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Abstract. This paper proposes a compact Differential Evolution (namely cED) for op-
timizing the deployment Wireless Sensor Network (WSN). The optimal scheme for de-
ploying WSN should be a light and efficient algorithm because WSN limitations of size,
memory, battery power, and computation. The proposed cDE uses a probabilistic model
to generate candidate solutions for locating the promising area in search space. The
solution of the population-based algorithm is expressed its distributed probability and is
responding the order-one behavior for DE. So that cDE is a light and efficient tool that
is suitable for deploying WSN. Simulation results are compared with the original and
the other methods in the literature e.g. LEACH, LEACH-C, and HEED shows that the
proposed method is the better performance regarding residual energy, nodes alive, and
received items to save the energy of nodes.
Keywords: Compact differential evolution, Deployment Wireless sensor network, Op-
timization.

1. Introduction. Wireless sensor networks (WSN) is an emerging, promising technol-
ogy, and it is an essential infrastructure of Internet of Things (IoT) to collect relevant
information in the target environment [1][2]. The applications of WSN have widely ap-
plied in a variety of fields of industry, traffic control, healthcare, and home automation
[3][4]. However, the sensor nodes are limited on computation capability and storage ca-
pacity of computing unit, in communication range and radio quality of communication
unit, in sensing coverage and accuracy of sensing unit, and in the available energy of power
units [5]. Because the limited memory and the power constraints, WSNs fully functional
network must be maintained and stable by the good design system employment. The
problems arise from the insufficient memory of computational devices to store various
candidate solutions for optimization applications. The required solutions to a complex
optimization problem even though in limited hardware conditions have arisen from some
applications [6].

The compact algorithm is a promising answer to these challenges [7]. An efficient com-
promise is used to present solutions of search space for the advantages of population-based
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algorithms without requirements of storing actual populations of solutions. Compact al-
gorithm simulates the behavior of population-based algorithms by employing the replace-
ment a population of solutions with its probabilistic representation [8]. The representation
of candidate solutions is considered based on learning and probabilistic sampling models.
A probabilistic model is built for the selected solutions. New solutions are generated by
sampling the developed probabilistic model. The replacement strategy is used to incor-
porate new solutions into the virtual population. In the compact algorithms, the number
of parameters stored in the memory is smaller than their corresponding algorithms of the
population-based structures and the requirement devices capacious memory is less for a
run. The scaling architecture and managing strategies are encouraged in designing and
operating the extensive network with energy constrained and without recharged battery
nodes. Therefore, optimal deployment WSN becomes an important factor for maintain-
ing the stable lifetime of sensors. Clustering has proven to be an effective approach for
organizing the network into a connected hierarchy to balance the load and prolong the net-
work lifetime [9]. Clustering in WSNs involves grouping nodes into clusters and selecting
a cluster head (CH). Thus, the collection of cluster heads in the system forms a connected
dominating set. The most appropriate in the design and deployment and moderately
relevant in clustering of the sensor network is the applied intelligence methods.

Differential evolution (DE)[10] is an intelligent algorithm that is a modern and powerful
evolutionary optimizer for the continuous parameter spaces in recently. It also is an
effective population-based intelligent optimization algorithm. The advantages of DE are
as follows [11]. It is a straightforward algorithm whose implementation requires only a
few lines of code in any standard programming language. DE needs very few control
parameters e.g. the scale factor, the crossover rate, and the population size. The feature
of DE makes it easy to use for the practitioners. Nevertheless, it has not considered
the saving variable memory, so the optimal performance will not get high in optimal
deployment problem in WSN. Moreover, challenges to the optimization applications have
arisen from the limited hardware resource, whose condition due to the cost, storage and
space restricted. Sensor nodes in WSN are an example of these limited hardware devices.

The objective of this paper is to get the optimal deployment WSN based on the saving
variable memory such as compact DE. In the restricted hardware devices due to cost and
space as WSN, each sensor node is connected to the only one closest cluster head after
being decided CHs. The clustering evaluation model is formulated based on minimizing
the average dissipated energy, and standard deviation of residual energy. The proposed
method performance is compared with the previous clustering design protocols of low-
energy adaptive clustering hierarchy (LEACH), LEACH-centralized (LEACH-C) [12] [13],
and hybrid energy-efficient distributed clustering (HEED)[14].

