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Abstract. A novel and simple integer transform is proposed in this letter. This trans-
form can also be considered a prediction process, in which the mean value of a n-sized
block is used to predict each pixel in this block so that two bits are embedded into each of
(n−1) pixels. By employing the invariability of the reminder produced by the mean value
divided by a given embedding parameter, we can achieve reversibility. The embedding
distortion can be greatly controlled by embedding 2(n − 1) bits into blocks with strong
intra-block correlation while keeping the others unaltered. Experimental results reveal the
proposed algorithm is effective.
Keywords: Invariability of remainder, Reversible watermarking.

1. Introduction. Reversible watermarking based on difference expansion was proposed
by Tian [1]. The differences between two pixels were expanded to carry watermark infor-
mation if neither overflow nor underflow occurred. Alattar [2] generalized the DE tech-
nique by taking a set containing multiple pixels rather than a pair. In Thodi’s work [3],
histogram shifting was incorporated into Tian’s method to produce a new algorithm called
Alg. D2 with a overflow map. Weng et al. proposed an integer transform based on invari-
ability of the sum of pixel pairs [4]. In Wang et al.’s method [5], an generalized integer
transform and a payload-dependent location map were constructed to extend the DE
technique to the pixel blocks of arbitrary length.
When the embedding rule of Alattar’s method is reformulated as an integer transform,

this transform can be deemed to contain an additional term and a prediction process which
uses the mean value of a block to predict each pixel in this block. This additional term
is necessarily a guarantee of invariability of the mean value before and after embedding.
However, its existence will result in great decrease of PSNR (peak signal to noise ratio)
value in Alattar’s method. This is also the reason that the performance of Alattar’s
method is not capable of exceeding that of Wang et al.’s.
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To solve this problem above, a novel and simple integer transform that can remove
the redundant term is proposed in this letter. Therefore, this integer transform can be
considered a pure prediction process, in which the mean value of a n-sized block is used to
predict each pixel in this block so that two bits are embedded into each of (n− 1) pixels.
By employing the invariability of the reminder of the mean value divided by a given
embedding parameter, we can achieve reversibility. Since the proposed integer transform
can embed 2(n − 1) (rather than (n-1)) bits into a n-sized block which introduces less
distortion, we can obtain a better performance than Wang et al. at lager embedding rates.

2. The related methods. The integer transform defined in Eq. (3) of the paper [5]
(proposed by Wang et al.) is listed in Eq. (1).

y1 = 2x1 − a(x)
y2 = 2x2 − 2f(a(x)) + w1

= 2x2 − (a(x) + LSB(a(x))) + w1

· · ·
yn = 2xn − 2f(a(x)) + wn−1

= 2xn − (a(x) + LSB(a(x))) + wn−1

(1)

where x = (x1, · · · , xn) ∈ Zn and y = (y1, · · · , yn) ∈ Zn respectively represent a
n-sized pixel array and its corresponding watermarked one, x̄ = 1

n

∑n
i=1 xi, a(x) ={

⌊x̄⌋ if x̄− ⌊x̄⌋ < 0.5
⌈x̄⌉ otherwise

, f(x) = ⌈x
2
⌉, and wi (i ∈ {0, 1, · · · , n − 1}) denotes 1-bit wa-

termark and wi ∈ {0, 1}, and LSB(·) represents the least significant bit (LSB). a(x) is
actually the rounded value of x̄.

Eq. (1) is rearranged as follows

y1 = a(x) + 2(x1 − a(x))
y2 = a(x) + 2(x2 − a(x)) + w1 − LSB(a(x))
· · ·
yn = a(x) + 2(xn − a(x)) + wn−1 − LSB(a(x))

(2)

The integer transform defined in the paper [2] (proposed by Alattar) can be summarized
in Eq. (3).

y1 = ⌊x̄⌋ −
⌊
2(x2−x1)+w1+···+2(xn−x1)+wn−1

n

⌋
= ⌊x̄⌋ −

2
n∑

i=1
xi+

n−1∑
i=1

wi−2nx1

n


y2 = y1 + 2 (x2 − x1) + w1

· · ·
yn = y1 + 2 (xn − x1) + wn−1

(3)

