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Abstract. Many evolutionary algorithms have been proposed for large scale global opti-
mization, but there are still many difficulties when handling high-dimensional optimiza-
tion problems because of the search space exponential growth with dimensionality. In this
paper, we propose a hybrid algorithm with Cooperative Co-evolution (CC) framework to
tackle this kind of problems. First, a formula based grouping strategy is adopted to clas-
sify the interacting variables into the same subcomponent, and all of the subcomponents
are optimized with a Modified SaNSDE (M-SaNSDE) and Modified Solis Wet’s algorithm
(M-SW) iteratively in CC framework, and a new restart mechanism is proposed to help
the population jump out of the local converge. We design a balance between exploration
of M-SaNSDE to guide the population evolution direction and explorative of M-SW to
optimize the individuals in the population. Experiment was carried out using a bench-
mark designed for large scale global optimization, showing that our algorithm obtains
good results in most difficult functions compared with reference algorithms.
Keywords: Large scale global optimization, Cooperative Co-evolution, Hybrid algo-
rithm, Formula based grouping

1. Introduction. Continuous optimization is an important research field because many
real-world problems from different domains (engineering, economics, etc.) can be trans-
formed as the optimization of a continuous functions. Optimization problems with a large
number of variables are often referred as large scale optimization problems. Many Evolu-
tionary Algorithms (EAs) have been proposed for this type of optimization problems, and
they can get accurate solutions in complex problems without specific information about
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them, but the performance of these algorithms deteriorate as the dimensionality of the
problems increases, commonly referred to as the curse of dimensionality [1].

In recent years, there are many new theoretical and computational contributions have
been proposed for solving large scale global optimization (LSGO), e.g., cooperative co-
evolut-ion (CC) [2–7], memetic algorithm [8–10], hybrid algorithms [11], decomposition
methods [12–14], etc. For LSGO problems, one intuitive approach is to adopt a divide-
and-conquer strategy. A typical kind of such approaches is cooperative co-evolution (CC)
proposed by Potter and De Jong [2], it divides a big problem into several smaller sub-
components, which referred to decision variables decomposition, each subcomponent is
optimized using a separate EA in round robin fashion. Despite its success in solving
many optimization problems, CC loses its efficiency when applied to problems which a
proportion of the decision variables have interaction among themselves. When these in-
teracting variables are decomposed into different subcomponents, the overall performance
of the algorithm would be a major decline. This challenge calls new techniques which are
capable of capturing the interacting variables and group them into one subcomponents.

In order to mitigate these problems, several effective grouping methods [7,12–14] have
been successively proposed. For example, Yang et al. proposed a random grouping
method [7] which group the decision variables into different subcomponents randomly, the
random grouping method increases the probability of two interacting variable allocated
into the same subcomponent, but if the interacting variables are more than three, it can
not group accurately. Mohammad and Li et al. proposed an automatic decomposition
strategy called differential grouping [13] which group the decision variable via variables’
difference, the experiments on CEC 2010 benchmark suite [15] have shown this grouping
strategy is efficient and accurate, but with more complex CEC 2013 benchmark suite [16],
this grouping strategy can not group the interacting decision variables into the same
subcomponent accurately.

Another important consideration that greatly affects the overall optimization perfor-
mance is the allocation of the available computational resources to various subcomponents.
In a classic CC, all subcomponents receive an equal share of the available computational
resources through the round-robin optimization of all subcomponents in each cycle. How-
ever, it has been shown that the round-robin strategy can waste a considerable amount
of the available resources on the imbalanced functions [16], which refers to the unequal
contribution of different subcomponents to the overall objective val. Omidvar et al [17]
have shown that in the presence of strong imbalance in the contribution of subcompo-
nents to the overall objective value, only a few subcomponents have dominant effect on
the overall improvement of the objective val, while making the contribution of the other
subcomponents negligible. In such situations, most of the efforts in the optimization of
the subcomponents with a lower contribution is wasted. To alleviate the imbalance issue,
Contribution-Based Co-operative Co-evolution(CBCC) [17] has been proposed in which
the subcomponents with a higher contribution are given a higher share of the available re-
sources. While the subcomponents’ contribution maybe unknown to the optimizer, CBCC
adopts rules to approximate these values and dynamically select the most contributing
subcomponents for the next round of optimization.

