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ABSTRACT. Sparse unmizing of hyperspectral data plays an important role in hyperspec-

tral image analysis. It aims at estimating the fractional abundances of pure endmembers
based on the assumption that each mized pixel in the hyperspectral image can be expressed
in the form of linear combinations of a number of known and pure endmembers. The

wide availability of large spectral libraries has fostered the role of sparse regression tech-

niques in the task of characterizing mixed pizels in remotely sensed hyperspectral images.

Introducing weighted factors to penalize the nonzero coefficients in the unmizing solution

18 a recent main trend. In this paper, based on collaborative sparse unmixing, consider-

ing the iterative reweighted algorithm and spatial-spectral information, a spatial-spectral
reweighted collaborative sparse unmizing(S?RCSU ) has been utilized. The weighted factor
is introduced to promote the column sparsity of the fractional abundances in the sense

and the row sparsity along the abundance vector corresponding to each endmember at
the same time. FEzxperimental results on both simulated data sets and real hyperspec-

tral data sets demonstrate that the proposed method is an accurate and effective sparse

unmizing algorithm when compared with other advanced hyperspectral unmixing methods.

Keywords: Hyperspectral unmixing, Reweighted collaborative sparse regression, Spatial-
spectral,Spectral unmixing

1. Introduction. Hyperspectral imagery unmixing has become an essential procedure,
which decomposes a mixed pixel into a collection of constituent materials (called end-
members) and their relative proportions (called abundances). It aims at decomposing
pixels of a hyperspectral image into constituent spectra and their relative proportions.
Linear spectral mixing model and nonlinear spectral mixing model are two basic models
in hyperspectral unmixing which were used to analyze the mixed pixel problem[1]. The
linear model assumes that the spectral response of a pixel is given by a combination of
the endmembers present in the pixel. Due to its computational tractability and flexi-
bility, the linear mixture model has been widely applied for many different applications.
The linear model exhibits practical advantages such as easy to implement and flexible
to apply. However this model is barely true for the relatively low spatial resolution of
state-of-the-art imaging spectrometers.

In order to solve the problems related to the unavailability of pure pixels, sparse unmix-
ing which has gained much interest was developed[2]. It amounts to finding the optimal
subset of signatures from a very large spectral library that can best model each mixed
pixel. Because of the fact that there are typically only a few endmembers inside a pixel
compared with the large spectral library, the sparse unmixing algorithm via variable
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splitting and augmented Lagrangian (SUnSAL)[3] is the seminal work developed for this
purpose. The [; norm with convenient and efficient solution method is used in the sparse
unmixing model in SUnSAL algorithm. But /; norm is not sparser enough, Xu proposed
the [1/, regularization [4, 5, 6] instead of the [; regularizer for finding an accurate and
effective solution.

Without considering spatial structure information of hyperspectral data, the high cor-
relation of spectral libraries imposes some limitations to the performance of SUnSAL.
Aiming at exploiting spatial contextual information, under the sparse regression frame-
work some methods|7, 8, 9] were introduced, especially SUnSAL-TV[10]. The experiments
of SUnSAL-TV algorithm indicate the potential of including spatial information on sparse
unmixing for improved characterization of mixed pixels in hyperspectral imagery. The
collaborative sparse unmixing algorithm via variable splitting and augmented Lagrangian
(CLSUnSAL)[11] was proposed under the global assumption that all pixels in a hyper-
spectral image share the same active set of endmembers. Comparing with the SUnSAL
algorithm, CLSUnSAL algorithm under the global assumption can highly improve the
sparse solution that the abundance fractions corresponding to the fake endmembers are
forced to be zero. Nevertheless, a main limiation of CLSUnSAL is endermembers tend to
appear localized in spatially homogeneous areas intead of distributed over the full image.
For settling this problem, we proposed the local collaborative sparse unmixing (LCSU)[12]
which assumes that neighboring pixels share the same active set of endmembers.

