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Abstract. The improvement of low-dose computed tomography (LDCT) images de-
graded by amplified mottle noise and streak artifacts without introducing tissue-blurring
effects remains a challenge that needs to be overcome. In this paper, we propose to process
LDCT images by using an adaptive total generalized variation algorithm based on strict
intuitionistic fuzzy entropy. Firstly, considering the fuzziness of an artifact-degraded
LDCT image, a membership function based on strict intuitionistic fuzzy entropy was
constructed to replace the traditional diffusion coefficient function. Secondly, an adap-
tive TGV regularized LDCT image restoration model based on the constructed diffusion
coefficient function was presented. Next, to solve the two difficulties, namely the solu-
tion of the adaptive diffusion coefficient with implicit estimation problem and the joint
regularization TGV estimation model with dual variables, in the optimization estimation
process of the proposed algorithm model, in this work, a particle swarm optimization
(PSO) algorithm and first-order primal-dual algorithm were utilized, respectively. Fi-
nally, experiments on LDCT images with three kinds of streak artifact distribution were
carried out. The results show that the proposed algorithm can suppress the noise and
streak artifact while preserving the important edges of the image.
Keywords: Low-dose CT, Total generalized variation, Intuitionistic fuzzy entropy, Ar-
tifact suppression

1. Introduction. In recent years, X-ray computed tomography (CT) imaging technology
has made rapid development, and has gradually become an indispensable means of imaging
in the field of medical diagnosis and treatment, image guided intervention, industrial
non-destructive testing and other fields[1]. CT images are characterized by their high-
resolution, high-sensitivity, and multi-slice properties; therefore, they can clearly show the
structure and lesions of the brain, spinal cord, pancreas, and other organs[2]. A survey
shows that repeated CT scanning is the main source of iatrogenic radiation, and the
patient will be exposed to X-rays at doses of approximately 1.5 to 20 mSv (millisievert) on
a routine CT examination[3]. The radiation damage caused by CT examination should not
be underestimated. Potential hazards associated with X-ray radiation include metabolic
abnormalities, cancer, leukemia, and other genetic disorders[4].
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Reducing the scanning dose in CT examination has become an urgent task, but dose
reduction often causes LDCT images to be seriously degraded by amplified mottle noise
and non-stationary streak artifacts[5]. Since most artifacts have position-dependent dis-
tributions and amplitudes similar to those of normal attenuating structures, it is rather
challenging to suppress artifacts and remove noise in LDCT images. Streak artifacts,
which are always characterized by relatively prominent intensity features, can significantly
decrease the distinction between normal tissues and lesions[6]. Many post-processing
methods have been proposed in an attempt to obtain LDCT images with acceptable
noise-removal, artifact-suppression, and edge preservation. Because off-line processing
can be directly operated on LDCT images, these kinds of methods may greatly reduce
the requirements for real-time imaging and huge storage space[7,8].

Over the past decade, many state-of-the-art denoising approaches have been proposed
including total generalized variation (TGV)-based methods[9,10], non-local means-based
filters[11], and sparse representation-based methods[12]. For example, Chen et al.[13]
proposed a noise reduction method for low-dose CT via a deep neural network without
the need to process the original projection data. A deep convolutional neural network is
trained to transform low-dose CT images into normal-dose CT images, patch by patch.
Cui et al.[14] formulated streak artifacts removal as an image decomposition problem
based on morphological component analysis (MCA). Their method contributed to de-
compose artifacts from the high-frequency parts by using automatic and self-contained
dictionary learning, where no additional training samples are required. Ha et al.[15] ad-
vocated to take into consideration the vast body of external knowledge that exists in the
domain of already acquired medical CT images, and incorporated this knowledge by cre-
ating a database of prior scans, either of the same patient or a diverse corpus of different
patients, to assist in the image restoration process.

By storing a diverse set of small image patches in conjunction with a localized similarity-
matching scheme, their global database approach is sufficiently strong to yield good sim-
ilarity matches from the database and as a direct effect, produce image restorations of
high quality. Zhang et al.[16] proposed an effective algorithm for quantum noise removal
in LDCT images using shearlet transform. Shi et al.[17] proposed a low-dose cardiac CT
processing method based on three-dimensional sparse representation theory. By utilizing
the correlation between anatomical structures, the spatially and temporally continuous
information of the image was integrated into a sparse representation. Since the noise and
artifact distribution of LDCT images are not regular and there is no strict continuity, this
method can suppress the noise and artifacts well while preserving the important details
and edges of LDCT images. Chen et al.[5] proposed a post-processing method based on
dictionary learning to improve the quality of LDCT images. Based on the analysis of the
difference between artifacts and structural details, a so-called discriminative dictionary
was obtained, which uses a sparse representation of the dictionary to filter the artifacts
in all directions, and then, through the global dictionary learning process, filter residual
artifacts and noise. In addition, some attention was paid to improving the training dic-
tionary speed. Chen et al.[18] proposed a rapid post-processing method for LDCT images
of abdominal tumors based on patch-based dictionary learning.