The rest of the organized paper is as follows. Section 2 describes the related work with
some theoretical formulations related to optimal deployment WSN and DE. Section 3
deals with compact DE for WSN in detail. The obtained simulation results from proposed
method and the compared performance discussed in Section 4. The conclusion provided
in Section 5.

2. Related Work.

2.1. Deployment Evaluation Model for WSN. Applied developers concern the var-
ious design issues of WSN. Energy awareness is a critical design issue in WSN. Clustering
is the most modern energy efficient technique and provides various advantages like en-
ergy efficiency, lifetime, scalability, and less delay; but it leads to hot spot problem. To
overcome this issue, unequally clustering is proposed as a proven clustering of a practical
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approach for organizing the network into a connected hierarchy to balance the load and
prolong the network lifetime In unequal clustering, the cluster size varies proportionally to
the distance to BS. The dense deployment and unattended nature of WSN make it quite
difficult to recharge node batteries. Therefore, energy efficiency is a major design goal in
these networks. Clustering has been shown to improve network lifetime, a primary metric
for evaluating the performance of a sensor network. Periodic re-clustering is necessary to
heal disconnected regions and distribute energy consumption across all nodes [9].
Et(i)dissiapte is the energy dissipated in the cluster head node i(i ∈ CH) or non-cluster

head node n(i ∈ non − CH) during a single round t where l is the number of bits in
each data message, d(ntoBS) is the distance from the cluster head node to the BS in Eq.
(1). Each cluster head dissipates energy receiving signals from the nodes, aggregating
the signals, and transmitting the aggregate signal to the base station BS which is a
Sink. Since the BS is far from the nodes, presumably the energy dissipation follows the
multi-path model (d4 power loss). Each non-cluster head node only needs to transmit
its data to the cluster head once during a round. Presumably the distance to the cluster
head is small, so the energy dissipation follows Friss free-space model (d2 power loss).
d(ntoCH) is distance from the node to the cluster head. mn is the actual number of
sensor nodes including cluster node that is connected to cluster head node CH. There
are the communication energy parameters which are the initial energy for the nodes Ej,
radio electronics dissipates for receiving and transmitting units Eelec, amplifier energy
parameters Emp and Efs, energy of data aggregation EDA, number of bits in each data
message l = 1024bit [13].

Et(i)dissipate =

{
(mn − 1) lEelec +mnlEDA + lEelec + lEmpd

4
i toBS,

lEelec + lEfsd
2
i to CH ,

i ∈ CH
i ∈ non− CH (1)

where i is node i; t is round t. The average dissipated energy for round t :

µ (Edissipate) =

(∑
i ∈N

Et(i)dissipate

)
/N (2)

The residual energy for the round (t+ 1) :

Et+1(i)residual = Et(i)residual − Et (i)dissipate (3)

The average residual energy for round t :

µ(Eresidual) =
∑
n∈N

Et(n)residual
N

(4)

The standard deviation of residual energy:

δ(Eresidual) = SQRT

(∑
n∈N

(µ(Eresidual)− E(i)residual)
2

N

)
(5)

The average dissipated energy,µ(Edissipate is minimized to save the energy using Eq. (2)
and standard deviation of residual energy, δ(Edissipate is minimized to balance the energy
load of nodes using Eqs. (3)-(5) in WSN. The average residual energy and number of
received items is optimized to prolong the lifetime of sensor networks by applying this
clustering evaluation model for measuring the performance.
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2.2. Differential Evolution Algorithm. Differential evolution (DE) [9] which use biology-
inspired operations e.g. crossover, mutation, and selection on a population to optimize
an objective function over iterations. The performed evolution of DE has four operations
included initialization, mutation, crossover, and selection.

