
Journal of Network Intelligence c©2016 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 2, Number 3, August 2017

Equational Security of a Lattice-based Oblivious
Transfer Protocol

Mo-Meng Liu

State Key Laboratory of Integrated Service Networks
Xidian University

No.2 South Taibai Road, Xian, Shaanxi, 710071, China
liumomeng@gmail.com

Yu-Pu Hu

State Key Laboratory of Integrated Service Networks
Xidian University

No.2 South Taibai Road, Xian, Shaanxi, 710071, China
yphu@mail.pxidian.edu.cn

Received March 2017; Revised April 2017.

Abstract. In this paper, we apply a novel framework, called equational security frame-
work, to an efficient lattice-based oblivious transfer (OT) protocol which is built upon the
hardness of the learning with errors (LWE) problem that is believed quantum resistant,
and provable secure in the standard universally composability (UC) model. This novel
framework can provide a concrete mathematical model of communication, and a concise
syntax to describe protocol in terms of a set of mathematical equations. This distin-
guishing feature makes it more easily to analyze the security of protocols when they are
deployed in some complex environments (e.g., when composed with other protocols). Our
initial motivation intends to prove the equational security of this lattice-based OT pro-
tocol to claim its usability in a fully asynchronous environment. However, we found a
timing bug during the security proof of this lattice-based OT protocol in the equational
security framework. Thus, we accordingly make twice modifications on its traditional
OT functionality. Unfortunately, we still cannot obtain the equational security of this
lattice-based OT protocol. We remark that our negative result does not mean that we find
some specific faults in the original security proof of this OT protocol, but it implies that
this protocol is not suitable to be used in the fully asynchronous execution environments.

Keywords: Oblivious transfer, Lattice-based cryptography, Equational security frame-
work, Universally composability

1. Introduction. As a fundamental cryptographic primitive, oblivious transfer (OT)
was firstly introduced by Rabin [1] to depict a cryptographic scenario between two parties,
where one party (called the sender) sends a message to the other party (called the receiver)
with requiring that the receiver can only obtain this message with probability 1

2
and

the sender remains oblivious as to whether the message has been received or not. In
addition, an OT protocol based on RSA cryptosystem was proposed to implement this
tricky conception. Afterwards, a more useful form called 1-out-of-2 OT [2] was developed
to build protocols for secure multiparty computation. 1-out-of-2 OT is also an execution of
a two-party computation, where the sender takes as input a message pair and the receiver
chooses one bit as his input. After the interaction between two parties, the receiver can
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retrieve his chosen message without knowing any knowledge of the other message and
the sender is unaware of the receiver’s message choice. Moreover, 1-out-of-2 OT can be
trivially transformed into 1-out-of-N OT, where the sender runs a database consisting of
N message entries and the receiver can retrieve one out of N messages by his choice. In
the rest of paper, unless otherwise noted, we abbreviate 1-out-of-2 OT as OT for clarity.

Due to the above simple functionality of OT, it can be utilized to securely and efficient-
ly implement some mathematical operations (e.g., secure two-party multiplication [3])
among several parties. Therefore, OT is usually taken as the basic building block to
construct more complex cryptographic protocols in countless cryptographic literatures.
In [4] and [5], efficient OT protocols are built upon the decisional Diffie-Hellman (DDH)
assumption. However, their security is shown in half-simulation paradigm, where an ideal
simulator can only be constructed for a cheating receiver. Therefore, this type of OT
protocols cannot be sufficiently secure when integrated into a larger protocol. With this
concern, many works attempt to achieve fully-simulation security, i.e., the ideal simulators
can be built for both parties. There are several results (e.g., [6]) which aim to construct
fully-simulation secure OT protocol, however, most of them are secure in the stand-alone
model (cf. [7]), which guarantees that the protocol is secure under sequential composition
instead of parallel or concurrent composition. However, concurrent composability can
bring great advantages on efficiency when protocols are executed in a complex environ-
ment, such as the Internet, where it can help to save communication rounds by running
protocols parallelly. This kind of security requirement is captured by a well-known frame-
work, called universally composability (UC) model [8]. That is, the protocol which is
provable secure in the UC model can maintain its security when running concurrently
with arbitrary other secure and insecure protocols.

However, one main feature of the UC framework is that any cryptographic task can be
expressed as an ideal functionality (e.g., OT functionality) and almost any network envi-
ronment (e.g., fully asynchronous execution environments) is possible in this UC model.
This highly generality makes it hard to use this UC formalization when specifying and
analyzing concrete protocols in practice. This limitation motivates researchers to explore
several variants for simplifying and specializing of the general UC model [9, 10, 11, 12]. For
the same prospective, a novel framework called equational security framework [13] is pro-
posed to provide a concrete mathematical model and a concise syntax to describe secure
computation protocols, i.e., specifying cryptographic protocols by a system of mathemat-
ical equations. The framework makes the study of secure computation protocols in a
concise, rigorous, notation-wise lightweight manner.

Motivation. In this paper, by applying the equational security framework, we revisit the
security of an efficient lattice-based OT protocol [14] which is built upon the hardness of
the learning with errors (LWE) problem and provable secure in the standard UC frame-
work. Actually, our work is initially inspired by [15], which analyzes two concrete OT
protocols in the equational security framework for their equational security. In [15], they
first show the equational security of OT extension protocol [16], however, they cannot
prove the equational security of an efficient UC secure OT [17] even after some modifica-
tions. Therefore, this motivates us to explore whether this lattice-based OT protocol [14]
can achieve its equational security or not. Moreover, to the best of our knowledge, the
lattice-based OT protocol proposed in [14] is the most efficient OT protocol which is be-
lieved quantum resistant (relying on the LWE hardness) and secure in the UC framework
(offering the guarantee for arbitrary composition). Thus, if we achieve the equational
security of this lattice-based OT protocol, it will make the protocol easily understandable
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and promisingly utilized in a complex environment (might be quantum adversarial and
fully asynchronous).

Our Results. Here we briefly present our main findings in this paper. First, it is clear
to see that the UC-security proof of this lattice-based OT protocol [14] is made by using
the traditional OT functionality (see later in Section 4 Figure 2). When we apply this
traditional OT functionality to the equational security proof of this lattice-based OT
protocol, we find a timing bug in the case that when the sender is corrupted, so that
there always exists an environment which can distinguish the real world from the ideal
world with overwhelming probability. Therefore, we accordingly modified the OT ideal
functionality twice to fix this bug, however, the result is still negative, i.e., this lattice-
based OT protocol [14] cannot obtain its security in the equational security framework.

Roadmap. We introduce some basic notions and backgrounds in Section 2, and recall the
lattice-based OT protocol [14] we mentioned in Section 3. Our work is mainly presented in
Section 4 to explore the equational security of this lattice-based OT protocol. Moreover,
we give the conclusion of this paper in Section 5.

2. Preliminaries. In this section, some relevant backgrounds are introduced in two part-
s, where we briefly introduce the equational security framework in Section 2.1, and lattice-
based cryptography and UC framework which are related to the lattice-based OT proto-
col [14] in Section 2.2. For clarity, most notations and concepts we recall respect their
definitions shown in [8, 13, 14, 15]. In addition, we assume that the readers are familiar
with the simulation-based security [7].