The main goal of LDCT image restoration is to suppress the mottle noise and streak ar-
tifacts as much as possible while not introducing new noise and artifacts on condition that
it preserves the original edges and structures. In general, since the artifacts in LDCT im-
ages have position-dependent distributions and have different intensities, structures, and
directions, it is difficult to accurately establish a statistical model. Therefore, the ability
to effectively distinguish among noise, artifacts, normal anatomical structures, and lesions
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will remain the focus of future research in this field. A growing interest in TGV regu-
larization methods[9,10] has recently been observed. Compared to total variation (TV)
regularization methods, which allow the existence of discontinuous solutions but tend to
have an obvious piecewise constant effect in their steady-state solution, TGV is capable
of measuring directional features and image high-order characteristics and measure image
characteristics up to a certain degree of differentiation[19,20]. Some successful applications
in medical imaging have been explored for TGV-based approaches[21]. Duan et al.[22]
proposed a second-order Mumford-Shah total generalized variation (MSTGV) model that
combines the original -convergence approximated MS model with TGV regularization.
The incorporation of TGV regularization can eliminate both the staircase artifact asso-
ciated with the first-order TV regularization and the edge blurring effect associated with
the H1 or second-order bounded Hessian regularization. Respectively, utilizing TGV and
its dual TGV* to model the cartoon and oscillation components, Lu et al.[23] presented
a method for separating images into piecewise cartoon and texture parts, exploiting both
the variational mechanism and Yves Meyers modeling principle for oscillating patterns.

In this work, an adaptive total generalized variation algorithm based on strict intu-
itionistic fuzzy entropy was proposed, aiming to introduce the advantages of fuzzy theory
and incorporate smoothness up to a certain differential order, while still accounting for
edges. Firstly, based on the fuzziness of LDCT images, strict intuitionistic fuzzy entropy
was constructed to represent the uncertainty of LDCT images. Secondly, considering the
problem that it is difficult to effectively distinguish among artifacts, normal anatomical
structures, and the lesions caused by the complexity of LDCT image artifact distribution,
the membership function of the gradient norm to the flat region was used as the diffusion
coefficient to adaptively judge the edges and flat regions. Furthermore, an adaptive TGV
regularization image restoration algorithm based on strict intuitionistic fuzzy entropy was
proposed. In addition, to solve the two difficulties, namely the solution of the adaptive
diffusion coefficient with implicit estimation problem and the joint regularization TGV
estimation model with dual variables, the particle swarm optimization (PSO) algorithm
and first-order primal-dual algorithm, respectively, were utilized in this work in the op-
timization estimation process of the proposed algorithm model. Finally, experiments on
LDCT images with three kinds of streak artifact distribution were carried out. The struc-
ture of this paper is as follows: In section 2, background concepts related to our method
are reviewed. In section 3, we describe the proposed approach and algorithm analysis.
In section 4 the experimental results are given and discussed. Conclusions and plans for
future work are outlined in section 5.

2. 2. Related work.

2.1. TV. Generally, for an ideal image u, which is defined on a bounded domain and
measured in the presence of additive noise n, the measured noisy f is cast in the form

f = u+ n (1)

It is necessary to address the image denoising problem: Remove the noise from f and
obtain results as close as possible to the original image u. The least-squares (LS) approx-
imation: inf

u

{∫
Ω
|f (x)− u (x)|2dx

}
is a traditional solution to this problem. The method

that is usually used to overcome the ill-condition of LS is the regularization method, of
which the basic idea is: introducing a regularization into the objective function of the
ill-conditioned problem to make the regularization problem be in a good condition, and
then using the solution of the regularization problem to approximate the solution of the
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ill-conditioned problem[24]. On a Banach space

Lp (Ω) =

{
u (x) , x ∈ Ω :

∫
Ω

|∇u (x)|pdx <∞
}

(1 ≤ p <∞) (2)

the norm is defined as‖u (x)‖Lp(Ω) =
(∫

Ω
|u (x)|pdx

)1/p
. On this basis, an image can be

described as:

H1 (Ω) =

{
u (x) ∈ L2 (Ω) : ∇u (x) =

(
∂u

∂x1

,
∂u

∂x2

)
∈ L2 (Ω)× L2 (Ω)

}
(3)

. The mathematical formulation of the denoising problem is cast in the form

inf
u∈H1(Ω)

{
‖f − u‖2

L2(Ω) + β

∫
Ω

|∇u|2dx
}

(4)

, where ‖f − u‖2
L2(Ω)is the data fidelity, which ensures that the recovered image retains

the main features of the image to be recovered f . The regularization term
∫

Ω
|∇u|2dxis

actually the square of a semi-module on theH1 (Ω), which is used to remove the noise and
to ensure that the minimization problem is in a good condition. Because it requires very
high smoothness of images and does not allow discontinuous or singular features such as
edges in images, the Sobolev space is only suitable for describing smooth and uniform
regions in images. Actually, the inherent characteristic of an image is the presence of
a mutation (edge). If the

∫
|∇u|2was used as the smoothing item, it will particularly

emphasize the penalty for areas with larger gradient values, which is incompatible with the
inherent characteristics of the image. The bounded variation (BV) function or distribution
space uses the gradient of an image as a measure instead of a function, which allows the
image to have important discontinuity features such as edges and textures. It is more
reasonable to use BV space to describe the global regularity of the image. On a bounded
domainΩ ⊂ R2,u ∈ L1 (Ω), and then the total variation of u is defined as∫