Step1 Initialization: an initial population of N agents is generated randomly. Each
agent is a candidate solution containing D dimension of unknown parameters. The pop-
ulation evolves through successive generations

xj,i,0 = xj,min + randj (0, 1)× (xj,max − xj,min)
j = 1, 2, ..D, i = 1, 2, ..N ; randj (0, 1)˜U (0, 1)

(6)

where xj,i,0 is a vector indicates an agent in a population belonging to a current genera-
tion G. xi,G = [x1,i,G, x2,i,G, ..xD,i,D] , i = 1, ..N ;G = 1, ..Gmax . All agents in a population
are generated by enforcing the constraint of boundaries in which xmin ≤ xi,G ≤ xmax ,
where xmin is set to x1,min, ..xD,min and xmax is set to x1,max, ..xD,max.

Step2 Mutation: after the initialization, DE runs a mutation to explore the search
space. Some mutation strategies denoted as DE/x/y/z. It specifies the DE mutation
strategies by indicating the vector /x/ to be perturbed, the number /y/ of difference
vectors used to perturb /x/, and the type /z/ of crossover. In this paper, the original DE
is considered. A vector vi,G is computed by each vector xi,G

vi,G = xri1G + F × (xri2G + xri3G) (7)

where F ∈ (0, 2) is a factor of scaling variable to speed up convergence of the DE; the
indexes ri,1, ri,2andri,3 are mutually exclusive integers randomly selected from the interval
[1, N ].

Step 3 Crossover: a crossover operation recombines agents to a new solution. It can
make up increasing the diversity in the population but including successful solutions from
the previous generation. Usually, DE adopts exponential or binomial crossover schemes.
Here, the binomial crossover is used. It changes components that are chosen randomly
from {1, 2, ..D} and makes the number of parameters inherited from the mutant obey a
nearly binomial distribution. A new candidate solution is calculated as given.

uj,i,G =

{
vj,i,G if randj,i (0, 1) ≤ CR or j = jrand

xj,i,G otherwise
(8)

where uj,i,G is new a trial vector that xi,G assumed as [u1,i,G, u2,i,G, ...uD,i,G], with ui,G 6=
xi,G; CR is crossover rate with CR ∈ (0, 1) ; randj,i (0, 1)˜U (0, 1) ; jrand ∈ {1, 2, . . . , D}
The constant 0 < CR < 1 obviously affects the amount of crossover operations. Usually,
0.6 < CR < 1 is a good value for fast convergence.

Step 4 Selection: the population size constant is kept in consecutive generations. This
operation determines if the vector vi,G or the vector ui,Gsurvives in the next generation.
The selection operation works by the following relations.

xi,G+1 =

{
ui,G if f (ui,G) ≤ f (xi,G)
xi,G if f (ui,G) > f (xi,G)

(9)

where f(.) is the objective function to be optimized. If the value given by ui,G is
lower than the value of xi,G then ui,G replaces xi,Gin the next generation, otherwise xi,G
is kept. Therefore, the population can improve or be the same in optimization of the
the the f(.) but it never becomes worst. After selection, the algorithm goes back to
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iterate Step 2. Mutation, crossover, and selection are applied until a certain condition
i.e. maximization of the number of generations Gmax or minimization of the objective
function stops iterations.

3. Compact DE for Optimal Deployment WSN. Compact algorithms simulate the
behavior of population-based algorithms by sampling probabilistic models for a population
of solutions. An actual population of the solution is processed as a virtual population
by encoding its probabilistic representation. Compact DE is constructed based on the
framework of DE.

3.1. Compact Differential Evolution. The compact method process for evolution al-
gorithm is to simulate the behavior of DE with a much smaller occupied memory. The
population of solutions of the DE is described as a virtual population by encoding within
a data structure, namely Perturbation Vector (PV). PV is the probabilistic model of a
population of solutions. The compact DE maintains a real-valued prototype vector that
represents the probability of each component being expressed in a candidate solution. As
the DE progresses, agents fight with their competitors and their number in the population
can go up or down depending on whether the DE makes good or bad decisions. These
decisions are made implicitly by the DE when selection takes place. This is achieved
by maintaining a vector that specifies the probability of including each component in a
solution in new candidate solutions. Candidate solutions are probabilistically generated
from the vector, and the elements in the better solution are used to make small changes
to the probabilities in the vector.

