than 0 dB,
achieves an average rise in accuracy of 3% to 4% w.r.t. results of training on data sets
that ignore inclusion of large and small channel fading effects and 6% to 12% w.r.t. re-
sults trained on data set of the simplest conditions.
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1. Introduction. Wireless communication systems utilize signal classification as a fun-
damental task, where it plays a crucial role in various applications such as spectrum
monitoring, cognitive radio, and signal intelligence. The process of signal classification
involves identifying the modulation type, the coding scheme, or the bandwidth of a re-
ceived signal, which is essential for adaptive modern communication systems. Traditional
methods for signal classification often rely on handcrafted features and heuristic algo-
rithms, which may lack robustness and adaptability to changes in signal conditions [1].
Recently, deep learning techniques have emerged as promising solutions for modulation
recognition and signal classification tasks [1]. Deep learning models can automatically
extract relevant features from raw signal data, eliminating the need for manual feature
engineering. This approach offers several advantages, including improved accuracy, scala-
bility, and adaptability of various modulation schemes and signal characteristics variations
in modern communication systems [2].
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For relevant characteristics standard signals classification task, there are limited num-
ber of open-sourced datasets for that task and only for small number of types [3, 4].
Conversely, for the modulation recognition application, it is facilitated in research and
benchmarking with several standardized datasets that have been developed and widely
adopted by the research community. Among these datasets, the RadioML 2016 (RML
2016) [5], RadioML 2018 (RML 2018) [6], and Signal 53 (Sig 53) [7] datasets are promi-
nently featured, where each dataset offers a diverse collection of modulation types and
signal characteristics, catering to different research requirements and scenarios. Although
modulation recognition process is crucial in various systems, yet it may not provide as
much detail as signal type classification. This is because multiple signal standards can
share the same modulation technique but differ in bandwidth, pulse shaping filter, baud
rate, and coding scheme, resulting in them being classified under the same modulation
category. In essence, signal classification defines the inherent properties of the signal,
while modulation recognition extracts only the modulation technique [8].

Given that communication systems primarily adhere to specific well-established stan-
dards, it would be more effective to classify them based on these standards [9]. Another
aspect to be considered is the signal degradation type that have to be considered in the
used dataset to enhance the trained model’s resilience to various distortions the signal
may encounter in the propagation channel [2]. In signal processing based on Al, datasets
can be generated in three main methods: simulating the dataset using software such as
MATLAB®, using software-defined radio (SDR) to create a more authentic dataset with
hardware imperfections (HWI), or recording real-world RF signals. Each method has its
challenges and considerations [8]. This work explores the creation of a dataset based on
SDR and analysis of the implications of incorporating various distorting factors into this
dataset. This paper is organized as follows: Section 2 presents the system model. Sec-
tion 3 explains the proposed framework Section 4 evaluates the classification performance
of the proposed dataset generation framework with the classification accuracy analysis
against the different signal conditioning in the generated datasets. Finally, Section 5
concludes the paper.

2. System Model. The system model comprises two main components: Standard sig-
nals of interest and signal degradation modelling.

2.1. Standard signals of interest. Wireless digital communication standards vary to
enable efficient and reliable voice and data transfer, providing interoperability, compati-
bility, and performance across various communication systems and networks. This study
aims to generate a dataset that generalizes across various applications by incorporating a
wide range of technologies and standards. The selection of standards is intended to cater
to the diverse requirements of multiple applications in the telecommunications, public
safety, and military communication sectors.

This study includes 11 communication standard signals [10, 11, 12, 13, 14] as indicated
in Table 1 and the relevance between the selected standard signals is noticed, where many
modulation schemes across various standards are either identical or closely correlated.
subsequently, modulation classifier is not sufficient to analyze these signals,where most of
them are identified as differential QPSK modulation, despite having distinct characteris-
tics such as symbol rate, coding scheme, or bandwidth for transmission.