Ω

|Du| = sup

{∫
Ω

udivϕdx : ϕ = (ϕ1, ϕ2) ∈ C1
0 (Ω)× C1

0 (Ω) , |ϕ|L∞(Ω) ≤ 1

}
(5)

where divϕ = ∂ϕ1

∂x1
+ ∂ϕ2

∂x2
, is the Lebesgue measure onR2, C1

0 (Ω)is the first-order contin-
uously differentiable and tightly supported functions defined on . In particular, ∀u ∈
C1 (Ω),

∫
Ω
udivϕdx = −

∫
Ω
∇u · ϕdx, where∇u · ϕrepresents the Euclidean inner product

of two two-dimensional vectors. Further,
∫

Ω
|Du| =

∫
Ω
|∇u (x)| dx,∇u =

(
∂u
∂x1
, ∂u
∂x2

)
. If

the bounded variational function space is defined as:

BV (Ω) =

{
u ∈ L1 (Ω) :

∫
Ω

|Du| dx <∞
}

(6)

The norm on the Banach spaceBV (Ω)is defined as‖u‖BV (Ω) =
∫

Ω
udx+

∫
Ω
|Du| dx. Rudin

et al.[25] used the spatial semi-norm as the smoothing term and for the first time presented
the TV regularization image restoration model

u=arginf
u∈BV (Ω)

{
1

2
‖f − u‖2

L2(Ω) + β

∫
Ω

|u|TV
}

(7)

. Firstly, compute the Euler-Lagrange equation satisfied by u:

(f − u) + βdiv

(
∇u
|∇u|

)
= 0 (8)
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. Then

∂u

∂t
(t;x) = (f (x)− u (t;x)) + βdiv

(
∇u
|∇u|

)
(t;x) , (t;x) ∈ (0, T ]× Ω

u (0;x) = f (x) , x ∈ Ω

∂u

∂n
(t;x)

∣∣∣∣
∂Ω

= 0, (t;x) ∈ (0, T ]× ∂Ω

(9)

. Note∆x
−ui,j = ui,j−ui−1,j,∆

x
+ui,j = ui+1,j−ui,j,∆y

−ui,j = ui,j−ui,j−1,∆y
+ui,j = ui,j+1−ui,j,

the problem Eq.(9) can be solved by the finite difference method

div
(
∇un+1

i,j /
∣∣∇un+1

i,j

∣∣ ) ≈ div
(
∇un+1

i,j /
∣∣∇uni,j∣∣ )

=
1

h2

∆x
−

 ∆x
+u

n+1
i,j√

(∆x
+u

n
i,j)

2

h2
+

(uni,j+1−uni,j−1)
2

(2h)2

+ ∆y
−

 ∆y
+u

n+1
i,j√

(uni+1,j−uni−1,j)
2

(2h)2
+

(∆y
+u

n
i,j)

2

h2


 (10)

Note 

c1
i,j = β∆t/

√((
uni+1,j − uni,j

)2
+
(
uni,j+1 − uni,j−1

)2
)
/4 ,

c2
i,j = β∆t/

√((
uni,j − uni−1,j

)2
+
(
uni−1,j+1 − uni−1,j−1

)2
)
/4 ,

c3
i,j = β∆t/

√(
uni+1,j − uni−1,j

)2
/4 +

(
uni,j+1 − uni,j

)2
,

c4
i,j = β∆t/

√(
uni+1,j−1 − uni−1,j−1

)2
/4 +

(
uni,j − uni,j−1

)2

(11)

Eq.(9) can be discretized as

− c1
i,ju

n+1
i+1,j − c2

i,ju
n+1
i−1,j − c3

i,ju
n+1
i,j+1 − c4

i,ju
n+1
i,j−1 +

(
1 + c1

i,j + c2
i,j + c3

i,j + c4
i,j

)
un+1
i,j

= uni,j + ∆t
(
fi,j − uni,j

) (12)

Eq.(12) is a semi-implicit difference equation with good stability and can be solved by
Gauss-Seidel iteration.

2.2. TGV. In 2010, on the basis of the generalized definition of TV Eq. (5), Bredies et
al.[20] firstly proposed the definition of the generalized variational TGV:

TGV k
α (u) = sup

{∫
Ω

udivkϕdx : ϕ ∈ Ck
c

(
Ω, Symk

(
Rd
))
,
∥∥divlϕ∥∥∞ ≤ αl

}
(13)

, WhereSymk
(
Rd
)

=

ξ : Rd × · · · × Rd︸ ︷︷ ︸
k

→ R

represents the symmetric order tensor

space.α = (α0, α1, ..., αk−1)denotes a positive weight, k ∈ Nis the order of TGV,l =
0, 1, ..., k − 1. (

divlϕ
)
η

=
∑

γ∈Ml

l!

γ!