In this work we present a new hybrid evolutionary algorithm based on CC framework
for large scale global optimization. The main idea is to group the decision variables via
an accurate decomposition strategy—Formula Based Gro-uping strategy (FBG) [18, 19],
then evolve the subcomponents though modified SaNSDE [20] (M-SaNSDE) and modified
Solis and Wet’s local search method [21] (M-SW) in a round robin fashion, combining the
exploratory of the M-SaNSDE with the exploitative factor of the M-SW method. Our
proposal is characterized by several features:
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First, FBG strategy is adopted to group the decision variables into several subcom-
ponents, the FBG strategy costs lower computing resource and gets accurate grouping
result.

Second, a modified DE is proposed (M-SaNSDE) in order to avoid function evaluations
(FEs) cost without function value changed and guide the overall search direction.

Third, a modified LS method (M-SW) is proposed to optimize the selected individuals’
largest contribuation subcomponent exploitatively without care of premature converge.

Fourth, a balance between M-SaNSDE in guiding the search direction and M-SW
method in optimizing the individuals exploitatively is constructed in every evolving cycle.

Finally, a new restart mechanism is designed to help the population escape from local
converge.

The remainder of the paper is organized as follows: Section 2 describes the preliminaries
and background information; The proposed algorithm will be described in detail in Section
3; Section 4 demonstrates and analyzes the experimental results and finally Section 5
summarizes this paper.

2. Problem Statement and Preliminaries. We consider the following global opti-
mization problem: {

min f(x)
s.t l ≤ x ≤ u

where x = (x1, x2, · · · , xN) is a vector in RN , f(x) is the objective function, l =
(l1, l2, · · · , lN), and u = (u1, u2, · · · , uN) with xi ∈ [li, ui] for i = 1 ∼ N .

Definition 1: A function is separable if:

arg min
(x1,x2,x3,··· ,xn)

f(x1, x2, x3, · · · , xn)= (argmin
x1

f(x1, · · · ), · · · , argmin
xn

f(· · · , xn))

And its global optimum can be reached by successive line search along axes. If a certain
function is not separable, there must be interaction between at least two variables in the
decision vector. So if it is possible to find the global optimum of a function by optimizing
one dimension at a time regardless of the values taken by other dimensions, then the
function is said to be separable, otherwise, it is said to be non-separable.

2.1. Cooperative Co-evolution. Cooperative co-evolution (CC) is a framework to de-
compose a large-scale problem into a set of smaller sub-problems, then evolved each of
the sub-problems using a separate EA. The critical of CC can be summarized as follows:

1. Problem decomposition: decompose the high-dimensional problem into several
smaller subcomponents in which each subcomponent can be handled by a certain EA.

2. Subcomponent optimization: evolve each subcomponent separately using a Certain
EA.

3. Subcomponent combination: merge solutions of all subcomponents, which constitute
a solution of the original problem.

In the original implement of cooperative co-evolution, Potter and De Jong [4] incor-
porate CC with a genetic algorithm and decomposed an n-dimensional problem into n
1-D problem, and the problem only have a maximum of 30 dimensions. Liu et al. [22]
made the first attempt to solve the large-scale optimization problem using CC frame-
work, they adopted fast evolutionary programming with CC on benchmark problems up
to 1000 dimensions, but they handle the large scale problem without care about variable
interaction. Cooperative Particle Swarm Optimization (CPSO) [23] is the first attempt
to incorporate PSO with CC framework, but there are many parameters to be set in the
particle swarm optimization.
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2.2. Decomposition strategies. Cooperative Co-evolution is a good framework for
large scale global optimization, but there are also many problems when using it. One
drawback of CC is its sensitive to the choice of decomposition strategy, the performance
of CC changing dramatically when incorporated with different grouping strategy.