Suppose k2 =
∑n

i=1 xi − n⌊x̄⌋, and then k2 ∈ {0, · · · , n − 1}. Substitute
∑n

i=1 xi into
Eq. (3), we have

y1 = ⌊x̄⌋+ 2(x1 − ⌊x̄⌋)− ⌊2k2+
∑n−1

i=1 wi

n
⌋

y2 = ⌊x̄⌋+ 2(x2 − ⌊x̄⌋) + w1 − ⌊2k2+
∑n−1

i=1 wi

n
⌋

· · ·
yn = ⌊x̄⌋+ 2(xn − ⌊x̄⌋) + wn−1 − ⌊2k2+

∑n−1
i=1 wi

n
⌋

(4)

Comparing Eq. (2) with Eq. (4), we see that the integer transform proposed by Alattar
has its own disadvantage: it introduces the higher distortion than the transform proposed
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Figure 1. Performance comparison of our method with the other two methods.

by Wang et al.. Alattar’s method can be deemed to contain an additional term and a
process which uses the mean value of a block to predict each pixel in the block. Specially,

for each yi (i ∈ {0, 1, · · · , n}) in Eq. (4), it has an term, i.e., ⌊2k2+
∑n−1

i=1 wi

n
⌋. Since k2 ∈

{0, 1, · · · , n − 1} and wi ∈ {0, 1}, 0 ≤ ⌊2k2+
∑n−1

i=1 wi

n
⌋ ≤ ⌊3(n−1)

n
⌋ = ⌊3 − 1

n
⌋ = 2, i.e.,

⌊2k2+
∑n−1

i=1 wi

n
⌋ ∈ {0, 1, 2}. For instance, when k2 reaches its maximum value (i.e., n− 1), if

all to-be-embedded bits are set to 1, then this term will reach its maximum value (namely
2). Similarly, Wang et al.’s method contains a term, i.e., LSB(a(x)) ∈ {0, 1} except the
process which uses a(x) to predict each pixel in the block.
Therefore, relative to this term in Wang et al.’s method, the existence of the one in

Alattar’s method will result in greater reduction of PSNR value. Abundant experiments
also demonstrate that Wang et al.’s method has superior performance to Alattar’s.
For the purpose of increasing algorithm performance, we propose a novel and simple

integer transform that can remove the redundant term. Therefore, this integer transform
can be considered a pure prediction process, in which the mean value of a n-sized block is
used to predict each pixel in this block so that two bits are embedded into each of (n− 1)
pixels. By employing the invariability of the reminder of the mean value divided by a given
embedding parameter, we can achieve reversibility. Since the proposed integer transform
can embed 2(n − 1) (rather than (n-1)) bits into a n-sized block which introduces less
distortion, we can achieve a better performance than Wang et al. at lager embedding
rates.

3. The proposed method.

3.1. An integer transform. In the proposed method, a grayscale image is partitioned
into non-overlapping m × m-sized sub-blocks, where n = m × m. An integer transform
exploiting invariability of the remainder produced by dividing the mean value by a given
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embedding parameter is proposed below

y1 = ⌊x̄⌋+ 4(x1 − ⌊x̄⌋) + e1
= 4x1 − 3⌊x̄⌋+ e1

· · ·
yn−1 = ⌊x̄⌋+ 4(xn−1 − ⌊x̄⌋) + en−1

= 4xn−1 − 3⌊x̄⌋+ en−1

yn = ⌊x̄⌋+ 4(xn − ⌊x̄⌋)
= 4xn − 3⌊x̄⌋

(5)

where ei represents 2-bit watermark for each i ∈ {1, · · · , n − 1}, namely ei ∈ {0, 1, 2, 3},
the number 4 indicates the given embedding parameter. This integer transform can also
be considered as a prediction process, in which the mean value is used to predict each
pixel in a n-sized block so that two bits are embedded into each of (n − 1) pixels (see
Eq. (5)). In this transform, mod(⌊x̄⌋, 4) remains unaltered before and after embedding,
where the modulo function mod(a, b) returns the remainder of a divided by b, which is
expressed by the following formula: mod(a, b) = a− b⌊a

b
⌋. This invariability is the single

most important element to retrieve the original pixel values.
Next, we will introduce in detail how to correctly extract watermark bits. Firstly,

subtracting yn from yi for each i ∈ {1, · · · , n − 1} is to obtain the difference values as
follows

yi − yn = 4(xi − xn) + ei (6)