2.1. Equational security framework. To study protocols in a concise, rigorous, notation-
wise lightweight manner, equational security framework [13] is proposed to provide a con-
crete mathematical model and a concise syntax to describe cryptographic protocols by
a system of mathematical equations. Its underlying mathematical foundation relies on
domain theory [18, 19, 20]. Since to explain how domain theory can be applied to the
equational security framework is not essential to the readers, we skip this illustration
and refer to [13, 15] for a detailed treatment. Here, we only introduce some necessary
backgrounds and notions of the equational security framework.

In a nutshell, the equational security framework can be viewed as a network with
nodes representing computation units and edges modeling communication channels. Each
channel is associated with a partially ordered set (i.e., poset) which represents all possible
messages or sequences of messages that may be transmitted on the channel over time,
where the temporal evolution is described by the partial order relation.

For example, if a channel is allowed to transmit an arbitrary number of messages from
a basic set X, then it can be modeled by a poset (X∗,≤), where X∗ = {(x1, ..., xk) : k ≥
0,∀i, xi ∈ x} represents a set of finite messages in X, and the partial ordering relation
≤ (reflexive, transitive and antisymmetric) is used to describe a sequence of transmission
observations at different points in time, denoted by a chain x1 ≤ x2 ≤ ... ≤ xk. Here xi+1

is a possible extension or future of xi if for any two histories xi ≤ xi+1.
Another common example of poset, denoted by X⊥ = X

⋃
{⊥}, consisting of all mes-

sages in X, and a bottom element ⊥ representing the case that no message has been
transmitted yet, where its flat partial order satisfies that x ≤ y if and only if x = ⊥
or x = y. This kind of poset X⊥ models a communication channel which is capable of
transmitting only a single message from X.

In the equational security framework, each node can be viewed as a unit with one input
and one output, where the input (resp. the output) is the Cartesian product of incoming
channels (resp. outgoing channels). Each computational unit at each node can be modeled



234 M.M Liu and Y.P. Hu

as a function f : C1 → C2 from the incoming channels to the outgoing channels such that
f(h1) ≤ f(h2) in C2 if for any h1 ≤ h2 in C1. This natural monotonicity implies that once
a message has been transmitted, the sender cannot take it back in time.

Now we give a more detailed introduction of equational security framework [13] in terms
of its application in this paper. All considered posets in this paper are complete partial
orders (CPOs), i.e., for any chain x1 ≤ x2 ≤ ... in poset (X,≤), it has a least upper bound
supi xi. In addition, all CPOs have a minimal element ⊥ = sup ∅, i.e., for all x ∈ X, it
satisfies the relation ⊥ ≤ x. These posets are naturally endowed with the Scott topology,
where a subset A ⊆ X is closed if for all x ∈ A, y ≤ x implies y ≤ A, and any chain in A
has a least upper bound in A. Open sets are defined as the complements of closed sets.
Note that all CPOs considered in this paper are flat CPOs. That is, for any finite set X,
it is extended with ⊥ to form a flat CPO X⊥, where the partial order in this flat CPO
consists of ⊥ ≤ x for all x ∈ X. In addition, for any set X, x← X⊥ represents selecting
an element x 6= ⊥ uniformly at random from X. Then the functions f : X → Y between
sets can be lifted into the functions f : X⊥ → Y⊥ between the corresponding flat CPOs
by setting f(⊥) = ⊥.

Moreover, the equational framework also specifies the probabilistic behaviors of proto-
cols, represented by the probabilistic functions between sets of distributions with proper
ordering relation. A probability distribution on a CPO X is a function p : X → [0, 1] such
that p(A) + p(B) = p(A ∪ B) for all disjoint A,B ⊆ X and p(X) = 1. We let n be a
security parameter. If for all x ∈ X, p(x) < n−c for any constant c > 1, we say such a
probability p is negligible. Then p is overwhelming if 1− p is negligible. Note that the set
of probability distributions over a CPO X, denoted by D(X), is also a CPO. For any two
distributions p and q over D(X), we have q ≤ q (in D(X)) if and only if p(A) ≤ q(A) for
any open subset A ⊆ X.

Now we recall some notations defined in [15] for the application of equational security
framework in our work. A flat CPO is denoted by X with a bottom element ⊥ ∈ X,
where its partial order satisfies that x1 ≤ x2 if and only if x1 = ⊥ or x1 = x2. This flat
CPO X models a simple communication channel which can transmit a single message from
X/{⊥}, where ⊥ represents the state that no message has been transmitted yet. We use
X×2 = {(x, y) : x, y ∈ X, x 6= ⊥; y 6= ⊥}⊥ to represent the set of strict pairs over X. For
any pair z ∈ X×2, z consists of two elements, i.e., z[0] and z[1] such that z[i] = ⊥ when
z = ⊥ or i = ⊥. Now we let 〈x, y〉 denote the operation of combining two elements into a
strict pair, thus z can be written as the form of 〈z[0], z[1]〉. Note that 〈x,⊥〉 = 〈⊥, y〉 = ⊥,
and therefore 〈x,⊥〉[0] = 〈⊥, y〉[1] = ⊥ even when x, y 6= ⊥. In addition, for any pairs
〈x0, x1〉, 〈y0, y1〉, strict function f and strict binary operation �, it is easily to verify that
f(〈x0, x1〉[i]) = 〈f(x0), f(x1)〉[i] and 〈x0, x1〉[i] � 〈y0, y1〉[i] = 〈x0 � y0, x1 � y1〉[i]. For
clarity, in the rest of the paper we let the CPO S = {>}⊥ represent signals, i.e., the
messages without information content, the CPO B = {0, 1}⊥ represent single bit message
(used for selecting an element from a pair), and the CPO M` = {0, 1}`⊥ describe bit-strings
of length `. Moreover, we utilize x!y = 〈x, y〉[1] to represent the operation of guarding y
by x such that x!y = y except for the case x = ⊥. This expression can be used for delaying
the transmission of y until after x is received. In addition, the expression x! = x!> can
be used for testing x > ⊥.

Advantages of equational security framework. The most outstanding feature of
the equational framework is that it can provide a mathematically clean syntax to specify
the processes of computation nodes by a set of mathematical equations. This makes it
easy to represent composition by combining equations together. Since composition is
independent of the composition order, the behavior of a network can be described by
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the equations of each node with the edges connecting the nodes. with using equations
in this way, it can also provide a concise method to deduce transformations as well. For
instance, equivalent components can be replaced by each other if they have equivalent
equations. When considering probabilistic behaviors, if a component is indistinguishable
from another component, then they can be interchangeably used with negligible impact
on the behavior of the entire system.

2.2. Some backgrounds related to the lattice-based OT protocol. In this section,
we introduce some necessary backgrounds related to the lattice-based OT protocol [14]
we later introduce in Section 3, including lattice-based cryptography and UC framework.
We first recall some notations defined in [8, 14].