Due to the appreciable performance by considering spatial structure information in hy-
perspectral data[13], we propose a new hyperspectral unmixing strategy of spatial-spectral
reweighted collaborative sparse unmixing which is called S?’RCSU. The proposed method
aims at incorporating spatial-spectral information and seeking the efficient sparser regu-
larizer by introducing a weighted factor into collaborative sparse unmixing which promotes
the column sparsity of the fractional abundances in the sense and the row sparsity along
the abundance vector corresponding to each endmember at the same time. Comparing
to the SUnSAL and CLSUnSAL algorithms, the experimental results demonstrate that
the proposed S?RCSU algorithm can achieve a better hyperspectral unmixing accuracy.
The rest of this letter is organized as follows. Section 2 is the introduction of classical
collaborative sparse unmixing algorithm. In Section 3 the proposed S?RCSU algorithm is
described in detail. Section 4 presents the experimental results. Conclusions are drawn
in Section 5.

2. Collaborative Sparse Unmixing Algorithm. As assuming the spectral endmem-
bers as a known large spectral library , the sparse unmixing model can be formulated as
follows:

Y =AX + N (1)

where Y is an L x 1 column vector of a mixed pixel, and mixed pixel always contains
r pure spectral endmembers, X is the fractional abundance vector which related to the
library A € R*P . Based on the fact that p > r , the X vector will have many values of
zero, which we call it as sparseness. Then, we can formulate the unmixing problem as a
l,(0 < ¢ <1) norm optimization problem.

As we all known, [y regularization sparse unmixing can be written as:

1
n}}n§||AX—Y||§+/\||X||O st.X >0,17X =1 (2)
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where A is the regularization parameter, ||X||, represents the [y norm of the vector of
X , which X > 0 counts the nonzero components in the matrix X , and 17X = 1 denotes
the sum of the abundance in a mixed pixel is 1.

The problem in (2) is nonconvex and very difficult to solve. However based on a certain
condition of the restricted isometric property, the [y norm can approximately replace the
lp norm, so the objective function can be written as follows:

1
m)}n§||AX—Y||2F+)\||X||1 st.X >0,17X =1 (3)

where || X||; denotes the {; norm. The optimization problem in (3) is convex and
efficient, though the [; regularization always introduces extra bias in sparse unmixing.
Then it cannot seek the fractional abundance with the much sparser solutions.

Based on the sparsity property of the regularizer and its influence on the unmixing
performance has not been thoroughly investigated, Bioucas-Dias and Iordache proposed
the ly; mixed norm, called collaborative regularization, which globally impose sparsity
among the endmembers collaboratively for all pixels. Let X = [z1, 29, -+ ,x,] be the
abundance fractions which correpsonds to the sparse solution, where n is the number of
pixels in the image, the collaborative sparse regression can be given as:

st X >0,1"X =1 (4)

1 -
min 5 |AX - Y7 + AZ ”XkHz

k=1

where X* denotes the k-th line of the matrix X , the >" || X||, is the so-called I3,
mixed norm which promotes sparsity among the lines of X, m is the number of lines in
X and also the number of the endmembers in spectral library.

3. Proposed Method. Based on the iterative reweighted /; minimization algorithm[14,
15, 16] which consists of solving a sequence of weighted /; minimization problems where the
weights used for the next iteration are computed from the value of the current solution, and
considering the spatial-spectral information, a spatial-spectral reweighted collaborative
sparse unmixing (named S?RCSU) has been utilized into the classical collaborative sparse
regression formulation. Then the formulation (4) can be written as:

1 2 ot u,v T
m§n§||AX—Y||F+/\ZZ||W®X lpip — stX>01"X =1 (5)

u=1 v=1

where the operator ® denotes the element-wise multiplication of two variables, X*" is
the u-th line of the matrix X and v-th column of the matrix X | and A is a regularization
parameter which controls the degree of sparseness. The 70 > 7 [[X™[|,, is the
so-called I/ mixed norm which promotes sparsity among the lines and columns of
X. The W is a weighted factor which is introduced to promote the column sparsity of
the fractional abundances in the sense and the row sparsity along the abundance vector
corresponding to each endmember at the same time. On account of iterative reweighted
minimization algorithm which can enhance the sparsity of endmembers in spectral library
and improve the sparsity of fractional abundances, the weighted vector is inserted for the
next iteration which is computed from the value of the current solution. In the interest
of achieving much sparser solution of the optimization, we let
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1
k41 _
Wj ‘xﬂ +o (6)
where ¢ is a small value constant for controlling the value of weighted vector and
preventing the error of the algorithm when xf approaches to zero. As to ensure reliable
performance for the algorithm, the parameter o would automatically be adapted to the
dynamic range and the sparsity of the object under study. Comparing to the paper [16],
the introduced weighted vector is quite simple and easy to calculate but stably to catch
the sparser solution. Based on the reweighted algorithm, when there is a sparse solution
in optimal problems it can find the desirable answer with convergence may occur in just
very few steps.
Given the objective function (6), we write the following constrained formulation:

) 1
min 5 Vi — YH?; + AW © Vally o + Ur+(V3) + Ly (17Vy)

U’V15V23V3,V4
subject to Vi=AU,V,=U,V3=U,V,=U
where I+ (V3) represents abundance non-negativity constrains (ANC), 1,1, (17V}) denotes
the sum of the abundance in a mixed pixel is 1 (ASC). Then based on the ADMM

algorithm [17], the augmented Lagrangian of problem (7) can be written in a compact
form as follows:

(7)

1191‘1/1 g(V) subjectto GU + BU =0 (8)

where

1
g(V) = 5 IVi = Y[ + AW @ Valy o + Les (Va) + Ly (17 Vi) 9)

With these definition in place, we can implement the alternative direction method of
multiplier to solve the optimization problem involved in S?RCSU, as shown in Algorithm
1.

4. Experimental Results. In this section, we illustrate the unmixing performance of
the proposed spatial-spectral reweighted collaborative sparse unmixing using simulated
data sets and real hyperspectral data sets in comparison to SUnSAL, CLSUnSAL. Re-
garding the performance discriminators adopted in our experiments, the quality of the
results is measured using the signal-to-reconstruction error as follows:

SRE(dB) = 10log, (E(|X3)/E(|X — X[3) (10)

where X represents the true abundanoes,)? represents the estimated abundances, and
E(-) represents the expectation function. The larger the SRE(dB) is, the more accurate
the unmixing is.

4.1. Simulated datasets experiments. In this experiments, the spectral library A
used in our experiments was generated by randomly extracting from the United State
Geological Survey (USGS) library denoted splob06[18], which size was A € R??1*210 ¢on-
tains m = 240 members with L = 224 spectral bands.The reflectance values are measured
for 224 spectral bands distributed uniformly in the interval 0.4 — 2.5um . The mutual
coherences of the two libraries are very close to one.
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Algorithm 1  S2RCSU Algorithm

: Intialization:
s set k=0, choose p >0 Ug), VI, , v v® D ... DY DY
: Repeat:

: URHD  (ATA +2D) L(AT(V + D) + (v + DY) + (v + DY) + (v + DP))
e Vi o LTy 4 u(AU® - DY)

: VoD o vector_soft_row_1.2(UR+1 — D W /)

: Vg o max (UK — ng),O)

s VD (o) — ng))—i—repmat ((1-sum(U® — Dflk)))/n,n, 1)

: Update Lagrange multipliers:

10: D¢+ DK — AUKHD 4 y(k+1)

11: Update k «+ k+1

12: Until the stopping criterion is satisfied

© XN TR Wy e

The simulated data cube (DC) used in our experiments have 4 different regions, a total
of n = 1600 pixels, with three spectral signatures for each region selected from the library
A. The fractional abundances of the endmembers follow a Dirichlet distribution. After
generating the datacube, it was contaminated with i.i.d. Gaussian noise, for three levels
of the signal-to-noise (SNR) ratio: 30, 40 and 50 dB.

Especially, for all the algorithms, the input parameters have been carefully tuned for
optimal performance, and all reported results are obtained from average of 20 algorithm
executions. In Table 1, some parameter values are given, such as A and o, which are
sensitive to different data and will influence the unmixing accuracy or have impact on the
objective criterias optimization.

TABLE 1. SRE(DB) salues obtained by different unmixing algorithm in DC

Data SNR SUnSAL CLSUnSAL S2RCSUs =1
30 4.67 £0.09 4.67+£0.08 5.95 + 0.08
A=2x10"2 A=3x10"3 A=1x10"2
8.49 +0.21 9.67 £ 0.22 10.71 £ 0.89
D 4
C 0 A=2x10"% A=1x10"3 A=2x10"2
50 14.84 + 0.22 17.28 +0.19 25.03 4+ 0.31
A=1x10"% AX=1x10"* A=6x10"3