The distribution of the individual in the hypothetical agents must be described by a
probability density function (PDF)[15]. PDF is defined on the normalized interval from
-1 to +1. The distribution of the each individual could be assumed as Gaussian PDF
with mean µ and standard deviation δ [7]. A minimization problem is considered in an
m-dimensional hyper-rectangle in Normalization of two truncated Gaussian curves. The
parameters assume without loss of generality, to be normalized so that each search interval
is arranged [-1,+1]. Therefore PV is a vector of m×2 matrix specifying the two parameters
of the PDF of each design variable of mean and standard deviation. It is defined as
µt, δt The µand δ values are a Gaussian (PDF) truncated within the interval [-1, +1],
respectively. The amplitude of the PDF is normalized in order to keep its area equal to 1.
The apex t is time steps. The initialization of the virtual population is generated for each
design variable i, µ1

i = 0 and δ1i = k where k is set as a large positive constant(e.g., k = 10).
The PDF height normalization is obtained approximately sufficient in well the uniform
distribution with a wide shape. The generating for a candidate individual is produced
from PV(µi, δi). The value of mean µ and standard deviation δ in PV are associated
equation of a truncated Gaussian PDF [16]. The codomain of CDF is arranged from 0 to
1.

Update step of the compact DE has a constant size of 1/n. While the DE needs to
store n bits for each gene position, the compact DE only needs to keep the proportion
of ones, a finite set of n + 1 numbers that can be stored with log2 (n+ 1) bits. While in
many problems device memory is not a concern, it can be easily imagined large problems
that need huge population sizes. In such cases, cutting down the memory requirement
from n to logn results in significant savings. In the compact DE, the size of the update
step is the thing that is analogous to the population size. The winner is indicated the
vector that scores a better tness value and loser is indicated the individual losing. The
update rule for each of its elements is µt

i, δ
t
i => µt+1

i , δt+1
i :
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µt+1
i = µt

i +
1

n
(winneri − loseri) (10)

where n is virtual population size. Regarding δvalues, the update rule of each element
is given by:

δt+1
i =SQRT(

(
δti)

2 +
(
µt
i

)2 − (µt+1
i

)2
+

1

n

(
winner2i − loser2i

))
(11)

In elitist compact schemes, at each moment of the optimization process, the solution
displaying the best performance is retained in a separate memory slot. If a new candidate
solution is computed, the tness based comparison between it and the elite is carried out.
cDE employs a probabilistic model to represent the solution set. Moreover, only an agent
is used in the whole algorithm. Thus, a modest memory space is well suited for the
embedded equipment with limited hardware.

Crossover in the DE is to combine bits and pieces from fit solutions. A repeated
application of most commonly used crossover operators eventually leads to a de-correlation
of the population’s agents. In this de-correlated state, the population is more compactly
represented as a probability vector. Thus the generation of individuals from this vector
can be seen as a shortcut to the eventual aim of crossover.

Selection gives more copies to better individuals. However, it does not always do
so for better agents. This is because agents are always evaluated within the context of
a larger individual. Suppose individual a competes with individual b. When these two
individuals compete, individual a will win. At the level of the gene, however, a decision
error is made on the second position. The role of the population is to buffer against a
finite number of such decision errors. Imagine the following selection scheme: pick two
individuals randomly from the population, and keep two copies of the better one. This
scheme is equivalent to a steady-state binary tournament selection. In a population of
size, the proportion of the winning alleles will increase by 1/n. An update rule increasing
a gene’s proportion by 1/n simulates a small step in the action of a DE with a population
of size n.

3.2. Solution Model of Deployment WSN. Because the limited memory and the
power constraints of sensor nodes, a prolonging the lifetime is a core demand in designing
and deploying sensor networks [17]. A crucial factor to extend the lifetime of WSNs is
to reduce the energy consumption of its entire network. Power consumption of WSNs is
affected directly by the clustering criterion problem. The clustering formation optimal
problem would be solved by the cDE application. Equation (2) is the average dissipated
energy, µ(Edissipate which should be minimized to save the energy. Equations (3)-(5) are
given the standard deviation of residual energy, δ(Eresidual) which should be minimized to
balance the energy load of nodes using in WSN. The average residual energy and number
of received items is optimized to prolong the lifetime of sensor networks by applying this
clustering evaluation model for measuring the performance.