2.2.1. Notations. We use bold lowercase letters to denote vectors, e.g., v, and bold capital
letters to denote matrices, e.g, M. The notation vT represents the transpose of vector v.
For any x, y ∈ R with y > 0, xmod y = x− bx/ycy and bxe = bx + 1/2c. For an integer
q ≥ 1, Zq denotes the quotient ring Z/qZ. We let T = R/Z denote the group of reals [0, 1)
with modulo 1 addition. For any α ∈ R+, Ψα denotes the distribution on T obtained by
sampling from a normal variable with mean 0 and standard deviation α/

√
2π, reduced

modulo 1. Moreover, its discretization Ψ̄α : Zq → R+ defines the discrete distribution
over Zq of the random variable bq ·XΨαemod q, where XΨα has distribution Ψα.

If D is a probability distribution over Zq, then x ← D denotes sampling x ∈ Zq
according to D. If D(·) is a probabilistic algorithm, y ← D(x) denotes running D on
input x and assigning the output to y.

Throughout this paper, n ∈ N denotes a security parameter which is taken as an
implicit input to all cryptographic algorithms. We classify the growth of functions by
using standard asymptotic notation. Let f(n) and g(n) be two positive functions. We say
f(n) = O(g(n)) if there exist two fixed positive constants c and n0 such that f(n) ≤ cg(n)
for all n ≥ n0, and f(n) = o(g(n)) if for any arbitrarily positive constant c, there exists a
positive constant n0 such that f(n) ≤ cg(n) for all n ≥ n0. We say that f(n) = Õ(g(n))
if f(n) = O(g(n) logc n) for some fixed constant c. Let poly(n) denote an unspecified
function f(n) = O(nc) for some constant c. We say that some unspecified function
f(n) is negligible in n if f(n) = o(n−c) for any constant c. Let negl(n) denote such a
function f(n) which is negligible in n. We say that a probability is overwhelming if it is
1 − negl(n). Let X = {X(n, x)}n∈N,x∈{0,1}∗ denote a binary distribution ensemble (i.e.,
an infinite set of probability distributions over {0, 1}), where a distribution X(n, x) is
associated with each security parameter n ∈ N and input x ∈ {0, 1}∗. Now we have two
such ensembles X = {X(n, x)}n∈N,x∈{0,1}∗ and Y = {Y (n, x)}n∈N,x∈{0,1}∗ . If |Pr(X(n, x) =
1)− Pr(Y (n, x) = 1)| ≤ negl(n), we say that X and Y are indistinguishable, denoted by
X ≈ Y .

2.2.2. Lattice-based cryptography. Lattice-based cryptography [21, 22] is a promising post-
quantum cryptography candidate [23] since it has strong provable security guarantees
and good asymptotic efficiency. As a versatile primitive for lattice-based cryptographic
constructions, the learning with errors (LWE) problem introduced by Regev [24] is widely
utilized and regarded quantum resistant due to its provable property that solving the
average-case LWE problem is at least as hard as solving some standard worst-case lattice
problem that cannot be efficiently solved by quantum algorithms. Referring to [24], the
LWE problem is described as follows:

Definition 2.1 (LWE). Let n ≥ 1, q ≥ 2 be positive integers, X be an error distribution
over Zq, and s be a secret vector following the uniform distribution over Znq . Let As,X
denote the probability distribution over Znq ×Zq obtained by choosing a ∈ Znq uniformly at
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random, choosing e ∈ Zq according to X , and returning the sample (a, c) = (a, 〈a, s〉+e) ∈
Znq ×Zq. The LWE problem has two versions, the search-version and the decision-version.

Search-LWE is to find s given access to arbitrarily many independent samples (a, c) =
(a, 〈a, s〉+ e) from As,X .

Decision-LWE is to distinguish an oracle that returns independent samples from As,X from
an oracle that returns independent samples from the uniform distribution on Znq × Zq.

In [24], Regev gave a quantum reduction from worst-case lattice problems to the search-
LWE problem. Moreover, he also established the equivalences of the search-LWE problem
by using elementary reductions, including a reduction from the (average-case) decision-
version to the search-version. Note that in the rest of this paper we denote this decision-
LWE problem as the LWE problem. Here we state the result [24] with regarding to
the average-case decision-LWE problem, which is denoted by LWEq,X and used in the
following cryptographic application (see Section 3) as underlying hardness. That is, for
certain choices of q and X :

Proposition 2.1 (see [24] Theorem 1.1 and Lemma 4.2). Let n, q be integers and α =
α(n) ∈ (0, 1) be such that αq > 2

√
n. If there exists an efficient algorithm that can

solve LWEq,X , then there exists an efficient quantum algorithm for solving the shortest
vector problem (GapSVP) and the shortest independent vectors problem (SIVP) to within
Õ(n/α) in the worst case.

2.2.3. UC framework. Since the lattice-based OT protocol proposed in [14] achieves its
security in the standard universally composability (UC) framework [8], we begin by a
brief overview of this model which can provide a strong guarantee that ensuring the
protocol remains secure when run concurrently with arbitrary other secure and insecure
protocols. The security defined in this model is made by comparison: given a certain task,
we assume that there exists a specific machine called the ideal functionality, denoted by
F , which can securely implement this task. This ideal functionality obtains the inputs
of the computation participants and provides them with the desired outputs, where all
communication between F and the involved computation parties are done over secure
channels and the whole interaction process can be regarded as an ideal protocol/process
(denoted by ρF) to securely realize this given task.

However, in the real world, we cannot obtain this ideal protocol ρF . We need a real
protocol π to implement F and intuitively expect that π is no less secure than F . It
implies that if there exists an adversary that can do anything during the execution of π,
then the adversary can also do the same thing during an execution of ρF . Due to the
required security of F , this adversary cannot attack successfully π either. This is captured
by requiring that for any real adversary Adv, there exists an ideal adversary, called the
simulator Sim (constructed from Adv), such that an execution of π with Adv (called the
real world) is indistinguishable from an execution of F with Sim (called the ideal world).
Moreover, in the UC framework there is a new algorithmic entity called environment Env,
which models the external environment of the current honest parties. The distinguishing
feature of the UC framework is that Env can freely interact with both worlds through the
whole execution process. If no machine Env can distinguish its interaction with the real
world from the one with the ideal world, then we say this real protocol π can securely UC-
emulate the ideal functionality F or the ideal process ρF , i.e., π can achieve UC-security.

Referring to [8], we let F be an ideal functionality. EXECπ,Adv,Env(n, x) denotes the
random variable describing the single bit output of Env when interacting with Adv and
running π on an input x ∈ {0, 1}∗, where n represents the security parameter. Like-
wise, the random variable describing the single bit output of Env when interacting with F
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and Sim on the same input x is denoted by IDEALF ,Sim,Env(n, x). Let EXECπ,Adv,Env (resp.
IDEALF ,Sim,Env) denote the ensemble {EXECπ,Adv,Env(n, x)} (resp. {IDEALF ,Sim,Env(n, x)})
of distributions over {0, 1}, where n ∈ N, x ∈ {0, 1}∗. Then the general notion that π can
securely UC-emulate F is formally defined as follows.