2.2. Signal Degradation Modelling. Signal modelling or conditioning is crucial in sim-
ulating communication systems due to the distortions caused by the propagation channel
and imperfections in the receiver hardware. Communication systems utilize several mod-
eling approaches to represent fading phenomena, including deterministic, statistical, and
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TABLE 1. List of Signal Standards Generated [10, 11, 12, 13, 14]

Standard Modulation | SY™bol Rate Application
[ksps]
4FSK,
APCO Phase 1C4FM Deviation 1.8kHz
APCO Phasel CQPSK 4.8
APCO Phasel LSM 7/4-DQPSK
APCO Phasel WCQPSK
4FSK, Public-Safety and Military
APCO Phase2 H-CPM Deviation 3kHz 6 Communications
APCO Phase2 H-DQPSK 7 /4-DQPSK
APCO Phase2 H-D8PSK
Wide/Narrow m/8-DQPSK 4
NADC 21 Digital cellular
PDC communications
/4+-DQPSK 18 Public-Safety and Military
TETRA S
Communications

empirical models. Fading occurs on a large scale due to movement across a wide area,
leading to average path loss and variance from this average, and on a small scale due to
reflection, diffraction, and scattering causing multipath fading [15].

In this study, a readily constructed empirical model to simulate the large-scale fading
in the VHF and UHF frequency bands is ITU-R P.1546 [16]. It uses interpolation and
extrapolation of field curves generated from empirical data [16]. This standard describes
location variability as the relation to the variation in excess path loss across the full-service
area of a transmitter, encompassing all terrain influences as well as local shadowing. Thus,
for a land receiving fixed /mobile antenna location the field strength E in dB(xV/m), which
will be exceeded for q% of locations can be defined by [16]:

E(q) = E(md) + Qi(q/100)0y, (1)
where E(md) is the median electric field value interpolated or extrapolated from the
electric field curves. @Q;(z) is the inverse complementary cumulative normal distribution
as a function of probability, and oy, is the standard deviation of the Gaussian distribution
of the local means in the area under study, where representative values of o, are 8, 10,
and 12 dB for urban, suburban, and open areas respectively [16].

Rayleigh and Rician statistical distributions are used in wireless communications to
simulate fading channels modeling the impact of multipath propagation, which occurs
when signals traverse many routes as a result of reflections, diffraction, and scattering.
The received envelope amplitude would then follow Rician distribution, which can be

expressed as [15]:
x z? + A? rA
p(z) = — exp {—W} Iy (g) (2)

where z is the magnitude of the faded signal, o2 is the variance, and A is the specular
component, where A > 0.
A parameter K is often used to describe the Rician distribution as [15]:

K = A%/ (20%) (3)

As the specular component approaches zero, the Rician pdf approximates Rayleigh
distribution, described as [15]:
2

T T
p(x) = 3 OXD {_@} , forz >0 (4)
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From the receiver side of view, Additive White Gaussian Noise (AWGN) exists and it
is accompanied by other HWI such as frequency offset, phase offset, sample rate offset,
and IQ imbalance. The received signal in the form in-phase and quadrature terms can be
expressed as:

r[n] = ri[n] + j - 75 [n] (5)

where r[n] is the received complex signal and r7[n|, and rg[n| are the in-phase and quadra-
ture components of the signals, where r[n] when subjected to the imperfection mentioned

can be described as:
r[n] = (mn+ ATy])
. eI 2mAfIn+ AT +AP) (6)

+ (1]

where m [nT] is the front-end received signal, AT} is the sampling rate offset, Af is the
frequency offset, A¢ is the phase offset, and n,[n] is the AWGN with unit variance. 1Q
imbalance, as a type of HWI, will alter the perfect reception denoted in equation (5) to
be expressed as:

r[n] =kl -rin]+j
- (kQ - cos(0) - rg[n] + kQ (7)
-sin(#) - r7[n))

where kI, and k(@) are the linear in-phase and quadrature gains, while # is the phase

difference between the two paths. It should be noted that the range of values for these
HWT is hardware-specific and will be defined in the next section.

|
SMU 200A 1
Vector Signal g . Fading _ Hardwa're AWGN
Generator channel imperfections

FIGURE 2. Recording the dataset setup.
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3. Proposed Framework. The datasets with the highest number of citations in the
field of deep-learning-based signal processing include RML 2016 [3], RML 2018 [4], and
Sig 53 [5], specifically dedicated to the modulation recognition job, where it focuses on
identifying the modulation scheme, while communication system reconnaissance explores
parameters like transmission capacity, baud rate, and signal coding. A dataset meeting
the task’s requirements must be developed.