3.3. Objective function. The heuristic clustering methods are employed by evaluating
the objective function. The objective function has also evaluated the performance of
wireless sensor network. This feature is composed of the average dissipated energy for
round t in Equation (2) and standard deviation of residual energy in Eq.(5). It is the
binary integer programming model with a binary decision variable xi = 1 of cluster head
and xi = 0 of the sensor for each node i in WSN. Each sensor node member is connected
to the only one closest cluster head after the cluster heads are decided. Eq. (1) is used
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to get Et(n)dissipate with cluster head node (i ∈ CH, xi = 1) or non-cluster head node
(i ∈ non− CH, xi = 0).

Minimize w1 × µ(Edissipate) + w2 × δ(Eresidual) (12)

where w1 and w2 are the weight of the average dissipated energy and standard deviation
of residual energy. w1 +w2 is set to 1. The residual energy of round 11 - 12 and dissipated
the energy of round 11 are shown in Table 1 for ten node network example. We can get the
µ(Edissipate = 0 : 000113, µ(Eresidual) = 0.49746, δ(Eresidual = 0 : 000157. The objective
value of Equation (9) is 0.000265 (with w1andw2 are set to 0.5) for 10 nodes network.

Table 1. Residual and dissipated energy of 11 -12 round of 10 node net-
work example

3.4. The Expressed Agents. A wireless sensor network is modeled a graphs G with n
nodes in the distributed randomly of desired areas. Table 2 shows the position of nodes
in network areas. Each node can communicate with others by using r transmission range.
Node i can receive the signal of node j if node i is in the transmission range r of node j.
Table III indicates the attribution of existing CHs in the sensor networks.

Table 2. A sample of expressing the positions of the sensor nodes

Table 3. The attribution of existing cluster head (CHs) if flag =1, set
Node is set to cluster head (CH), otherwise Node configured to member
node (SN)
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Figure 1. Comparison convergence for optimizing clustering formation in
WSNs of the proposed approach cDE with the other methods, e.g., the
original approach DE, cGA, and cPSO

3.5. Optimal clustering formation. The details steps of cDE for optimizing the clus-
tering formation are given below:
Step 1: initialized PV as a probabilistic model vector,
Step 2: generated agent a by PV; assigned Fmin to fitness(a),
Step 3: generated agent b by PV;
Step 4: competed a, b: winner, loser = compete(a,b),
Step 5: updated PV according to Eqs. (7) and (8).
Step 6: Accepted a new solution as Eq. (9) if the improved solution is ok (FnewlessthanFmin),
and assign the minimum function FmintoFnew

Step 7: if it is not meet the termination condition, go to step 3.
Step 8: output the best agent

4. Experimental Results. Simulation of the network with N-node (N = 100, 200..) are
distributed in a 2-Dimensional problem space [0:100,0:100]. There are N deployed nodes
in the target network for establishing a n x n grid space test platform, where nodes were
randomly distributed between (x = 0, y = 0) and (x = n, y = n) with the Sink with N
set to 100, 200, 300 and 400 node networks with Sink(0, 0) and Sink (Center of nodes).
The objective function is in Equation (9) repeated the generations of 2000 by different
random seeds with 25 runs. The initial values of communication energy parameters,
Ej = 0 : 5J,Eelec = 50nJbit, Emp = 0 : 0013pJ/bit/m4, Efs = 10pJ/bit/m2, EDA =
5nJ/bit/signal, l = 1024bit [13]. The final result obtained by taking the average of the
outcomes from all runs. The results are compared with that its running in the original DE,
compact genetic algorithm (cGA) [7], compact particle swarm optimization (cPSO)[18].

Figure 1 compares the proposed method of clustering formation base on cDE for WSN
with that applied in original DE, cGA, and cPSO. Apparently, the proposed method curve
is faster than those obtained in the other methods regarding convergence.