The goal of the grouping strategy is to divide the decision variables with variable inter-
action into the same subcomponent, and the decision variables without interaction are not
grouped into the same subcomponent. With the large scale global optimization get more
and more attention, there are many new grouping strategies have been proposed, such as
route distance grouping [5], MLCC [6], random grouping [7], variable interaction learning
grouping (CCVIL [12]), differential grouping [13], delta grouping [14], and so on. How-
ever, most of these grouping strategies divide a n-dimension problem into k s-dimension
sub-problems with no care about variable interaction and can not group the decision vari-
ables accurately. For example, random grouping decomposes a problem into k s-dimension
sub-problem, and it randomly allocates the decision variables to subcomponents in every
co-evolutionary cycle. It was shown mathematically that with the random grouping the
possibility of placing two interacting variables in the same subcomponent for several cycle
is reasonably high, but the possibility drops dramatically when the interacting variables
is more than three. In MLCC, instead of using a fixed number for s, a set of possible s
values is provided to the algorithm. During the course of evolution, the performance of
each subcomponent size is measured and the value with better performance are given a
higher possibility of being selected in the next co-evolution cycle. This technique partially
solves the problem with a set of s value, but it is hard for user to choose s value in practice,
and it groups the decision variables with no care about the variable interaction.

To overcome the shortcomings of ignoring the decision variables interaction and fixed
subcomponent size, the formula based grouping (FBG) strategy [18,19] is adopted. FBG
can identify the interacting variables accurately and decompose them into the same sub-
component. The FBG framework works as follows:

Firstly, build a set N-sep whose elements result in variables interaction;
Secondly, search the variables in the operations in the N-sep in the expression of the

objective function;
Finally, group the interaction variables into the same subcomponent.
Note that an expression of a general objective function consists of finite number of four

arithmetic operations ’+’, ’−’, ’×’, ’÷’ and composite operations elementary functions.
And the N-sep is constructed as follows:
(1) Variable separability in four arithmetic operations. Variables connected by ’+’ and
’−’ are separable while non-separable by ’×’, ’÷’;
(2) Composite of basic elementary function

g(h(x)), x = (x1, x2, x3, · · · , xn)

when g(x) is monotonous and variables in h(x) is separable, variable in g(h(x)) still
separable, otherwise non-separable.
(3) Composite functions combined with the four arithmetic operators. a) ’+’ and ’−’ won’t
change the separability of the composite functions. b) For ’×’ and ’÷’, the variables in
the composite functions are all non-separable except that both composite functions are
exponential functions.

2.3. Self-adaptive Differential Evolution with Neighborhood Search. Individual
in differential evolution (DE) are represent by D-dimensional vector xi,∀i ∈ {1, · · · , NP},
where D is the number of decision variables and NP is the population size. According
to [24], the classical DE can be summarized as follows:
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Algorithm 1 FBG algorithm

1. Construct N-sep according to the above rules;
2. Match the function expression with N-sep elements, put the interacting variables

into the same subcomponent;
3. Repeat step 2 until all variables linked by elements of N-sep are checked;
4. The variables which are not grouped in step 2 and 3 are grouped into a separate

subcomponent;

1)Mutation:

vi = xi1 + F · (xi2 − xi3)
Where i1, i2, i3 ∈ [1, NP ] are random and mutually different integer. Scale factor F > 0
is real constant and is often set to 0.5.
2)Crossover:

ui(j) =

{
ui , if uj(0, 1) ≤ CR or j == jrand
xi , otherwise

With uj(0, 1) stands for the uniform random number between 0 and 1,and jrand is a
randomly chosen index to ensure that the trial vector ui does not duplicate xi ,CR ∈ (0, 1)
is the crossover rate, which is often set to 0.9.
3)Selection:

xi
′
=

{
ui , if f(ui) ≤ f(xi)
xi , otherwise

The selection operation will choose the individual with better function value as the
offspring from current xi and ui.

There are several schemas of DE based on different mutation strategies:

vi = xi1 + F · (xi2 − xi3) (1)

vi = xbest + F · (xi1 − xi2) (2)

vi = xi1 + F · (xbest − xi) + F · (xi1 − xi2) (3)

vi = xbest + F · (xi1 − xi2) + F · (xi3 − xi4) (4)

vi = xi1 + F · (xi2 − xi3) + F · (xi4 − xi5) (5)

Where xbest represents the individual has the best function value. xi1 ,xi2 ,xi3 ,xi4 is
randomly selected from the population and different from each other. Schemas (1) and
(3), with notations as DE/rand/1 and DE/current to best/2, are the most used in practice
due to their good performance.

Self-adaptive Differential Evolution (SaDE) [25] is a variant of DE which pays special
attention to self-adaption between different mutation strategies as well as the self-adaption
on crossover rate CR, while NSDE [26] intends to mix search biases of different neighbor-
hood search operators though parameter F , but with no self-adaption for the parameters.