Definition 2.2 (UC-Security). Let F be an ideal functionality. A protocol π is said to
UC-emulate F if for any adversary Adv, there exists a simulator Sim such that for all
environments Env it holds that

IDEALF ,Sim,Env ≈ EXECπ,Adv,Env,

where ≈ denotes indistinguishability.

3. Lattice-based OT Protocol. In this section, we will introduce an efficient lattice-
based OT protocol [14] which is provable secure in the UC framework. This lattice-based
OT is extracted from a dual-mode cryptosystem constructed by using some technical
tools proposed in [25]. Once such a dual-mode cryptosystem under some certain standard
assumption is built well, an efficient and UC-secure OT protocol based on the same
hardness assumption can be directly derived.

In Section 3.1, we first present the dual-mode cryptosystem instantiated with the L-
WE problem. Then we introduce the derived OT protocol in Section 3.2. In addition,
for a clear application of equational framework to this lattice-based OT protocol, we
briefly recall the simulator constructions for the UC-security proof of this OT protocol in
Section 3.3.

3.1. Dual-mode cryptosystem based on LWE hardness. Dual-mode cryptosystem
behaves like a normal encryption scheme which can correctly decrypt a message encrypted
with a given public key by the corresponding secret key. However, the distinguishing
feature of this particular encryption scheme is that it can operate in two modes, i.e.,
messy mode and decryption mode, where the mode that the scheme will run in is decided
by the trusted setup phase of the dual-mode cryptosystem. In the trusted setup phase,
a common reference string (denoted by crs) and the corresponding trapdoor information
τ 1 are created, where crs may be chosen either uniformly random or from a specified
distribution. Note that the distribution of crs decides the mode that the dual-mode
cryptosystem will run in and also specifies the type of public key used in the encryption.

The instantiation of the dual-mode cryptosystem with the LWE problem relies on
some techniques developed in [25], including an LWE-based encryption (a variant of
Regev’s CPA-secure LWE-based cryptosystem [24]) and an efficient algorithm called
IsMessy (which is used to build the simulator in UC-security proof). In [25], it shows
that how to securely embed a trapdoor into the public matrix A used in this LWE-based
encryption cryptosystem, so that when the corresponding trapdoor information is given,
the algorithm IsMessy can efficiently identify the messy public key, which has the property
that a ciphertext produced by the messy public key carries no information (statistically)
about the encrypted message.

Here we first introduce this LWE-based encryption, where the message space is Z2 =
{0, 1}. Let the modulus q = poly(n) be a large prime. For every message µ ∈ Z2, the
“center” of µ is defined as t(µ) = µ · bq/2c ∈ Zq. Let X denote an error distribution
over Zq and DZm,r denote a Gaussian-like distribution over Zm with standard deviation

1Note that the trapdoor τ in different modes is different, it will be illustrated later in the description
of the dual-mode construction.
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approximately r2. All operations are performed over Zq.

LWE-Based Encryption

• LWEKeyGen(1n): choose a secret key s ← Zn×1
q uniformly at random. To generate

the public key, choose a matrix A ← Zn×mq uniformly at random and an error

vector x ∈ Z1×m
q according to the error distribution X = Ψ̄α for some parameter

α = α(n) ∈ (0, 1) (here each xi is chosen independently for all i ∈ [m]). Then
compute (A,p = sTA + x), where each entry (ai, pi) is a sample from As,X and m
denotes the number of samples.
• LWEEnc(pk = (A,p), µ): to encrypt a message µ ∈ Z2, choose a vector e ∈ Zm from
DZm,r and output the ciphertext (u, c) = (Ae,pe + t(µ)) = (Ae,pe + µ · bq/2c) ∈
Znq × Zq.
• LWEDec(sk = s, (u, c)): to recover the message µ from the ciphertext, compute
d = c − sTu ∈ Zq. Output 0 if d is closer to 0 than to bq/2cmodulo q, otherwise
output 1.

Remark 3.1. The above LWE-based encryption scheme can also be applied when the
message is a vector µ ∈ Z`2, where ` = poly(n) ≥ 1. The main advantage that the matrix
A can be reused over ` different bits enables to fulfill a multi-session OT protocol, where
it can implement ` individual OT executions by using the same A and obliviously transfer
one bit to the receiver in each subsession.

Now we introduce the LWE-based dual-mode cryptosystem constructed by the above
LWE-based encryption and the messy key identifying algorithm IsMessy. For simplicity,
we only present this LWE-based dual-model construction for ` = 1.

LWE-Based Dual-Mode Cryptosystem

• SetupMessy(1n): choose a matrix A ← Zn×mq uniformly at random, together with
the trapdoor information τ = (S,A) as shown in [25]. For each b ∈ {0, 1}, choose a
vector vb ← Z1×m

q uniformly at random. Let crs = (A,v0,v1). Output (crs, τ).

• SetupDec(1n): choose a matrix A ← Zn×mq and a vector w ← Z1×m
q uniformly at

random. For each b ∈ {0, 1}, choose a secret sb ← Znq uniformly at random and

an error vector xb ← X 1×m, where all entries are chosen independently from the
error distribution X . Let vb = sTb A + xb −w, crs = (A,v0,v1), and τ = (w, s0, s1).
Output (crs, τ).
• KeyGen(crs, σ): choose a secret s← Znq uniformly at random and a vector x← X 1×m.

Let pk = sTA+x−vσ, where σ ∈ {0, 1} denotes the decryptable branch3. Let sk = s
and output (pk, sk).
• Enc(pk, b, µ): output y ←LWEEnc((A,p = pk + vb), µ), where b ∈ {0, 1} is chosen

by the encrypter. Here y is the pair (u, c).
• Dec(sk, y): output µ←LWEDec(sk = s, (u, c)).
• FindMessy(τ, pk): parse τ as (S,A), run IsMessy(S,A, pk + vb) for each b ∈ {0, 1},

and output b such that IsMessy can output “messy” on at least one branch correctly
with overwhelming probability.
• TrapdoorKeyGen(τ): parse τ as (w, s0, s1), and output (pk, sk0, sk1)=(w, s0, s1).

2Referring to [25], the particular value of the Gaussian parameter r is a parameter of the scheme.
When the trapdoor information is embed in the scheme, the value of r will be related to the length of
the trapdoor for A.

3The ciphertext of a message can be produced in two branches b = 0 or b = 1. This ciphertext only
on the branch σ = b can be correctly decrypted. We call the branch σ decryptable.
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Remark 3.2. SetupMessy generates a crs together with trapdoor τ = (S,A), where S is
an embedded trapdoor in A so that IsMessy can be used in FindMessy to reveal that whether
pk + vb is a messy key for each b ∈ {0, 1} when the trapdoor τ is given.