∂lϕη+γ

∂xγ
,∀η ∈Mk−1 (14)

, whereMk =
{
η ∈ Nd

∣∣∑d
i=1 ηi = k

}
.‖ϕ‖∞ = sup


( ∑
η∈Mk

k!
η!
ϕη(x)2

) 1
2

represents the -

norm in the symmetric k-order tensor space. Whenk = 1,TGV k
α = α0TV . The k-order
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Figure 1. Graphic description of the presented adaptive fuzzy diffusion
coefficient function cS (∇uN , λ)

bounded generalized variational norm function space BGV k
α (Ω)with weightαis defined as:{

BGV k
α (Ω) =

{
u ∈ L1 (Ω)

∣∣TGV k
α (u) <∞

}
‖u‖BGV kα (Ω) = ‖u‖1 + TGV k

α (u)
(15)

Furthermore, the second-order TGV can be defined as follows:

TGV 2
α (u) = sup

{∫
Ω

udiv2ϕdx : ϕ ∈ C2
c

(
Ω, Sd×d

)
, ‖ϕ‖∞ ≤ α0, ‖divϕ‖∞ ≤ α1

}
(16)

, where(divϕ)a =
∑d

b=1
∂ϕab
∂xb

, 1 ≤ a ≤ d,div2ϕ =
∑d

a,b=1
∂2ϕab
∂xa∂xb

, and then the inf-norm
ofϕanddivϕcan be obtained

‖ϕ‖∞ = sup
l∈Ω

(
d∑

a,b=1

|ϕab (l)|2
) 1

2

, ‖divϕ‖∞ = sup
l∈Ω

(
d∑
b=1

|(divϕ)b (l)|2
) 1

2

(17)

Then,

TGV 2
α (u) = inf

u∈BGV 2
α (Ω)

{
2∑
l=1

α2−l‖ε (ul−1)− ul‖1

}
(18)

, whereε (ul−1) = ∇ul−1+(∇ul−1)T

2
is a dual variable.TGV 2

α (u)regularized image restoration
problems[19,21,26] can be expressed as:

u = min
u∈BGV 2

α (Ω)

1

2β

∫
Ω

(u− f)
2

dx+ TGV 2
α (u)

= min
u∈BGV 2

α (Ω)

1

2β

∫
Ω

(u− f)
2

dx+ α1

∫
Ω

|∇u− ϕ|dx+ α0

∫
Ω

|ε (ϕ)|dx
(19)

Contrary to TV, which can only effectively approach the piecewise constant function, the
TGV regularization model can effectively approximate polynomial functions of any order,
including slice constants, and slice affine functions.
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Figure 2. Flow chart of PSO algorithm

2.3. Intuitionistic fuzzy entropy. According to the intuitionistic fuzzy set theory, an
intuitionistic fuzzy set (IFS) A defined on a universe X may be described as

A = {〈x, µA (x) , γA (x)〉|x ∈ X} (20)

, where µA (x)andγA (x)denote the degree of membership and the degree of non-membership
of x to A, respectively. µA(x)denotes the degree of membership of x to A. The de-
gree of uncertainty of x to A can be characterized by an intuitionistic indexπA (x) =
1− µA (x)− γA (x).IfπA (x)is large, it indicates that the element x is very uncertain, and
that we know very little about this element. Conversely, ifπA (x)is small, it indicates that
the element x is very certain, and we know very much about this element. The intuition-
istic fuzzy entropy (IFE) is an information quantity which could be used to describe the
fuzziness of an IFS. It can be seen that the IFE has the same physical meaning as πA (x).
Therefore, when the values ofµA (x)andγA (x)more closely approximate each other, the
value of IFE becomes larger. When µA (x) = γA (x), the IFE could obtain the maximum
value 1. Particularly, when1 − µA (x) = 0, namely, the intuitionistic indexπA (x) = 0,
and the IFE is 0, the IFE degenerates into a non-fuzzy set at this time[27]. According
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to the physical meaning of IFE, scholars have conducted much in-depth study and pro-
posed a variety of IFE construction methods[28-33]. It is shown that there is an inherent
deficiency in the definition of IFE, that is, the IFE cannot be used to judge and decide
the case that the membership degree and non-membership function are equal but the
intuitionistic index is different[34-35]. A strict IFE construction method was proposed to
overcome this problem[36-37]. On universeX = {x1, x2, ..., xn}

IFS (X) = {〈x, µA (x) , γA (x)〉|x ∈ X}
µA (x) : X → [0, 1]

γA (x) : X → [0, 1]

0 ≤ µA (x) + γA (x) ≤ 1,∀x ∈ X
πA (x) = 1− µA (x)− γA (x)

(21)

given an intuitionistic fuzzy setA =
∑
i

〈µ (xi) , γ (xi)〉/xi the strict IFE of A can be ex-

pressed by

E (A) =
1

n

∑
i

(δ (xi)− σδ (xi)) (1− 2 min (µ (xi) , γ (xi))) (22)

(22) whereδ (xi) = 1−|µ(xi)−γ(xi)|
1+|µ(xi)−γ(xi)| .

