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ABSTRACT. The wireless sensor network (WSN) is a system composed of a large number
of sensor nodes, which are distributed in a designed coverage region for detecting specific
interested events. The sensor nodes would pass the collected information back to the data
collection center, which is called the sink node. In WSNs, the sink node is designed to
play the role as the data processing and the control center; and the rest of sensor nodes
are responsible for sensing the interested events and transmitting the related information
back to the sink node. Therefore, where to place the sink node in the whole network in an
important issue because the position of the sink node directly affects the data transmission
efficiency and the distance from the terminal sensor node to the sink node. In this paper,
we propose a sink node placement method by applying Cat Swarm Optimization algorithm
(CSO) and use the greedy algorithm to create the data transmission paths. In addition,
a newly designed fitness function is used in the operation to reduce the total energy
consumption. Moreover, the sink node placement problem is solved by Particle Swarm
Optimization algorithm (PSO) for further compare. Simulation results indicate that our
proposed method presents good performance in reducing the total energy consumption,
which can prolong the lifetime of network in an efficient way.

Keywords: Wireless sensor network, Cat swarm optimization, Sink node placement.

1. Introduction. Along with the increasing development of WSNs, this technology has
been embedded into our daily lives. The technology of WSNs have been used in monitoring
the health conditions of person, tracking objects, and sensing specific targets such as the
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pollutant. The WSNs mentioned above are typically consist of a lot of common sensor
nodes with limited energy source and one data collection center called the sink node.
The sensor nodes transfer the detected meaningful events to the sink by cooperatively
working with other nodes. In previous papers, if the common sensor nodes are uniformly
deployed in a regular geometric region, e.g., a circular or a rectangular area, the sink
node will be deployed at the relative center of the field. Sink node placement determined
by P-Median Problem model [1, 2], which has been proved to present the characteristic
of non-deterministic polynomial-time hard, is concluded that the center of the WSN’s
coverage area is the optimal position in the general WSNs. However, this conclusion is
made without considering the regional barrier and the hot pot problem. Nowadays, there
are many types of WSNs and the related application fields. In all kinds of WSNs, all
deployed sensor nodes are responsible for detecting the interested events and transmitting
the information back to the sink node. The most common and the familiar one is called
the flat networks; and the sink node is in charge of processing/analyzing the collected
information and sending control commands to the whole WSNs. If the distance between
the terminal sensor nodes to the sink node is longer; the energy consumption costed by the
transmission is larger. However, the interested events are usually not uniformly appear in
the WSNs’ coverage regions. It implies that the sensor nodes, which detect the interested
events more frequently, would run out of energy much earlier than other sensor nodes. If
the sink node is placed not on the center but on the proper position, the lifetime of the
whole WSNs may be extended without increasing other costs. Therefore, the placement
of the sink node plays an important role in WSNs. The optimal placement of the sink
node is not only an advantage of the reduction of the time delay but is also a positive
contribution to reduce the total energy consumption.

In this paper, we propose a sink node placement method by using Cat Swarm Opti-
mization (CSO) [12, 4] to determine the location of the sink node in a single static sink
node WSNs environment. Moreover, the greedy heuristic method [5, 6, 7] is employed to
generate the data transmission paths for the sensor nodes to the sink after determining
the location of the sink node. The generated result is used as the baseline for comparing
to the results obtained by our proposed method.

The rest of the paper is structured as follows: the related works of sink node location
determination with analytic results are briefly reviewed in section 2; our proposed method
for finding the near best location of the sink node by CSO is introduced in section 3; the
greedy algorithm for constructing the transmission path is described in section 4; the
simulation results are presented in section 5, and the conclusions made in the last session.

2. Related Work. In order to extend the lifetime of WSNs, several strategies and mod-
els are proposed one after another. For example, Wang et al. [8], Oyman and Ersoy [9]
proposed the WSNs model with multi sink nodes, single but mobile sink node, and the
model contains fixed sensor nodes of which are capable to batch-upload information col-
lected from the near by regions back to the sink node. Except modifying the number
or type of the sink nodes, another way to extend the lifetime of WSNs is to carefully
design the location for placing the sink node. The branch of sink node placement has
attracted more and more researchers’ eyes in recent years. For instance,Yang (2006) [10]
uses Genetic Algorithm (GA) to determine the location of the sink node in WSNs. Zoltan
et al. (2007) [11] propose a method to decide the location of the sink node by calculating
the number of sensor nodes, whose data are relayed by a neighboring of a sink. However,
this method would provide unstable results when the routing protocol is changed.