The dual-mode cryptosystem has three main security properties: (1) in messy mode,
for each base public key pk, at least one of the derived public keys pk + vb for b ∈ {0, 1}
can statistically hide its encrypted message; (2) in decryption mode, the honest receiver’s
chosen bit σ is statistically hidden by its choice of base key pk; (3) given crs, no adversary
can efficiently distinguish two modes (i.e., satisfying computational indistinguishability).
These security properties guarantee that a UC-secure OT protocol can be derived from
this dual-mode cryptosystem. However, the instantiation of the dual-mode cryptosystem
with the LWE problem only satisfies a slightly relaxed version of the above security
properties. Fortunately, a UC-secure OT protocol based on LWE hardness can still be
derived, however, it leads to a slightly weaker security of the honest receiver when running
in decryption mode, i.e., computational security.

3.2. LWE-based OT protocol. Once this LWE-based dual-mode cryptosystem is built
well, an LWE-based OT protocol denoted by dmmode can be obtained directly (see Fig-

ure 1). This dmmode can securely UC-emulate a multi-session OT functionality F̃OT in

the FCRS-hybrid model (cf. [8]), where F̃OT serves as a shell around a bounded number
(corresponding to `) of independent FOT executions. Here FOT denote the traditional
OT ideal functionality, where the sender S and the receiver R just forward their inputs
(m0,m1) and σ ∈ {0, 1} to FOT and FOT will return mσ to R without any output to S.

Here F̃OT specifies its interaction with two parties in a single session by sid, and coordi-
nates each subsession of the same session by ssid. FCRS is an ideal functionality which
generates a crs for both parties. Once crs is obtained, the execution of dmmode mainly
follows the procedure of the dual-mode cryptosystem. Note that dmmode can also operate
in two modes. Since FCRS can run two different setup algorithm, we denote it by FDCRS.
When D = SetupMessy, dmmode runs in the messy mode; When D = SetupDec,dmmode

runs in the decryption mode. Note that the protocol dmmode is a 1-out-of-2 OT, it can be
extended as a 1-out-of-2k OT protocol by choosing vb for each b ∈ {0, 1}k.

Sender Receiver
(sid, ssid,m0,m1) (sid, ssid, σ)

Setup:
(sid,S,R)

GGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGG

(sid, crs)
FDCRS

(sid,S,R)
EGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGC

(sid, crs)
Multi-session OT:

(sid, ssid, pk)
DGGGGGGGGGGGGGGGGGG (pk, sk)← KeyGen(crs, σ)

yb ← Enc(pk, b,mb) for each b ∈ {0, 1}
(sid, ssid, y0, y1)

GGGGGGGGGGGGGGGGGGGGGGA

outputs (sid, ssid,Dec(sk, yσ))

Figure 1. Lattice-based OT protocol dmmode

3.3. UC-security proof sketch. As shown in [14], dmmode is provable secure against
static corruptions in the UC framework, where static corruption means that the adversary
can only make corruption decision before the execution of the protocol instead of during
the course of the protocol execution. UC-security implies that for any real-world adversary
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Adv, there exists an ideal-world adversary Sim, called simulator, interacting with the ideal

functionality F̃OT, such that no machine Env can distinguish its interaction with Adv in an

execution of dmmode from an interaction with Sim by using F̃OT. The main ingredients of
UC-security proof of dmmode lie in the simulator constructions in the corruption cases that
when only the receiver is corrupted and when only the sender is corrupted, respectively.

In each corruption case, Sim starts by running a copy of Adv. Every incoming value
received by Sim is written into Adv’s input tape. Every outgoing value on Adv’s output
tape is copied to Sim’s output tape. Note that regardless of which mode the protocol
dmmode will run in, the construction of Sim only depends on corruption case.

When only R is corrupted: Sim runs the messy mode setup algorithm and gener-
ates (crs, τ) ← SetupMessy(1n). Namely, Sim chooses a matrix A ← Zn×mq uniformly at
random, together with a trapdoor τ = (S,A). For each b ∈ {0, 1}, Sim selects a vector
vb ← Z1×m

q uniformly at random, sets crs = (A,v0,v1), and outputs (crs, τ). When the

parties query FDCRS, Sim returns (sid, crs) to them and stores τ privately. At some point,
Adv produces a message (sid, ssid, pk) and sends it to Sim, where pk = sTA+x−vσ. Then
Sim runs FindMessy(crs, τ, pk) to find b for specifying the messy branch, and queries the
ideal functionality F̃OT with (sid, ssid, receiver, 1− b) in the name of R. Then Sim receives

the output (sid, ssid,m1−b) from F̃OT and stores the value (b,m1−b). When S is activated
on some subsession (sid, ssid), then Sim must play the role of the sender to interact with
Adv like a real world execution. Sim firstly looks up the corresponding (b,m1−b), then
computes y1−b ← Enc(pk, 1 − b,m1−b) and yb ← Enc(pk, b, 0`). Finally Sim sends the
message (sid, ssid, y0, y1) to Adv as if it were from S.

When only S is corrupted: Sim runs the decryption mode setup algorithm and gen-
erates (crs, τ) ← SetupDec(1n), Namely, Sim chooses a matrix A ← Zn×mq and a vector

w← Z1×m
q uniformly at random. For each b ∈ {0, 1}, Sim chooses a secret vector sb ← Znq

uniformly at random and an error vector xb ← X 1×m, and then sets vb = sTb A + xb −w,
crs = (A,v0,v1), and τ = (w, s0, s1). When the parties query the ideal functionality
FDCRS, Sim returns (sid, crs) to them and stores τ privately. When R is activated on
some subsession (sid, ssid), Sim runs TrapKeyGen(crs, τ) to generate (pk, sk0, sk1), where
(pk, sk0, sk1) = (w, s0, s1), and sends (sid, ssid, pk) to Adv as if it were from R, and s-
tores (sid, ssid, pk, sk0, sk1). When Adv replies with a tuple (sid, ssid, y0, y1), Sim first looks
up the corresponding (pk, sk0, sk1), then computes mb ← Dec(skb, yb) for each b ∈ {0, 1}.
Since S has been activated, Sim sends (sid, ssid, sender,m0,m1) to F̃OT as if it were from S.

4. Equational Security of dmmode. In this section, we analyze the equational security
of dmmode. As shown in Section 3, it is clear to see that in the UC-security proof of
dmmode they use the traditional OT functionality (see Figure 2). When we keep using
this traditional OT functionality in equational security framework, we found that there
exists a timing bug in the case that when the sender is corrupted. Then we somehow
modify the OT functionality into a revised one that outputs the sender one acknowledge
bit a, which illustrates whether the chosen bit σ of the receiver has been transmitted yet
or not without leaking any content of σ. However, we cannot achieve the security of the
sender in this case. Regarding to this situation, we weaken this revised OT functionality
by allowing to leak the bit a to the environment, but the result is still negative.

4.1. Equational description of dmmode. In this section, we first give the description
of dmmode in the equational security framework. From Section 3, we know that dmmode
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can securely UC-emulate a multi-session OT functionality F̃OT which can be regarded
as a shell that wraps several traditional OT functionalities FOT. In each subsession ssid
of a session sid, one bit can be securely and obliviously transferred to the receiver R.
This feature of dmmode comes from the fact that the LWE-based encryption utilized for
constructing the LWE-based dual-mode cryptosystem can encrypt an `-bit message by
reusing the public matrix A for ` times bit encryption. When ` = 1, dmmode is a 1-out-of-
2 OT protocol which UC-emulates a single-session OT functionality which securely and

obliviously transfer one single bit, i.e., F̃OT = FOT. For simplicity, we only consider the
case that when ` = 1, that is, we only use sid and omit ssid in the equational description
of dmmode.