3. Methodology.

3.1. The constructed fuzzy diffusion coefficient function. In general, the flat re-
gions and the edges need to be distinctively processed during the image restoration. More
concretely, in a flat region, the intensity of the smooth penalty should be sufficiently large
to suppress noise and artifacts; however, high-intensity smoothing causes the structure of
edges and details to be destroyed in the edges[38]. Thus, the performance of the diffusion
coefficient function (or edge indicator function) is particularly important. Low-dose X-ray
CT images are uncertain to some extent due to noise and streak artifacts, in other words,
the images are fuzzy. Behavioral analysis can be used to demonstrate the similarity be-
tween the membership function and the diffusion coefficient in the anisotropic diffusion
process[39-42]. Physically speaking, in the smoothing process, if the membership degree of
the pixel to the flat region is very large, the pixel is likely to be in the flat region, in which
case, a larger diffusion coefficient is needed to promote the smoothing process. Corre-
spondingly, if the membership degree of the pixel to the flat region is very small, the pixel
is likely to be in the edges. In order to preserve the edge of the image, a small diffusion
coefficient function is needed to prevent the smoothing process. Obviously, the member-
ship function of the pixel to the flat area of the image is consistent with the behavior of
the diffusion coefficient function and can be interchanged. In this work, by constructing
the strict intuitionistic fuzzy entropy of low-dose CT images, an adaptive fuzzy diffusion
coefficient function is presented. Using ∇u represents the gradient of an I × J image u,
the low-dose X-ray CT image can be considered as the following intuitionistic fuzzy set.
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Figure 3. Low-dose and standard-dose images of the thoracic CT, the
modified Shepp-Logan head model, and the emulational pelvic CT model,
respectively



S = {〈∇uN , µS (∇uN) , γS (∇uN)〉|∇uS ∈ U}

µS (∇uN) = (1−∇uN)λ(λ+1)

γS (∇uN) = 1− (1−∇uN)λ

πS (∇uN) = 1− µS (∇uN)− γS (∇uN)

∇uN =
∇u−∇umin

∇umax −∇umin

(23)

, where µS (∇uN) represents the membership function of a pixel to a flat region. γS (∇uN)
represents the non-membership function of a pixel to a flat region. Assume x = ∇uN , the
following intuitionistic fuzzy entropy can be obtained[43]

EIF (S) =
1

I × J

I×J∑
i=1

2µS (xi) γS (xi) + πS(xi)
2

µS(xi)
2 + γS(xi)

2 + πS(xi)
2 (24)

. Then, referring to section 3.2, new strict intuitionistic fuzzy entropy was constructed

ESIF (S, λ) =

I×J∑
i=1

(1− σ)
(

2µS(xi)γS(xi)+πS(xi)
2

µS(xi)
2+γS(xi)

2+πS(xi)
2

)
(1− 2 min (µS (xi) , γS (xi)))

I × J
(25)

. Furthermore, a new adaptive fuzzy diffusion function was presented cS (∇uN , λ) = (1−∇uN)λ(λ+1)

λ = arg max
λ

ESIF (S, λ)
(26)
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. Fig.1 shows the graphic description of the presented adaptive fuzzy diffusion coefficient
function cS (∇uN , λ). Intuitively, it can be seen that as ∇uN increases, cS (∇uN , λ) de-
creases. Thus, cS (∇uN , λ) can enhance the edges and details while suppressing the noise
and artifacts in the low-dose CT image.

3.2. Proposed method and optimization of the objective function. In order to
effectively suppress the noise and artifacts in low-dose X-ray CT images, a novel image
processing method using an artifact suppressed total generalized variation is proposed.

û = min
u∈BGV 2

α (Ω)

1

2β

∫
Ω

(u− f)
2

dx+ α1

∫
Ω

cS (∇uN , λ) |∇u− ϕ|dx+ α0

∫
Ω

|ε (ϕ)|dx (27)

It can be seen that Eq. (27) shows a joint estimation problem. Firstly, to obtain the
solution of cS (∇uN , λ), the particle swarm optimization (PSO) method[44-45], which has
few parameters, is easy to operate, converges quickly, and seeks the optimal solution by
mutual cooperation and information sharing among the individuals in the group, was
utilized to solve Eq. (26).

Specifically, as shown in Fig. 2, the algorithm simulates the solving process as a group of
birds searching for food. Each optimization solution (particle) is treated as a bird. During
the course of the search, the birds continue to change their speed and position (each bird
can be judged by the fitness function to determine whether the current speed and position
is reasonable), continue to repeat the process, the birds will gradually converge to the best
speed to the most optimal position, and then find the food (namely, find the solution of
the function). The fitness function of this work is λ = arg max

λ
ESIF (S, λ). The respective

velocity and position of the particles during the iteration are expressed by

{
Vt = ω × Vt + c1 × rand× (pbestt − λpresentt) + c2 × rand× (gbestt − λpresentt)
λpresentt = λpresentt + Vt

(28)

where the number of particle swarms is T. The velocity and the position of the tth
particle are Vt and presentt, respectively and pbest and gbest are the individual extremum
and global extremum, respectively. The cS (∇uN , λ) value can be easily obtained after
obtaining the solution of λ = arg max

λ
ESIF (S, λ). Furthermore, the problem in Eq. (27)

can be solved by the first-order primal-dual algorithm[20],

ûk+1 = min max
newu,ωp,q

1

2β
‖un − f‖2

2 + 〈un − ω, p〉 − F ∗1 (p) + 〈ε (ω) , q〉 − F ∗2 (q) (29)

where


F1 (∇u− ω) = max

p
〈∇u− ω, p〉 − F ∗1 (p)

F2 (ε (ω)) = max
q
〈ε (ω) , q〉 − F ∗2 (q)

ε (ω) = 1/2
(
∇ω +∇ωT

) ,


P =

{
p = (p1, p2)T

∣∣∣ |p(x)| ≤ α1cS (∇uN , λ)
}

Q =

{
q =

(
q11, q12

q21, q22

)T ∣∣∣∣∣ ‖q‖∞ ≤ α0

}
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The iterative process can then be as follows

pk+1 = projP
(
pk + δ

(
∇ūk − ω̄k

))
,

qk+1 = projP
(
qk + δ

(
ε
(
ω̄k
)))