As the solid truth that the sink node location is an important issue in WSNs, more
and more related research results are presented in recent years. For instance, Chai et
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al. (2012) [12] propose a design with genetic-algorithm-based quasi-optimal method to
obtain equasi-optimal solutions at quadratic time for solving k-anonymity sink-location
problems. This method requires at least £ indistinguishable entities in the network to
the nodes of which around the sink node for protecting the sink-location privacy. Chen
and Li (2013) [14] analyze that the sink node placement problem and propose a set
of strategies for finding the optimal placement location for the sink node in both the
single-hop and the multi-hop WSNs environments, respectively. Their design adopts a
routing-cost based ant routing algorithm to decide the location of the sink node. Hidehiro
et al. (2010) [15] propose a method to solve the problem of allocating M sink nodes in a
two dimensional space by the suppression particle swarm optimization algorithm. In the
suppression particle swarm optimization algorithm, it has a suppression scheme by storing
copies of the position vectors from particles with better evaluation results for controlling
the excessive conversion of particle. The detail of the average delivery ration and the
communication load effecting factors are revealed. However, only the sink node location
issue is taken considered in this literature. The discussions on the residual energy and the
health condition of the nodes are still remained blank. To carefully select the location for
deploying the sink node in WSNs, both the residual energy and the health condition of
the nodes are also considered in our design.

3. Finding the Proper Location for the Sink Node by CSO. Assume that all sen-
sor nodes in the WSNs are randomly deployed and uniformly distributed in the coverage
area. Every node is equipped with the same communication gear with the equal trans-
mission distance; and the sensing range of the sensors equipped on the sensor nodes are
also identical. To find the proper location for the sink node in WSNs, the residual energy
equipped on the sensor nodes are assumed to be randomly distributed in a feasible range.
CSO [12, 4] is employed in this paper for finding the near best location of the sink node
under the assumptions mentioned above. In our design, every cat represents a potential
location of the sink node, and the cat with the best fitness value is capable to determine
the final location of the sink node in the WSNs. The procedure for achieving the goal
with CSO is listed as follows:

Step 1. Inaitialization: Randomly distribute the cats into the solution space. Let
cat; represents a single artificial agent, where % is the index of the artificial agent. In this
case, the solution space is composed of a 2-D plane. Hence, every artificial agent contains 2
dimensional vector to represent its coordinate, which is denoted by the second subindexes
x and g, in the solution space. The initial range and the velocities for every dimension
are designed to fit the minimum and the maximum boundary condition. Moreover, every
artificial agent stores the coordinate (denoted by cat;pest) corresponding to its personal
best fitness value as the historical best solution.

Step 2. FEwvaluation: Calculate the fitness value (denoted by F),) for every cat with
the fitness function. Replacing the stored near best solution (denoted by catyes;) over the
population if the fitness value is better than catpes.

Step 3. Movement: Move the cats by taking the operations in the seeking mode or
the tracing mode according to the statuses of the motion flags.

Seeking mode: Make SMP copys of the cat of which entered into the seeking mode.
Using equations 1 and 2 to produce a slight shifting to the copies, where r is a random
vector of which the value on every column is in the value set of -1, 0, 1. Different
values of r results in different actions of the cats: the movement result of the cat on
a single dimension is 20% less than the original coordinate when r is equal to -1; no
movement is made on a single dimension when 7 is equal to 0; the movement distance on
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a single dimension is 20% greater than the original coordinate when r is equal to 1. The
coordinates obtained after the movement should not exceed the border of the network
field.

Calculate all fitness values by the formula listed as follows for the SMP copies after the
movement.

z(t+1)=2z(t)x (1+0.2r),re[-1, 0, 1] (1)

y(t+1)=y(t) x (1+0.2r),re [-1, 0, 1] (2)

Should any of the copy present better fitness value than the original cat, replace the cat
by the newly found solution with better fitness value.