In the equational security framework, this traditional OT functionality FOT can be
described as shown in Figure 2, where the sender S and the receiver R send their inputs
m2 ∈ M×2

` = Z×2
2 and σ ∈ B = {0, 1} to FOT, respectively. Then FOT will output

m = m2[σ] to R without any output to S.

FOT

m2
σ

m

OT(m2, σ) = m
m2 : Z×2

2

σ : B
m : Z2

m = m2[σ]

Figure 2. Traditional OT functionality FOT

In addition, we know that dmmode can operate in two modes. In each mode, two parties
first query FDCRS with qscrs and qrcrs (see Figure 3) for a crs. Here the distribution
of crs is decided by setup algorithm in each mode, i.e., when running in messy mode
(i.e., D = SetupMessy(1n)), FDCRS = Fmes

CRS; When running in decryption mode (i.e., D =
SetupDec(1n)), FDCRS = Fdec

CRS.

FDCRS

qscrs

crs

qrcrs

crs

CRSD(qscrs, qrcrs) = (crs, crs)
qscrs = (sid,S,R)
qrcrs = (sid,S,R)
crs ← SetupMessy(1n)/SetupDec(1n)

Figure 3. CRS functionality FDCRS

As shown in Figure 4, dmmode is described by the notion of nodes and channels, where
S, R and FDCRS are represented by three nodes with several input and output channels.
It is easy to show the correctness of the protocol. With combining the equations of FDCRS,
Sender and Receiver programs form a real system Real(m2, σ) = m which is perfectly
equivalent to the defining equation m = m2[σ] of the ideal functionality FOT, while FOT

implies an ideal system Ideal(m2, σ) = m2[σ].
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FDCRS

qscrs
crs

qrcrs
crs

S
m2

y2

Rpk

σ

m

Sender(m2, crs, pk) = (qscrs, y2)
qscrs = (sid,S,R)
y0 ← LWEEnc((A,p = pk + v0),m2[0])
y1 ← LWEEnc((A,p = pk + v1),m2[1])
y2 = 〈y0, y1〉

Receiver(crs, y2, σ) = (qrcrs, pk,m)
qrcrs = (sid,S,R)
pk ← KeyGen(crs, σ)
m = LWEDec(sk = s, y2[σ]).

Figure 4. Equational description of dmmode

4.2. Equational security regarding to the traditional OT functionality FOT.
Now we analyze the security of dmmode in the equational framework. The security of
dmmode in the UC framework requires that for any adversary Adv, there always exists an
efficient simulator program Sim such that for any Env, it cannot distinguish the real system
(the execution of dmmode with Adv) from the ideal system (the execution of FOT with Sim)
with overwhelming advantage. Here this environment Env connects to all input and output
channels of the execution system. In addition, we let Env produce one additional output
t ∈ S. The distinguishing advantage of the environment Env is defined by

ADV(Env) = |Pr{Env[Real] = >} − Pr{Env[Ideal] = >}|.

When the sender is corrupted. In this attack scenario, since the sender is corrupted
by the adversary, the real system is obtained by removing the Sender program from
Figure 4. As shown in Figure 5(a), the real system is represented by RealS(qscrs, y2, σ) =
(crs, pk,m). The corresponding ideal system IdealS(qscrs, y2, σ) = (crs, pk,m) is described
as shown in Figure 5(b). The security in this case requires that two execution systems
are indistinguishable for any Env, where Env connects all input and output channels of
these two systems, it is denoted by Env(crs, pk,m) = (qscrs, y2, σ, t).

FDCRS

qscrs
crs

qrcrs
crs

Rpk

y2

σ

m

(a) The real system

SimS

qscrs

crs

pk

y2

FOT

m2

σ

m

(b) The ideal system

Figure 5. When the sender is corrupted (with respect to FOT)

Now we define two distinguishing environments Env0 and Env1, and show that for any
simulator SimS, at least one of these two environments can distinguish the real and ideal
systems with non-negligible advantage.
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• Env0(crs, pk,m) = (qscrs, y2, σ, t) sets qscrs = >, y2 = ⊥, and σ = ⊥, and outputs
t = (pk > ⊥).
• Env1(crs, pk,m) = (qscrs, y2, σ, t) sets qscrs = >, y2 = ⊥, and σ ∈ {0, 1}, and outputs
t = (pk > ⊥).

The only difference between Env0 and Env1 is the value of σ. According to the receiver
program Receiver, we can see that pk > ⊥ if and only if σ > ⊥ in the real system.
Thus, we have Pr{Env0[RealS] = >} = 0 and Pr{Env1[RealS] = >} = 1. In the ideal
system, since the output value t is independent of σ when interacting with IdealS, we
have Pr{Env0[IdealS] = >} = Pr{Env1[IdealS] = >}, which is denoted by p. Thus, these
two environments have advantages ADV(Env0) = p and ADV(Env1) = 1− p, respectively.
Therefore, either Env0 or Env1 has distinguishing advantage at least 1/2.

4.3. Equational security regarding to a revised OT functionality F ′OT. Based on
the above analysis, we know that the protocol dmmode is not secure when the sender is
corrupted since the environment can distinguish by setting σ > ⊥ and observing pk > ⊥.
This is the only weakness, i.e., a timing bug, in the current corruption. With this concern,
we can modify the traditional OT functionality FOT into a revised OT functionality which
will additionally output a signal bit a = (σ > ⊥) to the sender. The signal a ∈ S only
leaks the information that whether σ has been transmitted yet or not without revealing
the content of σ. We denote this revised OT functionality as F ′OT, see Figure 6.

F ′OT

m2

a

σ

m

OT′(m2, σ) = (a,m)
m = m2[σ]
a = (σ > ⊥)

Figure 6. A revised OT functionality F ′OT

When the sender is corrupted. Due to this revised OT functionality, we accordingly
modify the OT protocol dmmode. Therefore, when the sender is corrupted, the real and
ideal execution systems are described as shown in Figure 7.

FDCRS

qscrs
crs

qrcrs
crs

Rpk

y2

σ

m

(a) The real system

SimS

qscrs

crs

pk

y2

F ′OT

m2

a

σ

m

(b) The ideal system

Figure 7. When the sender is corrupted (with respect to F ′OT)

Here the security against corrupted sender with respect to F ′OT can be proved by the
following simulator SimS, which takes the signal a = (σ > ⊥) as an additional input.
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SimS(qscrs, y2, a) = (crs, pk,m2)
(crs, τ) ← SetupDec(1n)

crs = (A,v0,v1)
τ = (w, s0, s1)
pk ← a!w

qscrs = (sid,S,R)
m2[0] = LWEDec(sk = s0, y2[0])
m2[1] = LWEDec(sk = s1, y2[1])
m2 = 〈m2[0],m2[1]〉

When the receiver is corrupted. Now we have to consider the security of dmmode

when the receiver is corrupted. However, in order to match the case that F ′OT leaks a
signal a to the sender, we need to modify the sender program in the real system. The
only possible way for this goal is that we let the sender produce an additional output
a = (pk > ⊥) since the sender only receives one message pk which is the dependent of σ
from the receiver. Therefore, the current real and ideal systems are shown in Figure 8.