,

uk+1 = prox1

(
uk + τdiv1p

k+1
)
,

ωk+1 = ωk + τ
(
pk + div~

(
qk+1

))
,

ūk+1 = uk+1 − uk,
ω̄k+1 = 2ωk+1 − ωk

(30)


projP (p̂) = p̂/max (1, |p̂|/α1cS (∇uN , λ) )

projQ (q̂) = q̂/max (1, q̂/α0 )

prox1

(
uk
)

=
(
βuk + τfk

)
/(β + τ)

(31)

where div~ = −ε∗. In summary, the process flow of this work is as follows

4. Results and Discussion. The feasibility and superiority of the proposed method
were verified by conducting experiments using a low-dose X-ray thoracic CT image (512mm
×512mm), a modified Shepp-Logan head model (256mm×256mm) and a low-dose X-ray
pelvic CT model (256mm ×256mm). The experimental environment consisted of the
following: hardware requirements: CPU: Intel(R) Core(TM) i5, 3.3 GHz; graphics card:
Nvidia GeForce GTX 960 (4 GB); RAM: 8 GB; and operating system: Windows 7 64-Bit
SP1. The software used was MATLAB 7.6 (R2008a) programming to implement the algo-
rithm. The comparison algorithms adopted by this study are the traditional Perona and
Malik (P-M) equation[46] smoothing method (herein referred to TGV), TV regularized
image restoration algorithm[25] (herein denoted as TV), TGV regularized image restora-
tion algorithm[26] (herein denoted as TGV). The analysis of experimental results in this
work includes three aspects: (1) visual effect analysis; (2) analysis of the quantitative
indicators; (3) influence of parameter changes on the experimental results.

4.1. Thoracic CT experiments. Apparently, the artifacts in the low-dose CT images
shown in Fig. 3 are complex, irregularly distributed, and of varying intensity. As shown in
Fig. 4, different algorithms are utilized to process the thoracic CT, resulting in restoration
images of varying quality. It can be seen that the PM anisotropic diffusion operation has
some effect on the smoothing of noise and artifacts, but the experimental results are far
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Figure 4. Thoracic CT restoration images obtained by four post-
processing methods: PM, TV, TGV, and this work, respectively

Table 1. rRMSE and SSIM values for the four restoration images in five
different ROIs shown in Fig. 4

from satisfactory. Compared with the PM algorithm, the TV regularization method is
more effective in suppressing noise and artifacts. It can be seen intuitively that the TGV
regularization method and the algorithm proposed in this work can suppress the noise
and strip artifacts very well. The experimental results of the two algorithms are close to
the standard dose image quality, which would meet the basic application requirements.
Further in-depth analysis of the image consisting of the enlarged local structure of the
different thoracic restoration images is shown in Fig. 4, where it can be seen that there are
obvious noise and artifacts remaining in the experimental results of the PM algorithm and
that smoothing of the diffusion can be expected to cause obvious blurring of the image.
Although the TV regularization method suppresses a large number of artifacts and noise,
and overcomes the fuzziness of the PM method, there are obvious block artifacts in the
local regions of the thoracic CT image. From the point of view of suppression of noise
and artifacts, complex bar artifacts and noise in the original degraded image are largely
removed in the thoracic restoration images obtained by the TGV regularization method
and the method proposed in this work, and no new noise is introduced. Compared with
the other three algorithms, the algorithm proposed in this work is mainly superior in
terms of the edge preserving aspect. As shown by the white arrow in the observation
area, we can see that in the different local regions of the thoracic image, the experimental
results have good edge performance.

On the other hand, in order to ensure the objectivity of the experimental analysis, in
this research the index relative mean square error (rRMSE) is chosen. This index can
represent the degree of closeness between the restoration image and the standard dose
image, and structural similarity (SSIM), which can represent the degree of structural
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Figure 5. Partial enlarged view of the different thoracic CT restoration
images (shown in Fig.4)

similarity between the restoration image and standard dose image.

rRMSE =

√√√√√√√
M∑
m=1

(fm − fxtrue m)2

M∑
m=1

(fxtrue m)2

(32)

Cov {f, fxtrue} =
1

M − 1

(
fm − f̄

) (
fxtrue m − f̄xtrue

)
(33)

SSIM =
2Cov {f, fxtrue}
σ2 + σ2

xtrue

2f̄xtruef̄

f̄ 2
xtrue + f̄ 2

(34)

where fm and fxtruem represent the restoration image and the standard dose image at pixel
m, respectively. M is the total number of pixels of the desired image. A small rRMSE
indicates a small difference value between the two comparison images, and vice versa. An
SSIM value closer to 1 indicates high structural similarity to the ideal image.