Tracing mode: 'The cat, which takes the tracing mode action should be moved
based on its corresponding velocities by equations listed as follows:

Vig(t+1) =04(t) + 11 X €1 X (i — Tpest) + T2 X C2 X (Tt — i history) (3)
Viy(t+1) = v(t) + 71 X 1 X (Yit — Ypest) + T2 X €2 X (Y1 — Vi history) (4)
r(t+1)=z(t) + v (t+1) (5)

y(t+1) = y(t) +viy(t + 1) (6)

where Zpesr and ypesr denote the z and y value of catyes, respectively, z; pistory a0d Yi history
are the coordinates = and y for cat; of which presents the best fitness value in the historical
data, v;,(t) and v;,(t) are the velocities on different dimensions for cat; in the current
iteration, v; ,(t + 1) and v; (¢t + 1) are the velocities in the next iteration; 71, rq, ¢1, and
¢y are the random numbers.

Step 4. Termination Checking: Check whether the terminational condition is
satisfied. If it is satisfied, output the coordinate of catys; to decide where to allocate the
sink node; otherwise, go to step 2 and continue the evolution process.

The Fitness Function Design: The fitness function is an user defined criterion
for determining the term of optimum. In this case, three factors are taken into the
consideration in designing the fitness function. The first term defined is called TotalDis.
It is used to represent the sum of the distances between sensor nodes to the cat, i.e.,
the sink node. The second one is called Energy_amount. It stands for the sum of the
residual energy overall neighborhood nodes of the cat. The last term is Num_amount for
representing the number of direct connection nodes of a cat. The designed fitness function
is listed as follows:

TotalDis Energy_amount
T) + oo X ( 9y

F=a;x( ) + as X Num_amount — (7)

Num_amout

where N is the number of total nodes in the network, and the parameter setting is
a; = —0.1, as = 0.01, az3 = 0.3.
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4. Transmission Path Construction Using Greedy Algorithm. The transmission
paths of which the nodes select play the important roles in the WSNs. Properly designed
transmission paths result in the less amount of energy consumption and the shorter trans-
mission delay. The conventional solutions usually provided by the greedy algorithms such
as the famous Dijkstra algorithm with the heuristic processes. The local optimal solution
may be found in the earlier stage, and the outcome is shifted to the near best solution in
the recursive processes. The Dijkstra algorithm is proposed to solve the traveling salesman
problem.

To build the transmission path with the minimum connected dominating set problem
using the greedy algorithm, the status of a node can be depicted in three status: Status
1 denotes that a node is yet joined in any path; Status 2 denotes that a node is joined
in a path and serves as a forwarding node; Status 3 denotes that a node is joined in a
path and it is the terminal node in the path. In addition, four sets, which are called the
UnCovered set, the InCovered set, the Covered set, and the DownFind set, are defined in
the path building process. The UnCovered set includes the nodes of which have not been
collected into any path; the InCovered set includes the nodes that are right on the process
for being collected into the paths; the Covered set includes the nodes been collected in
the paths; and the DownFind set includes the nodes, which are latest collected into a
path. The transmission paths are built level by level. The first level includes the nodes
that can directly transmit the data to the sink node; the second and the rest of levels are
distributed as the tree structure. The lower level can only transmit the data to its upper
level. When processing a specific level, the nodes are put in the InCovered set; and the
nodes in its lower level are put in the DownFind set.

Path Building Process A transmission path can be constructed by the process listed
as follows:

Step 1: Set all nodes to Status 1 and collect them into the UnCovered set.

Step 2: Shift all neighborhood nodes of the sink node into the Covered set and the
InCovered set and set these nodes to Status 3.

Step 3: Empty the DownFind set before shifting the nodes collected in the Incovered
set to the DownFind set. Change the status to 2 for the nodes in the DownFind set under
the condition that the one of the nodes has at least a neighborhood node is in status 1.
Set the status to 1 for the neighborhood nodes of the nodes, which are collected in the
DownFind set, and collect the neighborhood nodes into the InCovered set.

Step 4: Let a be one of the node in the InCovered set. Compute and find the shortest
distance Dy, by the formula listed as follows from node a to the sink node via any of
the nodes in the DownFind set. Mark the node in the DownFind set with the shortest
distance as node a’s next hop.