SaNSDE is an integration of Self-adaptive Differential Evolution (SaDE) and NSDE
works as follows:

1)Mutation strategies self-adaption:

D =

{
Eq.(1) , if uj(0, 1) < p
Eq.(3) , otherwise

Where p is set to a constant initially, After evaluation of all offspring, the number of
offspring generated by Eq.(1) and Eq.(3) successfully entering the next generation are
recorded as ns1 and ns2 , while discarded are recorded as nf1 and nf2 . And those two
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pairs of number are accumulated within a specified number of generation called “learning
period”, and probability is updated as:

p =
ns1 · (ns2 + nf2)

ns2 · (ns1 + nf1) + ns1 · (ns2 + nf2)

2)Crossover with Scale factor F self-adaption:

Fi =

{
Ni(0.5, 0.3) , if ui(0, 1) ≤ fp
δi , otherwise

Where fp will be self-adapted as p done in SaDE.
3)Selection is the same with SaDE:

xi
′
=

{
ui , if f(ui) ≤ f(xi)
xi , otherwise

3. Proposed Algorithm.

3.1. Modified SaNSDE. SaNSDE is a good evolution algorithm for large scale problem,
which can be applied to many different problems and get good results because of its
parameter self-adaptive. But there are also some aspects can be improved. For example,
we always use a fixed number of function evaluations to evolve the problem in a cycle,
when the problem gets trapped into local converge, the function evaluations will be wasted
in the following evolving process, we improve the algorithm from this aspect so that
the function evaluation can be fully used in the evolving process. We set a threshold
epsilon which can be adjusted dynamically according to the bestval obtained by the
individual optimized with the best function value, and the epsilon is one in a thousand
of bestval. If the difference between bestval and prevbest is continuous less than epsilon
for a fixed times, we assume that the the computational resources will be wasted in
the next optimization, and the optimization trapped into the local convergence, this
Sub-dimension group optimization will broken and continue to next sub-dimension group
optimization, thus the saved computational resources will be used to make more effects in
the optimization.This analyzing mechanism will save the function evaluation from being
wasted in the optimization with no function value change. The algorithm framework is
shown in Algorithm 2, and the meaning of the notations used in the Algorithm 2 is as
follows:
itermax: the total number of function evaluations for one optimization cycle;
bestval: is the current global optimum of the population;
epsilon: the threshold dynamic set according to bestval;
breakdata: the threshold to break the optimization process;

3.2. Modified Solis Wet’s algorithm. Traditional Solis Wet’s algorithm is a ran-
domised hill-climber with an adaptive step size, it explores all decision variables at the
same time and modifies the current solutions by a difference vector randomly generated
by Gaussian distribution and a fixed bias vector, it has good effect when handling non-
separable functions (usually the dimension of the problem is low). But when dealing with
high dimensional problem, for example, the dimension of the problem is 1000, Solis Wet’s
algorithm performance is poor and will cost many function evaluations without obvious
effect.

In order to improve the performance of Solis and Wet’s Algorithm for high dimensional
problem, a new biasvector is added, the traditional Solis and Wet’s algorithm uses a fixed
bias vector to increase the possibility of finding a better result, but the high dimensional
problem’s search space is so big that a fixed difference vector is not suitable for different



A New Cooperative Co-evolution Algorithm Based on Variable Grouping and Local Search 345

Algorithm 2 Modified SaNSDE algorithm

while numEval < itermax do
prevbest = bestval;
Mutation;
Crossover;
Selection;
Set epsilon = p ∗ bestval;
if prevbest− bestval < epsilon then
count = count+ 1, cocount = cocount+ 1;

else
count = 0, cocount = cocount+ 1;

end if
if count > breakdata then

break;
end if

end while
if count > breakdata then
usedFEs = cocount;

else
usedFEs = itermax;