The proposed dataset consists of digitally modulated signals, with 106,000 examples
for each signal type, totaling 1,272,000 examples in the dataset. The dataset is equally
distributed across the signal types and covers a range of SNR values from -20 dB to 20
dB with a step of 2 dB. Each signal example consists of 1024 complex 1QQ samples. The
sampling rate was set at 35 kHz to meet the Nyquist rate for all desired signals, resulting
in a signal duration of around 30 milliseconds for each example.

The signal types listed in Table 1 are generated as illustrated on 1, where the sig-
nal vector generator SMU 200A is used for generating baseband signals in 1Q format.
SDR-based receiver, NI-USRP-2930, is connected directly to SMU 200A signal generator
through coaxial cable and SDR-based receiver is controlled by Personal Computer (PC)
via Ethernet LAN cable, as shown in Fig. 2. GNU Radio and MATLAB soft-wares are
used for recording, controlling and signal processing operations. In order to synthesize
dataset example, the generated signal is subjected to various data augmentations as de-
tailed in section 2.2, referring to as the fading channel and hardware imperfection blocks
in Fig. 1. The SC_2024 dataset will be accessible on Google Drive! shortly after it is
published.

4. Simulation Results and Analysis. The proposed work is divided into three key
sections: dataset creation, signal processing, and model training and testing with analysis.
Five dataset versions are synthesized, where each of them includes signal examples that
exhibit a combination of shadowing effects in rural regions, small-scale fading with an
equal probability of being either Rayleigh or Rician fading, AWGN, and HWI. Table 2
lists the randomly selected ranges of values for each effect along with their distribution.

TABLE 2. Dynamic Range of Values Utilized

Dynamic Parameter Distribution
Vehicle velocity [km/h] U(0,60)
K-factor [dB] N(3,1)
Path delay [usec] U(0.05,10)
Average path fading attenuation [dB| U(—3,15)
SNR [dB] [—20, 20]
Frequency accuracy [ppb] U(—25,25)
Phase offset [degree] U(0,2m)
Sample rate offset [ppb] U(—25,25)
Inphase gain (IQ imbalance) U(0.0583,0.1818)
Quadrature gain (IQ imbalance) U(0.0583,0.1818)

The first dataset contains signal examples affected by AWGN only, the second dataset
signals are affected by both AWGN and HWI, the third dataset has the effects of AWGN,
HWI, and small-scale fading (SSF), and the fourth dataset consists of signals impacted
by AWGN, HWI, and shadowing (SH). The fifth dataset has signals incorporated with
AWGN, HWI, SSF, and SH.

thttps://drive.google.com/drive/folders/1X7fg0dOEX-0Ym70PMN8KamnhA3GdQgbR
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In our simulation, the performance measure between the synthesized five dataset ver-
sions is the accuracy of a unified classifier ResNet model [6], which has the network
structure as illustrated in table 3. Thus, Five trained models will correspond to each
version of the synthesized dataset that represent variation of signal conditioning.

TABLE 3. ResNet Network Layout [6]

Layer Output dimensions
Input 2 x 1024
Residual Stack 32 x 512
Residual Stack 32 x 256
Residual Stack 32 x 128
Residual Stack 32 x 64
Residual Stack 32 x 32
Residual Stack 32 x 16
Dense 4+ SeLLU 128
Dense + SeLLU 128
Dense + softmax 24

For evaluation and analysis, testing ResNet models will be conducted on fifteen case
study studies involving various combinations of testing five different trained models on five
different datasets to analyze the proposed dataset synthesizing frameworkated in Table 4.

TABLE 4. Simulated case study studies

ResNet model Trained on Dataset version :
AWGN AWGN + HWI | AWGN + HWI £ SSF | AWGN + HWI + SH| AWGN + HW + SH {SSF
g AWGN case study 1 | case study 2
E AWGN + HWI case study 3 | case study 4
é AWGN + HWI4 SSF case study 5 case study 6 case study 7
ED AWGN + HWI + SH case study 8 case study 9 case study 10
E AWGN + HWT + SH +SSF | case study 11| case study 12 case study 13 case study 14 case study 15

The performance evaluation starts with measuring the accuracy of the trained model
when tested on a the proposed dataset , case study 15 ,representing the most challenging
scenario with all propagation channel effects and hardware imperfections, as shown in
Fig.3. case study 15 has the highest accuracy compared to case studies 13 and 14,that
considers testing trained models on HWI with shadowing effect or small scale fading
separately, with an average rise in accuracy of 3% to 4%, and 6% to 12% over case studies
11 and 12,that considers testing trained models on only SNR effects only or SNR effects
with HWI, for SNR values greater than 0 dB.