FDCRS

qscrs
crs

qrcrs
crs

S′

m2

a
pk

y2

(a) The real system

SimR

qrcrs

crs

pk

y2

F ′OT

m2

a

σ

m

(b) The ideal system

Figure 8. When the receiver is corrupted (with respect to F ′OT)

Note that the sender program is accordingly modified as Sender′, which is represented
by S′ in Figure 8 and described as the following equations:

Sender′(m2, crs, pk) = (a, qscrs, y2)
(qscrs, y2) = Sender(m2, crs, pk)

a = (pk > ⊥).

It is easy to verify the correctness of the revised OT protocol, where a real protocol
execution (Sender′|FDCRS|Receiver) : (m2, σ)→ (a,m) is equivalent to the ideal functional-
ity F ′OT : (m2, σ) → (a,m). Now we only need to show that the real and ideal systems
described in Figure 8 are indistinguishable for any Env(a, crs, y2) = (m2, qrcrs, pk), i.e.,
the security against the corrupted receiver. However, the result is negative and shown by
Proposition 4.1.

Proposition 4.1. For any simulator SimR, there is an environment Env(a, crs, y2) =
(m, qrcrs, pk, t) such that the distinguishing advantage ADV[Env] = |Pr{Env[RealR] = >}−
Pr{Env[IdealR] = >}| is not negligible.

Proof: We define two distinguishing environments Env1 and Env2, and show that for
any simulator SimR, at least one of these two environments can distinguish the real system
from ideal systems with non-negligible advantage.

• Env1(a, crs, y2) = (m2, qrcrs, pk, t) sets qrcrs = >, m2 = ⊥, σ ← {0, 1}, and pk > ⊥,
and outputs t = (a > ⊥).
• Env2(a, crs, y2) = (m2, qrcrs, pk, t) sets qrcrs = >, m2 ← Z×2

2 , σ ← {0, 1}, and
pk > ⊥, and outputs t = (m2[σ] = LWEDec(sk = s, y2[σ])).
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We let ui denote the input distribution of SimR (i.e., SimR(m, qrcrs, pk) = (σ, crs, y2))
when interacting with Envi for i = 1, 2. For any input distribution u = (m, qrcrs, pk), um

denotes the distribution of m. Similarly, we have uqrcrs , upk. In addition, we denote the
distribution of σ as SimR(u)σ.

When interacting with Env1, the real system sets a = >. For matching the case that the
ideal system is indistinguishable with the real system, SimR must output σ ∈ {0, 1} with
overwhelming probability. Let p1 = Pr(SimR(u1)σ > ⊥) and p2 = Pr(SimR(u2)σ > ⊥).
Then 1− p1 is negligible.

Note that um1 = ⊥ with probability 1 since m2 = ⊥. Env1 and Env2 both set pk based
on the same distribution, so u1 ≤ u2. Since SimR is monotone, we have p1 ≤ p2, and thus
1− p2 is also negligible.

For i = 1, 2, we let p0
i = Pr(SimR(ui)

σ = 0) and p1
i = Pr(SimR(ui)

σ = 1), where
p0

1 +p1
1 = p1 and p0

2 +p1
2 = p2. Since both {0} and {1} are open sets in B, by monotonicity

of SimR we have p0
1 ≤ p0

2 and p1
1 ≤ p1

2.
Now we consider the distinguishing advantage of Env2. It is easy to see that Pr{Env2[RealR] =
>} = 1. When interacting with the ideal system, let σ̃ denote SimR(u2)σ, then we have
Pr(Env2[IdealR = >]) = Pr(t = >|σ̃ = ⊥)Pr(σ̃ = ⊥)+Pr(t = >|σ̃ = σ)Pr(σ̃ = σ)+Pr(t =
>|σ̃ = 1− σ)Pr(σ̃ = 1− σ) where t = (m2[σ] = LWEDec(s, y2[σ])).

We can deduce that p1−σ
1 is close to 1/2. For this claim, we fix σ and consider the case

when σ̃ = 1 − σ. By definition of F ′OT, um1 = m2[σ̃], and SimR cannot learn m2[σ]. In
addition, since m2[σ] is randomly selected from Z2, SimR cannot do better than randomly
guessing and outputting a ciphertext c2[d] of it. Therefore, we have Pr(t = >|σ̃ = 1−σ) ≤
1/2. Since p1−σ

1 ≤ p1−σ
2 = p2 − pσ2 , we have pσ2 ≤ p2 − p1−σ

1 . Therefore, we can deduce the
following inequations:

Pr(Env2[IdealR = >])

= Pr(t = >|σ̃ = ⊥)Pr(σ̃ = ⊥) + Pr(t = >|σ̃ = σ)Pr(σ̃ = σ)

+Pr(t = >|σ̃ = 1− σ)Pr(σ̃ = 1− σ)

≤ (1− p2) + Pr(t = >|σ̃ = σ)Pr(σ̃ = σ) + 1/2

≤ (1− p2) + pσ2 + 1/2

= 1− (p2 − pσ2 ) + 1/2

≤ 1− p1−σ
1 + 1/2

If we require |Pr(Env2[RealR] = >) − Pr(Env2[IdealR] = >)| = |1 − Pr(Env2[IdealR] =
>)| ≤ |p1−σ

1 − 1/2| to be negligible, then p1−σ
1 should be close to 1/2. This leads to a

contradiction in Env1, i.e., SimR cannot output σ̃ = σ with overwhelming probability.
This fact contradicts the nature of FindMessy which can find correct messy branch 1− σ
on the information of (crs, τ) with overwhelming probability. Therefore, it implies that
such a SimR is insufficient in Env2 such that Env2 can only distinguish between the real
and ideal systems with negligible advantage, or our assumption that Env1 can distinguish
IdealR from RealR with negligible advantage is not the case.

4.4. Equational security regarding to a weaker OT functionality F ′′OT. From the
above analysis, we know that when using traditional OT functionality FOT the security
under the corruption with the sender cannot be achieved. This is mainly due to the lack of
information a. Then we revised FOT as F ′OT which leaks a to the sender. However, in this
case, the security under the corruption with the receiver cannot be achieved. It implies
that we cannot build good simulators satisfying the security of dmmode when using neither
FOT nor F ′OT, mainly because that it is hard to emulate (either directly or indirectly) the
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signal bit a for simulator. Now we would like to see what if we modify F ′OT into a weaker
functionality F ′′OT (see Figure 9), where the acknowledge bit a = (σ > ⊥) is leaked to the
environment Env instead of seen by the sender in F ′OT.