end if

function landscape, so a dramatic biasvector is incorporated into the algorithm to diversity
the descent direction, which can be more effective when the search space is big. The
bias is generated in this way: sort the population based on the function value, and an
individual randomly selected from %p best individuals [27] in the population called p1,
another individual randomly selected from the rest population called p2, biasvector is
the difference vector of p1 and p2, and p1, p2 will selected every cycle, and more search
direction will be exploited to find the better objective val. Because of the high dimension,
we divide the decision variables with FBG into several subcomponents, after optimization
with M-SaNSDE, the first three subcomponents with the biggest improvement would be
explored by modified Solis and Wet’s algorithm (M-SW) every cycle successively, the
function evaluations can be fully used, and M-SW explores part of the decision variables,
which can avoid solving the high dimensionality problem directly as well as using the
exploration property of the algorithm, and also becomes more useful to handle dimension
reduction problem. The algorithm framework is shown in Algorithm 3, and the meaning
of the notations used in the Algorithm 3 is as follows:
biasvector: the bias generated by two individuals selected from population;
subpop index: the sub-dimensions selected to optimize;

3.3. Restart Mechanism. An interesting element in our proposal is restart mechanism,
when the problem is very complex and there are many local optimums, the optimization
procedure usually get trapped into local converge, which will cost many function eval-
uations with no effect. How to jump out of the local optimum is crucial, we design a
new restart mechanism to decide whether current solution is struck in a local optimum,
we compare the best function value bestval obtained from the current optimization and
previous prevbest, if the difference of these two value is less than a threshold obtained
from bestval in continuous optimization stage, we assume that current population get
trapped into local convergence, we will choose two individuals and spread points around
them with uniform distribution to generate a new population. The restart mechanism
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Algorithm 3 Modified Solis and Wet’s algorithm

Initialize numSuccess,numFailed,numEval to 0;
while numEval < maxEval do
diff(subpop index) = randomGaussian(0,rho);
generate p1,p2 from population;
biasvector = rand() ∗ (p1− p2);
sol′ = sol + biasvector + diff ;
if sol′ better than sol then
numSuccess = numSuccess+ 1, numFailed = 0;

else
sol′ = sol − biasvector − diff ;
if sol′ better than sol then

numSuccess = numSuccess + 1, numFailed = 0;

else
numFailed = numFailed + 1, numSuccess = 0;

end if
end if
if numSuccess > 5 then

rho =2*rho,numSuccess = 0;
else

rho =rho/2,numFailed = 0;
end if
numEval = numEval + 1;

end while

helps the algorithm to jump out of the local optimum. The restart mechanism is shown
in Algorithm 4, and the meaning of the notations used in the Algorithm 4 is as follows:
MAXVAL: the total function evaluation;
breakdata1: the threshold for testing whether the population get trapped into local con-
vergence;

3.4. Balance between M-SaNSDE and M-SW. We use M-SaNSDE to optimize all of
the dimension subcomponents and record the improvement value of each subcomponents,
after one cycle of M-SaNSDE optimization, we can guide the overall search direction, with
the record of improvement, the largest three contribution subcomponents is found and
more computational resource can be allocated for to optimize these subcomponents with
M-SW to exploit the search landscape. Because of the problem is imbalance, the larger
contribution, the more fine optimization with M-SW can be put. The exploratory of the
M-SaNSDE can be used for the exploitative factor of the M-SW.

3.5. CC-FBG-DELS. In this paper we proposed a hybrid evolution algorithm with CC
framework (CC-FBG-DELS).

Firstly, FBG grouping strategy is used to group a complex large-scale problem’s decision
variables into several accurate subcomponents with no function evaluation. Secondly, (M-
SaNSDE) is used to guide the population evolutionary direction, (M-SW) is used to exploit
the individuals with two individuals’ top 3 largest improvement subcomponents after M-
SaNSDE algorithm. Finally, if the population get trapped into local converge, the restart
mechanism would be used to help the population jump out of the local optimum. In CC-
FBG-DELS, we use M-SaNSDE to optimize the whole population and guide the evolution
direction, and M-SW is used with only two individuals’ top 3 sub-dimension group with
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Algorithm 4 Restart Mechanism

while usedFEs < MAXVAL do
tempbestval = bestval;
optimization procedure;
if prevbest− bestval < epsilon then
count = count+ 1;

else
count = 0;

end if
if count > breakdata1 then

break;
end if
if count > breakdata then

sort population based on function value;
select two individuals from population, one from the top half of the population ac-
cording to function value , and the other from last half of the population according
to function value
use uniform distribution to spread point around them;
put the best individual into the population;

end if
end while

largest improvement, so that we can make precise search against the important part of
the search landscape, the exploratory of the M-SaNSDE and explorative of M-SW can
be fully used in the optimization procedure. The CC-FBG-DELS algorithm framework is
shown in Algorithm 5:

Algorithm 5 CC-FBG-DELS

1: Use FBG-grouping strategy to group the dimensions into different group;
2: Initialize the population;
3: Evaluate the population;
4: while usedFEs < MAXV AL do
5: Use M-SaNSDE to optimize each sub-dimension group and record their improve-

ment values compared with the latest optimization;
6: Select two individuals, one is the individual with best function value, another is the

randomly selected from the rest of the population;
7: Optimize the two individuals’ top three sub-dimension groups with the largest im-

provement values recorded in the Cooperative Co-evolution process by M-SW with
dynamic threshold, and judge if the sub-dimension group need one more cycle to
optimize. if so, optimize the same sub-dimension group another cycle;

8: Use Restart Mechanism to decide whether the population need update;
9: end while

4. Numerical Experiment.

4.1. Experimental Setup. We evaluate the performance of the proposed CC-FBG-
DELS algorithm on the test suite provided by CEC’s 2013 special session on Large Scale
Global Optimization [16]. This benchmark is composed by 15 continuous optimization
functions for dimension 1000 and with different degrees of separability, from completely
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Table 1. Parameter values used in CC-FBG-DELS

Parameter Description Value
popsize population size 60

FEs total function evaluation 3.0e+6
FE-M-SW evaluation for each M-SW run 150

FE-M-SaNSDE evaluation for each M-SaNSDE run 100

separable function to fully non-separable functions:
Fully separable function: f1 − f3
Partially separable functions: with a separable sub-component f4−f7 , with no separable
subcomponent f8 − f11
Overlapping functions: f12 − f14
Non-separable functions: f15
The parameters used in our proposal are indicated in Table 1.

4.2. Experimental Result on CEC Benchmark 2013. Table 2 shown the result ob-
tained from CC-FBG-DELS compared with other results obtained from the referenced
algorithms DECC-CG [7], MOS [28]. DECC-CG is the initial algorithm tested on Bench-
mark 2013 [16], it uses random grouping with CC framework. MOS is the current best
algorithm tested on Benchmark 2013 and get the best results on the whole, it uses many
different algorithms together to evolve the population without grouping strategy.

From table 2 we can observe that our algorithm can optimize the problem f1 nearly to
zero, but has no good results compared with MOS and DECC-CG in fully separable prob-
lems f2-f3. For partially separable problems f4 − f7, there is a separable subcomponent,
CC-FBG-DELS outperforms MOS and DECC-CG on 3 problems, especially for problem
f7, the optimization result nearly to zero, where MOS’s result is still on 1e+04 scale. For
problems f8−f11, there is no separable subcomponent, CC-FBG-DELS outperforms MOS
and DECC-CG on the other three problems, and as for f10, the above three algorithm
get the result almost the same. For overlapping problems f12 − f14, CC-FBG-DELS has
no particularly good result than MOS, but the results are still better than DECC-CG
except on f12. For non-separable problem f15, CC-FBG-DELS has better result than
MOS and DECC-CG. Overall, CC-FBG-DELS is better than MOS and DECC-CG when
handling partially separable and non-separable problems, and the ability to deal with
fully separable and overlapping problems needs to be improved.

5. Conclusions. In this work we proposed a new algorithm for large scale global op-
timization by using FBG grouping strategy to group the decision variables, and evolve
the population with M-SaNSDE and M-SW iteratively. We construct a balance between
the exploration of the M-SaNSDE to guide the population evolution direction and the
explorative of M-SW to optimize the individuals in the population. There are several
relevant issues to be addressed further in the future.

Firstly, our algorithm’s performance on overlapping problems performs unsatisfactorily,
which illustrates that we should do more research to make our algorithm more efficient
when handing different type of large scale problems. Secondly, the Benchmark we used in
experiment is not real problem, we should make our algorithm tested on the real problem
to show its practicability.
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Table 2. Comparison of the Results with Reference algorithms

f1 f2 f3 f4 f5

CC-FBG-DELS

Best 1.34E-24 1.02E+03 2.10E+01 2.02E+07 2.87E+06
Median 2.03E-22 1.19E+03 2.11E+01 3.74E+07 4.11E+06
Worst 1.18E-21 1.35E+03 2.11E+01 1.44E+07 6.13E+06
Mean 2.71E-22 1.19E+03 2.11E+01 4.67E+07 4.16E+06
Std 2.68E-22 9.07E+01 1.67E-02 2.68E+07 8.55E+05