Due to significant disparities in the trained model’s accuracy results, as shown in Fig. 3,
between case studies (11, 12) and case studies (13, 14, 15), each group was subsequently
analyzed in greater depth separately. case study studies 11 and 12 results were produced
by a model trained on a data set that considers only AWGN effect, and another on AWGN
and HWL

Case studies 1, 2, 3, and 4 are dedicated to compare between trained classifiers on data
sets that considers only SNR effect and that considers both SNR and HWI,as shown in
Fig. 5. A notable remark in the results of the classifiers’ accuracy is that the AWGN
has a more obvious impact on accuracy compared to the HWI effect. The difference
in the classifiers’ accuracy in case studies 1, 2, 3, and 4 is particularly evident in the
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Accurac y VS SNR

0
SNR (dB)

F1GURE 3. Accuracy Vs SNR of case study 11 to 15.

Signal-to-Noise Ratio (SNR) range of -5 dB to 2 dB, where case study 3 outperforms case
study 2 by an accuracy margin ranging from 3% to 10%. case study 1 and case study
4 have the highest performance, as expected where the trained models are tested on the
datasets used to train their respective classifiers. Fig. 5 compares case studies 5, 6, 8,

Accurac y VS SNR

08

0
SNR (dB)

FIGURE 4. Accuracy Vs SNR of case study 1 to case study 4.

Accurac y VS SNR

0
SNR (dB)

FIGURE 5. Accuracy Vs SNR of case studys 5, 6, 8, 9.

and 9 to analyze the significance of the fading effects , including large-scale fading like
the shadowing effect, and small-scale fading such as multipath fading. case study 5 and 9
tested their corresponding classifiers on the same dataset used to train them. case study
5 accuracy results are the highest among the case studies, while case study 9 classifier
accuracy ranks third. This shows the significant impact of the shadowing effect when
included in the dataset, reducing the average accuracy by 4.8% across the whole SNR
range compared to case study 5. case study 6 has the lowest accuracy, dropping by 1%
compared to case study 9, while case study 8 had an average accuracy decline of 2.5%
compared to case study 5. Fig. 6 displays the classifier’s accuracy for case studies 5, 7, 13,
and 15 versus SNR. Results indicate the classifier’s accuracy in case study 5 outperforms
case study 7 with a difference of 1.72% in accuracy for SNR more than 0 dB, while at the
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same time classifier’s accuracy in case study 15 exceeds over classifier’s accuracy in case
study 13 in a more realistic fading environment. case study 5 was 6.36% higher for SNR
more than 0 dB, showing the robustness of the model trained on shadowing.

Accurac y VS SNR

0
SNR (dB)

FIGURE 6. Accuracy Vs SNR of case study 5, 7, 13, 15.

5. Conclusions. In this paper, we proposed a robust framework for synthesizing a
dataset of communication standard signals that are used in civilian and military applica-
tions and have related characteristics, which represent limitations for applying modulation
recognition to classify between them. The ResNet-based neural network model, which is
trained on the proposed dataset for signal classification, which considered real-world sig-
nal environment conditions, achieved notable enhancements in accuracy over the results
of trained ResNet models on other datasets that considered separately shadowing effect,
as a large scale fading type, or small scale fading effect and / or HWT effects with variable
SNR operational range scenarios.

The comparative evaluations emphasized the strength of the proposed dataset synthe-
sizing framework, where simulation results and analysis demonstrated that the proposed
dataset that considers real-world communication scenario, for SNR values greater than 0
dB, achieved an average rise in accuracy of 3% to 4% w.r.t. results of training on data
sets that ignored inclusion of large and small channel fading effects and 6% to 12% w.r.t.
results trained on data set of the simplest conditions. Future work will be extended to
signal classification of wideband signals and mixed signals scenarios that are challenging
signal processing tasks in wireless communication systems.
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