As shown in Table.1, in this research the rRMSE and SSIM values for the four restora-
tion images in five different regions of interest (ROIs) are calculated. Firstly, analyzing
the performance of the four kinds of restoration images in each ROI, we can see that the
rRMSE value of the restoration image obtained by the method proposed in this work is
0.0077, and are smaller than those of other algorithms: 0.0097, 0.0086, 0.0078, respec-
tively. It indicates that the ROIA of the experimental results obtained by the proposed
method is closer to the ROIA of the standard dose image. The SSIM value of the restora-
tion image obtained by the method proposed in this work is 0.8520, and is larger than
that of the other algorithms: 0.8487, 0.8029, and 0.7388, respectively. It indicates that
the structure of the ROIA of the experimental results obtained by the proposed method
is more similar to the structure of the ROIA of the standard dose image. Similarly, the
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Figure 6. rRMSE and PSNR value curves of results obtained by TGV
and the proposed method as a function of the number of iterative cycles
NUM2

Table 2. PSNR, rRMSE, and SSIM values of the three different ROIs of
the four kinds of restoration images (shown in Fig.10)

rRMSE and SSIM values of the restoration image obtained by the proposed method are
the minimum and the maximum of the five ROIs, respectively. It shows that, compared
with the experimental results obtained with the other three algorithms, the image quality,
structural similarity, and the experimental results of the proposed algorithm are closer to
those of the standard dose ideal images. Secondly, analyzing the performance of the each
kind of restoration image in different ROIs, we can see that the performance of rRMSE
and SSIM in different regions of each kind of restoration image is different. For exam-
ple, the rRMSE and SSIM values of ROID of the experimental results obtained by the
proposed method are 0.0019 and 0.9423, respectively. However, these two values are only
0.0077 and 0.8520 in the ROIA. Obviously, the image quality of ROID is significantly
higher than that of ROIA

As a whole, it can be seen that the performance of rRMSE and SSIM may be the
same for different restoration images. For example, in ROIE, the rRMSE value of the
experimental results obtained by TGV and the proposed method are both 0.0033. In
ROID, the rRMSE value of the experimental results obtained by TGV and TV are both
0.0024. Under the same conditions, the experimental results obtained by the proposed
method are more accurate. For example, when the rRMSE values are both 0.0033, the
SSIM value of the results obtained by the proposed method is 0.9446, which is larger
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Figure 7. Four different ROI, the rRMSE and SSIM curves of results
obtained by TGV and the proposed method as a function oflet α

than 0.9321, i.e., the SSIM value of the TV restoration image. In summary, from a
quantitative point of view, the performance of the restoration image obtained by the
proposed method is more satisfactory than that of the other three methods. Furthermore,
this work analyzes the influence of parameter variation on the quality of the experimental
results. The objective function of the algorithm in this work involves several parameters,
and the main influencing factors are analyzed one by one. As the experimental results
are of a similar quality, this work analyzes the influence of the common parameters of the
proposed algorithm and the TGV method (iterations NUM2 and parameters α1, α0) on
the quality of the experimental results. As shown in Fig.6, as the number of iterations
NUM2 increases, the quality of the experimental results of the TGV algorithm and the
proposed algorithm are found to improve and finally stabilize. When NUM2¿1500, the
effect of the number of iterations NUM2 on the quality of the experimental results of
the two algorithms diminishes and becomes almost negligible. Specifically, as shown in
Fig. 6 (a), the rRMSE values of the two kinds of experimental results decrease with an
increase in NUM2, and the rRMSE value of the experimental results obtained in this work
is smaller. As shown in Fig. 6 (b), the PSNR values of the two kinds of experimental
results increases with an increase in NUM2, and the PSNR value of the experimental
result obtained by the proposed method is larger.



Low-Dose CT Image Processing Using Artifact Suppressed Total Generalized Variation 41

Figure 8. Variation in the solution of the PSO algorithm as a function
of the number of particles and the number of iterations.

As shown in Fig.7, let α1 = α0 = α. With increasing α, the quality of the results
obtained with the proposed algorithm improve and finally stabilize. When α > 20, the
effect of α on the quality of the results of this work results is reduced and becomes almost
negligible. An increase in α leads to a gradual improvement in the quality of the TGV
results to the best value before gradually worsening. When α = 0.18, approximately, the
quality of the TGV results reach a maximum. Specifically, for the four ROIs, as seen in
Fig.7 (a1), the rRMSE curves display the same trend as α increases, where the rRMSE
value of the experimental results obtained by the proposed method gradually becomes
smaller and finally stabilizes. In the four ROIs, as seen in Fig.7 (b1), the trend of the SSIM
curves is the same with increasing values of α, the SSIM value of the experimental results
obtained by the proposed method gradually becomes larger and finally stabilizes. In the
four ROIs, as seen in Fig.7 (a2), the rRMSE curves have the same trend with increasing
values of α, where the rRMSE value of the experimental results obtained by the TGV
method are first gradually reduced to reach an optimal value before gradually increasing.
In the four ROIs, as seen in Fig.7 (b2), there are three ROIs with the same SSIM value
curves, and all of them exhibit the same trend, i.e., first increasing and then decreasing.
As the value of αincreases, the SSIM value of the experimental results obtained by the
TGV method first gradually increases to an optimal value before gradually decreasing.
The ROI with the different SSIM curve shows two increases and decreases, and the first
time it increases to the maximum value. In summary, over the entire course of change,
the performance of image quality and structural similarity in different ROIs of the results
of TGV and the method proposed in this work are different. Within the same ROIs, the
rRMSE values of the experimental results obtained by the proposed method are smaller
and the SSIM values are larger.