Dy = D(a,ny) + D(ny,ng) + D(ng,n3) + ... + D(n,, sink) (8)

where node a is in the InCovered set, node n; is in the DownFind set, and node ns is the
next hop of node ny, node n3 is the next hop of node n,, and node n,, denotes the last
node on the path to the sink.

Step 5: Check whether all nodes are collected into the Covered set. If the result is
positive, it implies that the InCovered set is empty. Thus the process can be terminated,
otherwise go back to Step 3 and repeat the process till the termination condition is
satisfied.
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5. Experiment. Different number of sensor nodes including 100, 200, 300, 400, 500,
and 600 nodes are used in our experiments. The sensor nodes are randomly deployed
into a 2-D environment with the size of 200x200 square units. Our proposed algorithm is
employed to decide the deployment location of the sink node, and the greedy algorithm is
used to construct the transfer paths for the whole WSNs. Every sensor node is equipped
with an identical communication module providing the equal communication and sensing
distance. In our experiment, the communication radius is set to 40 units. Moreover, the
energy consumption includes the energy provided for both transmitting and receiving the
data. The consumed energy for receiving one package of the data is designed to be 40%
less than transmitting. The energy carried on a sensor node is randomly set in the range
of 1000 to 2000.

Our proposed strategy is compared with a sink node location determination algorithm
based on the Particle Swarm Optimization (PSO) approach [16] proposed by Mohamed et
al. in 2015. This algorithm aims to produce an energy-aware topology control protocol.
For both CSO and PSO algorithms, the number of artificial agents is set to 16. The
outcome of the experiment is a coordinate of the optimal option for deploying the sink
node in the WSNs. Table 1 shows the total energy consumption of sending the same
number of packages.

TABLE 1. Comparing PSO approach with CSO approach on Energy Consumption

PSO [16] | CSO
11518: 2£ %Ifa(ilessmitted Packages 5.0120102 14.0338 | 10.7135
Eg: gi ?fa(fssmitted Packages 1.0220103 20.8981 | 19.2287
Eg: gi ?fa(fssmitted Packages 1.5320103 27.8352 | 26.8324
Eg i ?failessmitted Packages 2.04>(<)01()3 40.3712 | 36.4622
Eg: i ¥1"0a(fssmitted Packages 2.5520103 46.7464 | 46.6385
Eg gi ?facfssmitted Packages 3.06>(<)0103 61.8228 | 54.5633

The number of nodes and the transmitted packages are given in every row, and the total
power consumption of the WSNs with PSO and CSO approaches are given in the second
and the third column. For example, the total power consumption with PSO and CSO
approaches are 14.0338 and 10.7135, respectively, with 5.0 x 10? packages transmitted in
the 100 nodes environment. Obviously, the total power consumption produced by CSO
approach is less than by PSO appraoch in all test conditions.

Since the location of the sink node is decided by either CSO approach or PSO approach
before applying the greedy algorithm to construct the transmission paths, the whole WSNs
network with the deployed sink node and the transmitting paths with 100, 200, 300, 400,
500, and 600 nodes are revealed in Figure 1 to Figure 6 for comparing. Figure 1 reveals
the 100 nodes WSNs with the sink node deployment strategy by PSO in (a) and the sink
node deployment strategy by CSO in (b); Figure 2 shows the 200 nodes WSNs with the
sink node deployment strategy by PSO in (a) and the sink node deployment strategy by
CSO in (b); and so on so forth.
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FIGURE 1. 100 nodes WSNs with the sink node allocated by: (a) PSO
approach and (b) CSO approach
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FIGURE 2. 200 nodes WSNs with the sink node allocated by: (a) PSO
approach and (b) CSO approach
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FIGURE 3. 300 nodes WSNs with the sink node allocated by: (a) PSO
approach and (b) CSO approach

By observing the allocated sink node in Figure 1 and Figure 2, it is obvious that the
sink node is allocated on different nodes by PSO and CSO approaches. The differences on

the sink node location and the transmission paths result in different power consumption
results.
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FIGURE 4. 400 nodes WSNs with the sink node allocated by: (a) PSO
approach and (b) CSO approach
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FIGURE 5. 500 nodes WSNs with the sink node allocated by: (a) PSO
approach and (b) CSO approach
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FIGURE 6. 600 nodes WSNs with the sink node allocated by: (a) PSO
approach and (b) CSO approach

6. Conclusions. In this paper, we propose a sink node placement method by applying
CSO and use the greedy algorithm to create the data transmission paths. In addition,
a newly designed fitness function is used in the operation to reduce the total energy
consumption. Moreover, the sink node placement problem is also solved by PSO approach
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with the transmission paths built by the greedy algorithm for the compare. The proposed
method is tested with 6 different numbers of the sensor node environments. The results
are compared on the power consumption with the sink node allocated by PSO approach.
The experimental results indicate that our proposed method presents better efficiency on
reducing the total power consumption in the whole WSNs.