F ′′OT

m2
σ

m

a

OT′′(m2, σ) = (a,m)
m = m2[σ]
a = σ!

Figure 9. A weaker OT functionality F ′′OT

Here we say F ′′OT is weaker than F ′OT since F ′OT can emulate F ′′OT by composing with an
“ideal agent” which relays m2 to F ′OT but releases a to Env, while F ′′OT is unable to emulate
F ′OT (a is given to Env, so the sender wont get it). When the ideal functionality leaks
some information to Env, this usually means that in the real world, the party responsible
for outputting that information is controlled by an adversary, and in the ideal world that
information is given to a simulator to emulate the adversary’s behavior. For the concrete
case of F ′′OT, when the sender/receiver is corrupted, a is given to SimS/SimR, which may
want to utilize a to decide when or what other information would be released to F ′′OT

and the environment Env. However, it is not necessary for SimS/SimR to emulate the
behaviour of a corrupted sender/receiver by taking advantage of this additional input.

By the definition of F ′′OT, we accordingly modify the protocol dmmode (see Figure.10).
Here we add an additional functionality Net between Sender and Receiver, which is re-
sponsible outputting a to the environment.

Now we analyse the security of dmmode with respect to F ′′OT. Note that the program
Net can be regarded as a part of the adversary, once one party is corrupted, we remove
the corresponding corrupted program together with Net functionality from the real system.

When the sender is corrupted. When the sender is corrupted, we remove Sender
program and Net from Figure 10, then the real system is (FDCRS|Receiver). We can see
that in the real system there is no interface of a any more, while in the ideal world, a
is given to SimS. It is clear to see that the current protocol description is the same as
the case shown in Figure 7, so the security can be achieved directly when the sender is
corrupted.

When the receiver is corrupted. When the receiver is corrupted, we remove Receiver
program and Net from Figure 10, then the real system is (Sender|FDCRS). The real and
ideal systems are described as shown in Figure 11. Unfortunately, even though we already
make use of a weaker OT functionality F ′′OT, the security under the corruption with the
receiver still cannot be achieved. This is shown by the following Proposition 4.2.

Proposition 4.2. For any simulator SimR, there is an environment Env(crs, y2) = (m2,
qrcrs, pk, t) such that the distinguishing advantage ADV[Env] = |Pr{Env[RealR] = >} −
Pr{Env[RealR] = >}| is not negligible.
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FDCRS

qscrs
crs

qrcrs
crs

S
m2

R

σ

m
Net

pk
y2

pk
y2

a

Sender(m2, crs, pk) = (qscrs, y2)
qscrs = (sid,S,R)
y0 ← LWEEnc((A,p = pk + v0),m2[0])
y1 ← LWEEnc((A,p = pk + v1),m2[1])
y2 = 〈y0, y1〉

Receiver(crs, y2, σ) = (qrcrs, pk,m)
qrcrs = (sid,S,R)
pk ← KeyGen(crs, σ)
m = LWEDec(sk = s, y2[σ]).

Net(pk, y2) = (pk, y2, a)
a = pk!

Figure 10. Equational description of modified dmmode
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σ
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(b) The ideal system

Figure 11. When the receiver is corrupted (with respect to F ′′OT)

Proof: We define three environments in the following and show that at least one of these
environments can distinguish the real system from the ideal system with non-negligible
advantage:

• Env1(crs, y2) = (m2, qrcrs, pk, t) sets qrcrs = >, m2 = ⊥, σ ← {0, 1}, and pk > ⊥,
and outputs t = (y2 > ⊥).
• Env2(crs, y2) = (m2, qrcrs, pk, t) sets qrcrs = >, m2 ← Z×2

2 , σ ← {0, 1}, and pk > ⊥,
and outputs t = (y2 > ⊥).
• Env3(crs, y2) = (m2, qrcrs, pk, t) sets qrcrs = >, m2 ← Z×2

2 , σ ← {0, 1}, and pk > ⊥,
and outputs t = (m2[σ] = LWEDec(sk = s, y2[σ])).

We note that Env3 is functionally equivalent to Env2 defined in the proof of Proposition
4.1, where Env2 in Proposition 4.1 does not make use of the input a.

Let pi represent the probability that Envi outputs t = > when interacting with IdealR,
for i = 1, 2, 3. When interacting with Env1, the Sender program sets y2 = ⊥, so p1 must
be negligible; When interacting with Env2, the Sender program sets y2 = ⊥, so 1−p2 must
be negligible. Any simulator SimR in IdealR takes the tuple (m, a, qrcrs, pk) as input, and
(σ, crs, y2) as output. Let ui denote the input distribution of SimR when interacting with
Envi for i = 1, 2, 3. It is clear that u1 ≤ u2 ≤ u3.
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Let pσ denote the probability that SimR cannot output σ in Env2, i.e., Pr(SimR(u2)σ =
⊥). We can see that both Env1 and Env2 set pk based on the same distribution. If
SimR(u2)σ = ⊥, we have SimR(u1)σ = ⊥ by the monotonicity of SimR. Then we have
ua1 = ua2 = ⊥ and um1 = um2 = ⊥, which imply that u1 = u2. Therefore, we can
deduce that pσ = Pr(SimR(u2)σ = ⊥) ≤ Pr(u1 = u2). However, we need to note that
Pr(SimR(u1)y2 = SimR(u2)y2) = Pr(u1 = u2). Therefore, for both p1 = Pr(SimR(u1)y2 >
⊥) and 1− p2 = Pr(SimR(u1)y2 = ⊥) to be negligible, pσ must be negligible.

Since u2 ≤ u3, we have 1 − pσ = Pr(SimR(u2)σ > ⊥) ≤ Pr(SimR(u3)σ > ⊥). When
interacting with Env3, SimR should output σ ∈ {0, 1} with overwhelming probability.
Now the current case will go back to that was shown in Proposition 4.1, where it leads to
a contradiction in Env1, i.e., SimR cannot output σ̃ = σ with overwhelming probability.
This fact contradicts the nature of FindMessy which can find correct messy branch 1−σ on
the information of (crs, τ) with overwhelming probability. Therefore, the above analysis
shows that even though we use a weaker OT functionality F ′′OT, the security under the
corruption with the receiver still cannot be obtained.

5. Conclusions. In this paper, we analyze the security of a lattice-based OT protocol [14]
in a novel framework, called equational security framework, which is a concise model
especially for specifying and analyzing protocols in fully asynchronous environments. We
found that when we keep using the notion of traditional OT functionality, we cannot
prove their claimed security of this lattice-based OT protocol in the equational security
framework. Therefore, we made twice modifications on OT functionality, but the result
is still negative.

However, we claim that our result cannot be viewed as a cryptanalysis of this lattice-
based OT protocol, since we do not point out any specific mistake in its original security
proof except for a timing bug. We still believe that this lattice-based OT protocol can
provide some meaningful form of security. One possibility is that the simulator constructed
in the proof cannot be expressed within this equational security framework. If it is indeed
the case, it would be very interesting to extend and upgrade the original equational
security framework properly so that it allows to formally analyze this lattice-based OT
protocol with respect to an appropriate security definition.
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