Since ei is a positive integer smaller than or equal to 3, i.e., ei ∈ {0, 1, 2, 3}, and meanwhile,
4(xi−xn) is a multiple of 4, the remainder will remain invariant when ei and 4(xi−xn)+
ei are divided by 4, respectively. That is to say, mod(yi − yn, 4) = mod(ei, 4) = ei.
Consequently, watermark bits ei can be correctly extracted. We subtract the correctly
extracted bits ei from y

′
i for each i ∈ {1, · · · , n − 1} so as to be capable of correctly

retrieving the original block x. The difference value y
′
i between yi and ei is calculated via

the following equation Eq.(7)

y
′
i = 4xi − 3⌊x̄⌋ (7)

For the convenience of description, we use y
′
= (y

′
1, · · · , y

′
n−1, yn) represents the pixel-

value-array via Eq. (7). Suppose ⌊x̄⌋ = 4k1 + k2, where k1 ∈ R and k2 ∈ {0, 1, 2, 3}.
Notice that, mod(⌊x̄⌋, 4) = k2. Substitute ⌊x̄⌋ into Eq. (7) and yn, we have

y
′
i = 4(xi − 3k1)− 3k2 = 4x

′
i − 3k2

· · ·
yn = 4(xn − 3k1)− 3k2 = 4x

′
n − 3k2

(8)

We use x
′
i to replace 4(xi − 3k1) so as to further simplify Eq. (8). We will prove that

mod(4x
′
i − 3k2, 4) is identical to k2 when x

′
i is set as some integer using the following

equation

mod(4x
′
i − 3k2, 4) = mod(−3k2, 4)

= mod(4k2 − 3k2, 4) = mod(k2, 4) = k2
(9)

In a word, mod(4x
′
i − 3k2) = mod(⌊x̄⌋, 4). On the decoding side, after we can correctly

get the remainder of ⌊x̄⌋ divided by 4, i.e., k2, each pixel value of y
′
is subtracted by k2

to get the difference value y
′′
i according to the following equation

y
′′

i = y
′

i − k2 = 4x
′

i − 4k2 = 4xi − 3⌊x̄⌋ − k2 (10)
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After both sides of Eq.(10) is divided by 4,
y
′′
i

4
= xi − 3⌊x̄⌋+k2

4
for each i ∈ {1, · · · , n}. We

have
n∑

i=1

y
′′
i

4
=

n∑
i=1

xi − n
3⌊x̄⌋+ k2

4
(11)

It yields that ⌊ 1
n

∑n
i=1

y
′′
i

4
⌋ = ⌊ 1

n

∑n
i=1 xi⌋ − 3⌊x̄⌋+k2

4
= ⌊x̄⌋−k2

4
= k1. So

⌊x̄⌋ = 4⌊ 1
n

n∑
i=1

y
′′
i

4
⌋+ k2 (12)

Substitute ⌊x̄⌋ via Eq. (12) into Eq. (5), we can correctly retrieve xn. And then, ⌊x̄⌋ is
substituted into Eq. (7) so as to retrieve xi for each i ∈ {0, 1, · · · , n− 1}.

3.2. Data Embedding. To prevent the overflow/underflow, each watermarked pixel val-
ue should be contained in [0, 255]. We define

D =

{
x ∈ A : 0 ≤ 4xi − 3⌊x̄⌋ ≤ 252(1 ≤ i ≤ n− 1),
0 ≤ 4xn − 3⌊x̄⌋ ≤ 255

}
where A = {x = (x1, · · · , xn) ∈ Z : 0 ≤ xi ≤ 255}.
For a pixel-value array x ∈ A, it is classified into one of two sets: Et = {x ∈ D : v(x) ≤