DECC-DG

Best 1.75E-13 9.90E+02 2.63E-10 7.58E+09 7.28E+14
Median 2.00E-13 1.03E+03 2.85E-10 2.12E+10 7.28E+14
Worst 2.45E-13 1.07E+03 3.16E-10 6.99E+10 7.28E+14
Mean 2.03E-13 1.03E+03 2.87E-10 2.60E+10 7.28E+14
Std 1.78E-14 2.26E+01 1.38E-11 1.47E+10 1.51E+05

MOS

Best 0.00E+00 7.40E+02 8.20E-13 1.10E+08 5.25E+06
Median 0.00E+00 8.36E+02 9.10E-13 1.56E+08 6.79E+06
Worst 0.00E+00 9.28E+02 1.00E-12 5.22E+08 8.56E+06
Mean 0.00E+00 8.32E+02 9.17E-13 1.74E+08 6.94E+06
Std 0.00E+00 4.57E+01 5.23E-14 8.03E+07 9.03E+05

f6 f7 f8 f9 f10

CC-FBG-DELS

Best 1.04E+06 6.51E-01 1.22E+11 2.34E+08 9.07E+07
Median 1.06E+06 1.62E+00 1.78E+12 3.39E+08 9.42E+07
Worst 1.06E+06 5.66E+00 1.03E+13 4.38E+08 9.47E+07
Mean 1.06E+06 2.02E+00 2.84E+12 3.32E+08 9.39E+07
Std 5.09E+03 1.31E+00 2.78E+12 6.57E+07 1.02E+06

DECC-DG

Best 6.96E-08 1.96E+08 1.43E+14 2.20E+08 9.29E+04
Median 6.08E+04 4.27E+08 3.88E+14 4.17E+08 1.19E+07
Worst 1.10E+05 1.78E+09 7.75E+14 6.55E+08 1.73E+07
Mean 4.85E+04 6.07E+08 4.26E+14 4.27E+08 1.10E+07
Std 3.98E+04 4.09E+08 1.53E+14 9.89E+07 4.00E+06

MOS

Best 1.95E+01 3.49E+03 3.26E+12 2.63E+08 5.92E+02
Median 1.39E+05 1.62E+04 8.08E+12 3.87E+08 1.18E+06
Worst 2.31E+05 3.73E+04 1.32E+13 5.42E+08 1.23E+06
Mean 1.48E+05 1.62E+04 8.00E+12 3.83E+08 9.02E+05
Std 6.56E+04 9.29E+03 3.14E+12 6.42E+07 5.17E+05

f11 f12 f13 f14 f15

CC-FBG-DELS

Best 6.17E+05 2.58E+03 2.67E+08 1.03E+08 1.03E+06
Median 1.40E+06 2.94E+03 7.94E+08 3.14E+08 1.28E+06
Worst 2.99E+06 3.78E+03 1.74E+09 1.14E+10 1.79E+06
Mean 1.49E+06 3.00E+03 8.46E+08 1.31E+09 1.30E+06
Std 6.97E+05 2.93E+02 4.51E+08 2.65E+09 1.70E+06

DECC-DG

Best 4.68E+10 9.80E+02 2.09E+10 1.91E+11 4.63E+07
Median 1.60E+11 1.03E+03 3.36E+10 6.27E+11 6.01E+07
Worst 7.16E+11 1.20E+03 4.64E+10 1.04E+12 7.15E+07
Mean 2.46E+11 1.04E+03 3.42E+10 6.08E+11 6.05E+07
Std 2.03E+11 5.76E+01 6.41E+09 2.06E+11 6.45E+06

MOS

Best 2.06E+07 2.22E-01 1.52E+06 1.54E+07 2.03E+06
Median 4.48E+07 2.46E+02 3.30E+06 2.42E+07 2.38E+06
Worst 9.50E+07 1.17E+03 6.16E+06 4.46E+07 2.88E+06
Mean 5.22E+07 2.47E+02 3.40E+06 2.56E+07 2.35E+06
Std 2.10E+07 2.59E+02 1.08E+06 8.11E+06 1.98E+05
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