The test case with various grid sizes is considered as effective of solution search rate.
That mean the number of sensor nodes was increased or decreased accordingly to different
N values were verified to evaluate the effectiveness, timeliness, and reliability. Table 4
illustrates the cases of N from 100 to 400 are respectively. It means to increase the density
of node in a cluster; the chances for nodes become cluster head will be higher. The number
of cluster-heads is about 10.0% of the total number of nodes; the percentage may vary if
nodes are unevenly distributed. On average, the distance is reduced by 80% as compared
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Table 4. Variant N values were verified to evaluate the effectiveness of
convergence and solution search rate

Figure 2. Comparison of consumed average residual energy of the pro-
posed cDE for 100 nodes with LEACH, LEACH-C, HEED methods

with the distance of direct transmission. This percentage increases slightly as node count
increases because of the larger the number of nodes and denser node distribution results
in more efficient cluster optimization. As expected, in an application where nodes are
densely distributed, reducing the number of heads tends to increase the solution quality
significantly.

The other experiments, the performances of proposed method can be compared to
previous methods (LEACH, LEACH-C [12][13], and HEED [14]), as illustrated in Tables
5, 6, and 7, in which FND and LND are the first node die and last node die respectively.
The energy consumption in the network is focused on by the cluster heads. Figs. 2, 3,
and 4 compare the network average residual energy of performance measures for 100 node
networks of LEACH, LEACH-C, HEED and the proposed cDE methods with two cases
of Sinkin(0, 0) and in the center. Obviously, the average residual energy consumption of
proposed method of cDE optimized is better than those obtained from LEACH, LEACH-
C, HEED, for the 100 node network with Sink(0, 0) and from LEACH, LEACH-C for
Sink in center respectively.

Figure 3 shows the proposed cDE method performance for 200 node networks regarding
a number of nodes alive in comparison with those obtained from LEACH, LEACH-C,
HEED methods. Obviously, the figure of the proposed method is better than those
obtained from LEACH, LEACH-C in both cases of Sink (0, 0) and Sink in the center.

Fig.4 compares the network average number of received items for 200 node networks of
LEACH, LEACH-C, HEED and the proposed cDE methods. Obviously, the number of
received items of the proposed method outperforms the other methods.
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Table 5. Comparisons of performance using different methods for 100
node networks

Figure 3. Comparison the number of nodes alive for a configured network
with 200 node

Table 6. Comparisons of performance using different methods for 200
node networks

The clustering method is better if the round of the first node dies (FND), a round of last
node dies-(LND) and total data messages received are bigger than the others. Observed
from Tables 5, 6 and 7, the performance of proposed method is better than other methods.

5. Conclusions. In this paper, we proposed a solution to the optimization deployment
wireless sensor networks (WSN) with hierarchical clustering formation based on compact
Differential Evolution (cDE). To prolong life time network, the saving variable memory



An Optimal Deployment Wireless Sensor Network Based on Compact Differential Evolution 273

Table 7. Comparisons of performance using different methods for 400
node networks

Figure 4. Comparison the number of received data items for 400 node
networks of the draft cDE with LEACH, LEACH-C, HEED methods

such as in the cDE is targeted to deal with the optimization of limited hardware devices
like WSN. The objective function was proposed based on clustering evaluation model
with a binary decision variable to minimize the average dissipated energy and standard
deviation of residual energy of the limited hardware devices such as sensor nodes in WSN.
In this proposed method, we represented the population as a probability distribution over
the set of solutions and operationally equivalent to the order-one behavior of the DE.
Generated new candidate solutions by learning explicit probabilistic models of promising
solutions found so far and sampling the built models are used to optimize. The best
clustering solution with proposed objective function is to deal with saving and balancing
the energy consumption in WSN. Simulation results compared with the original, and the
other methods in the literature as LEACH, LEACH-C, and HEED show that the proposed
algorithm provides the effective way of using a limited memory. The proposed approach
also got the better performance regarding the average residual energy, the number of
nodes alive, and the number of received items to save the energy of nodes.
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