Acknowledgment. This work is supported by Key Project of Education Department
in Fujian Province (JA15323), the Department of Computer Science of VSB Technical
University of Ostrava, the College of Information Science and Engineering in Fujian Uni-
versity of Technology, and the Innovative Information Industry Research Center in Harbin
Institute of Technology Shenzhen Graduate School.

REFERENCES

[1] E. Alon, H. P Sariel, and S. M Joseph, Approximation algorithms for two optimal location problems
in sensor networks, Proc. of the 2nd international conference on Broadband networks, pp.714-723,
2005.

[2] L. Jun, and J. P Hubaux, Joint mobility and routing for lifetime elongation in wireless sensor
networks, Proc. of the 24th annual joint conference of the IEEE computer and communications
societies, vol.3, pp. 1735-1746, 2005.

[3] S.-C. Chu, and P.-W. Tsai, Computational Intelligence based on Behaviors of Cats, International
Journal of Innovative Computing, Information and Control, vol. 3, no. 1, pp. 163-173, 2007.

[4] S. C. Chu, P. W. Tsai, and J. S. Pan, Cat swarm optimization, PRICAT 2006: Trends in Artificial
Intelligence. Trends in Artificial Intelligence, Springer Berlin Heidelberg, pp.854-858, 2006.

[5] Greedy algorithm. Encyclopedia of Mathematics, URL: http://www.encyclopediaofmath. org/ in-
dex.php?.

[6] J. Raka, and M. Tuba, Ant colony optimization algorithm with pheromone correction strategy for the
minimum connected dominating set problem, Computer Science and Information Systems, pp.133-
149, 2013.

[7] G.Sudipto, and S. Khuller, Approximation algorithms for connected dominating sets, Algorithmica,
vol.20, no.4, pp.374-387, 1998.

[8] Z. M Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli, Exploiting sink mobility for maximiz-
ing sensor networks lifetime, Proc. of the 38th Annual Hawaii International Conference on System
Sciences,pp. 287a-287a, 2005.

9] E. I Oyman, and C. Ersoy, Multiple sink network design problem in large scale wireless sensor
networks, IEEFE International Conference on Communications, vol.6, pp.3663-3667, 2004.

[10] L. L Yang, Determining sink node locations in wireless sensor networks, IEEFE International Con-
ference on Systems, Man and Cybernetics, vol.4, 2006.

[11] V. Zoltan, R. Vida, and A. Vidacs, Deploying multiple sinks in multi-hop wireless sensor networks,
IEEE International Conference on Pervasive Services, pp.55-63, 2007.

[12] G. Chai, M. Xu, W. Xu, and Z. Lin, Enhancing Sink-Location Privacy in Wireless Sensor Networks
through k-Anonymity, International Journal of Distributed Sensor Networks, vol.2012, no. 2012,
Article ID: 648058, 2012.

[13] G. F Chai, M. Xu, W. Y Xu, and Z. Y Lin, Enhancing sink-location privacy in wireless sensor
networks through k-anonymity, International Journal of Distributed Sensor Networks, 2012.

[14] F. C Chen, and R. L Li, Sink node placement strategies for wireless sensor networks, Wireless
personal communications, vol.68, no. 2, pp.303-319, 2013.

[15] N. Hidehiro, A. Utani, A. Miyauchi, H. Yamamoto, and M. Yoshimura, A sink node allocation
scheme in wireless sensor networks using suppression particle swarm optimization, INTECH Open
Access Publisher, 2010.

[16] M. M Fouad, V. Snasel, and A. E Hassanien, Energy-Aware Sink Node Localization Algorithm for
Wireless Sensor Networks, International Journal of Distributed Sensor Networks, 2015.