Th} and Ot = {x ∈ A − Et : v(x) > Th}, where Th is a given threshold, v(x) represents

the variation of a block, i.e., v(x) =
√

1
n
(xi − x̄)2, Et and Ot are used to denote the sets

of pixels which are altered so as to carry 2(n− 1) bits or kept unaltered, respectively.
A location map is generated in which the locations of the pixel arrays belonging to Et

are marked by ‘1’ while the others are marked by ‘0’. The location map is compressed
losslessly by an arithmetic encoder and the resulting bitstream is denoted by L. LS is the
bit length of L. For each x ∈ Et, it can carry 2(n− 1) watermark bits, so the maximum
hiding capacity is Cap = 2(n− 1)∥Et∥ − LS bits, where ∥ · ∥ represents the cardinality of
a set. Namely, the size of the payload equals Cap.
For each x ∈ Ot, then it is kept unaltered, i.e., y = x. For each x, if it belongs to Et,

then 2(n− 1) bits are embedded into it according to Eq. (5).
After the first n⌈LS

n
⌉ pixel arrays have been processed (meaning either altered to carry

2(n − 1) bits or kept unaltered), the LSBs of the first LS pixels of their corresponding
watermarked pixel arrays y are firstly appended to the payload P , and then replaced by
the compressed location map L. After all the sub-blocks are processed, a new marked
image Iw is obtained.

3.3. Data Extraction and Image Restoration. The LSBs of the pixels in Iw are col-
lected into a bitstream B according to the same order as in embedding. B is decompressed
by an arithmetic decoder to retrieve the location map.
For each watermarked pixel array y = (y1, · · · , yn), if its location is associated with ‘0’

in the location map, then it is ignored, i.e., x = y. Otherwise, the watermark can be
extracted using the following formula: ei = mod(yi − yn, 4) for each i ∈ {0, · · · , n − 1}.
And meanwhile, the original mean value is retrieved by Eq. (12). Finally, the original
image is recovered.

4. Experimental results. The capacity vs. distortion comparisons among the proposed
method, Wang et al.’s, Alattar’s are shown in Figs. 1 and 2. Three standard 512 × 512-
sized grayscale images are used in our experiments: ‘Lena’, ‘Baboon’ and ‘Plane’. Suppose
the thresholds corresponding to single embedding and double embedding are T1 and T2,
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(a) Lena
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(b) Baboon
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Figure 2. Performance comparison of our method with Wang et al.s
method, for single and double embedding.

respectively. Suppose also that T1 has an initial value which is set to a value capable
of ensuring the embedding rate larger than 0. Then, T1 is gradually increased from
this initial value until the given embedding rate is achieved. Once T1 is determined, its
corresponding PSNR value under the given embedding rate is obtained experimentally.
These obtained numerical results on three test images are plotted in Fig. 1, respectively.
For double embedding, T2 is set to half of T1. When T1 is gradually increased from the
initial value, T2 is also accordingly raised. Similarly, once T1 and T2 is determined, each
corresponding data pair containing a given embedding rate and its PSNR value is plotted
in Fig. 2 on three test images, respectively.

From Fig. 1, it can be seen that the two curves corresponding to the proposed method
and Wang et al.’s are very close when the embedding rate is low. When the embedding
rate is increased, the proposed method outperforms Wang et al.’s for ‘Lena’ and ‘Plane’.
Moreover, the embedding capacity in Wang et al.’s method is upper bounded by (1− 1

n
)

bpp for a single embedding process. However, we can get a bpp close to 2(1− 1
n
) without

multiple embedding. As illustrated in Fig. 1, we get a significant performance increase
relative to Alattar’s.

Since the correlations between the neighboring pixels in ‘Baboon’ not as high as in
the others so that little improvement was made by the proposed method. So, the pro-
posed method has almost the same performance as Wang et al.’s, while provide a better
performance than Alatter’s (see Figs 1 and 2).

Double embedding is the process of embedding data into an always embedded image.
We also perform double embedding for three test images. As shown in 2, we can achieve
the same performance as Wang et al.’s when the embedding rate is smaller than 1.6 bpp for
‘Lena’ or 1.4 bpp for ‘Plane’. Our superiority becomes more obvious when the embedding
rates gradually approach to 2.0 bpp, especially for ‘Lena’ and ‘Plane’. When the threshold
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value is set to a large integer, and correspondingly, the number of pixel arrays used for
embedding is greatly increases. Therefore, we can obtain higher embedding rates than
Wang et al.’s. Since double embedding that embeds more data into blocks with high
correlation will lead to lower distortion, double embedding may be better than single
embedding.

5. Conclusions. A novel integer transform is proposed in this letter. This transform
can also be considered a prediction process, in which the mean value of a n-sized block
is used to predict each pixel in this block so that two bits are embedded into each of the
(n− 1) pixels. Experimental results reveal the proposed algorithm is effective.
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