In Table 1, it shows a comparison between the three algorithms of simulated data cube
for the stopping criterion is satisfied with £ = 700. From Table 1, we can see that the
proposed S?RCSU algorithm obtain better SRE(dB) results than other algorithms in all
cases. Furthermore, the SRE value is improved, especially the improvement of SRE value
obtained with regard to the SUnSAL and CLSUnSAL algorithms is significant in the
condition of low noise. This is based on S?RCSU algorithm introduces a weighted factor
which can promote the column sparsity of the fractional abundances in the sense and the
row sparsity along the abundance vector corresponding to each endmember at the same
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FIGURE 1. Truth and estimated abundance of endmembers in DC with
SNR of 50 dB. (a) truth abundance, (b) SUnSAL estimated abundance, (c)
CLSUnSAL estimated abundance, and (d) S?RCSU estimated abundance.

time. On the other hand, the reweighted algorithm also can help to find the desirable
answer quickly with convergence may occur in just few steps.

Furthermore, Figure 1 shows the abundance maps estimated for endmembers in DC.
They show a graphical comparison of the performances between S2RCSU method and the
other algorithms when compared with the truth abundance. Obviously, we can get that
the abundance maps obtained by S?RCSU are much more similar to the truth abundance
maps from Figure 1. In one word, it can be seen that the proposed method combining col-
laborative sparse and iterative reweighted minimization algorithm can promote the spatial
correlation and spectral sparseness on the solution and improve unmixing performance.

4.2. Real hyperspectral data experiments. In this section, In our real hyperspectral
data experiments we resort to the well-known Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS)[19] Cuprite data set for evaluation of the proposed approach, which is
a common benchmark for validation of spectral unmixing algorithms. The portion used in
experiments corresponds to a 250191-pixel subset, comprising 224 spectral bands between
400 and 2500 nm, with nominal spectral resolution of 10 nm. Prior to water absorption
and low SNR, bands 1-2, 105-115, 150-170, and 223-224 are removed, only leaving 188
spectral bands.

The parameters in real spectral data experiments are set as A = 1 x 10™* in SUnSAL,
A =1x10"%in CLSUnSAL, A = 1 x 107® , ¢ = 1 in S?RCSU. For the illustrative
purposes, the Tricorder map was produced in 1995, but the publicly available AVIRIS
Cuprite data were collected in 1997 which are adopt as a reference to make a qualitative
analysis of the performances of the different sparse unmixing algorithms.
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TABLE 2. Fractional abundance maps estimated by SUnSAL,CLSUnSAL
and S?RCSU, as compared with the classification maps produced by usgs
tricorder software

Algorithm /Materials buddingtonite alunite
Tricorder
@ PO I T NN 0 W0
SUnSAL
1
0.16
03
£ 014
025
012
02 01
0 08
B 06
o
005
002
, ) - !
CLSUI’ISAL DO K0 WM W R b8 ® 0w
03 0.16
014
012
o
05 08
006
o
05
002
SQRCSU ! N4 6 8 10 120 140 160 180 ‘ ! N4 6 B0 00 20 M 160 18
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Table 2 shows the fractional abundance maps estimated by proposed S2RCSU algorithm
and the other algorithms with two different minerals of buddingtonite and alunite in a
visual comparison. Thus, we can only make a qualitative analysis of the performances
of different sparse unmixing algorithms by comparing their estimated abundances with
the minerals map. From Table 2, due to comparison to the reference maps, we can see
that the fractional abundance estimated by S?RCSU algorithm is obviously much more
accurate and comparable in the regions assigned to the respective materials. Thus, it can
be concluded that S2RCSU algorithm is a valid tool including spatial information and
spectral information for sparse unmixing in real hyperspectral imagery data.

5. Conclustions. In this letter, based on collaborative sparse unmixing, considering
the iterative reweighted algorithm and spatial-spectral information, a spatial-spectral
reweighted collaborative sparse unmixing has been utilized. In the proposed method,
the weighted factor is introduced to promote the column sparsity of the fractional abun-
dances in the sense and the row sparsity along the abundance vector corresponding to
each endmember at the same time. And we applied the [3;/, norm instead of l; norm
in collaborative sparse unmixing for achieving a sparser solution. Due to that, it aimed
at incorporating spatial structure information and seeking the efficient sparser regularizer
in just very few steps. Then the optimization problem was simply solved by the variable
splitting and augmented Lagrangian algorithm with no variable introduced. The exper-
imental results with simulated and real hyperspectral data sets demonstrated that the
proposed S?RCSU algorithm can achieve a better spectral unmixing accuracy.
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