The parameters of the proposed algorithm include the number of particles T and the
number of iterations NUM1, both of which influence the quality of the graph of the
experimental result mainly by influencing the value of the adaptive diffusion coefficient
cS (∇uN , λ). Next, we analyze the influence of the two parameters (T and NUM1) on the
optimal solution of the PSO algorithm. As shown in Fig. 8 (a), if the number of particles
T is larger than the number of independent variables, the increase in T has little effect
on the optimal solution of the PSO algorithm. As shown in Fig.8 (b), we can see that
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Figure 9. Value of the objective function of the proposed algorithm as a
function of the number of iterative cycles NUM2.

an increase in the number of iterations NUM1 causes the PSO solution to increase and
finally stabilize around 10.299. In addition, in this work the convergence of the algorithm
is analyzed by plotting the change of the objective function value against the increase in
the number of iterative cycles NUM2. As the iterative process advances (shown in Fig.9),
the value of the objective function tends to stabilize and converge to a definite value. This
shows that the proposed algorithm is feasible and converges to a stable solution.

4.2. Pelvic CT experiments. As shown in Fig. 10, different algorithms are used to
filter the low-dose X-ray pelvic CT image, and the quality of the restoration images is
different. Observing the first line of Fig.10, we can see that there are streak artifacts
and noise residues in the restoration image obtained by the PM algorithm, but the image
appears fuzzy during the smoothing process. Although the TV regularization method can
suppress the noise and streak artifacts in the original low-dose pelvic image, it introduces
new block artifacts, and the experimental results are unsatisfactory. Although the extent
to which the noise and streak artifacts suppress the restoration image obtained by the
TGV regularization method is considerable, the edge performance is unacceptable. In
contrast, the proposed algorithm preserves the important edge features of the original
low-dose image while suppressing noise and streak artifacts. The quality of the restoration
image meets practical application requirements. Looking at the difference image shown
in the second row of Fig.10, it can be seen that the noise and streak artifacts suppressed
by the PM algorithm are limited during the smoothing process, and that some edges were
smoothed during the process. The TV algorithm can suppress more noise and streak
artifacts, and the edge preserving capability of TV is more effective than that of the
PM algorithm. The extent to which noise and streak artifacts are filtered by the TGV
algorithm exceeds that of the TV algorithm; however, the disadvantage is that some
edges are also filtered. The proposed algorithm suppresses a large amount of noise and
streak artifacts, and the extent to which important edges are smoothed is negligibly small.
Looking at the difference image shown in the third row of Fig. 10, it can be found that
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Figure 10. Pelvic results. First row: the four restoration images; second
row: the difference images between the original low-dose image and the
four restoration images; third row: the difference images between the four
restoration images and the original standard dose image

Table 3. PSNR, rRMSE, and SSIM values of the three different ROIs of
the four kinds of restoration images (shown in Fig.12)

the restoration image obtained by the PM algorithm contains streak artifacts and noise
that are not present in the standard dose ideal image. The restoration image obtained by
the TV algorithm contains block artifacts that are not present in the standard dose ideal
image. Obviously, in the smoothing process, some edges of the original low-dose pelvic
CT image are filtered out by the PM algorithm, TV algorithm, and TGV algorithm.
The difference between the restoration image obtained by the proposed method and the
ideal image is the least, and there are no obvious streak artifacts and noise residues. In
summary, from a visual point of view, the quality of the restoration image obtained by
the proposed algorithm is comparatively good.
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Figure 11. Partial enlargements of the pelvic restoration images obtained
with the different methods (as shown in Fig. 10)

When observing the partially enlarged images (as shown in Fig.11) of the restoration
images (shown in Fig.10), it can be seen that the main drawback of the PM algorithm is the
appearance of fuzziness. The main disadvantage of the TV algorithm is that the processed
image introduces block artifacts that are not present in the original low-dose image.
Although the TGV algorithm can suppress the noise and streak artifacts effectively, the
adaptive ability of the algorithm is limited. Compared with the other three algorithms,
the superiority of the proposed algorithm is mainly reflected in the preservation of edges.
Observing the area indicated by the white arrow in Fig.11, it can be found that the
edges of the experimental results obtained by this work method behave well in different
local regions of the pelvic model. In addition, Table.2 represents the PSNR, rRMSE, and
SSIM values of the three different ROIs of the four kinds of restoration images (shown in
Fig.10). In ROI1, the rRMSE value of the restoration image obtained by the proposed
method is 0.0011, which is the same as that of the TGV restoration image; however,
the PSNR value and the SSIM value of the restoration image obtained in our work are
higher. It indicates that the restoration image obtained with our proposed method more
closely resembles the standard dose image when the rRMSE values are the same. In
ROI3, the rRMSE values of the restoration image obtained in this work and that of the
TGV restoration image are also the same, with the corresponding SSIM of the restoration
image obtained in this work being 0.9907, and the proposed method performs well in
terms of structural similarity compared to the TGV restoration image. Compared with
the experimental results obtained by the other three algorithms, the PSNR and SSIM
values of the restoration image produced by the method proposed in this work are the
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largest, and the rRMSE values are the smallest in each ROI. On the whole, in the three
ROIs, compared with the other two indicators of the advantages of the restoration image
obtained by the proposed method, the SSIM value is obviously superior.

Figure 12. Modified Shepp-Logan head results. First row: four kinds of
restoration images; second row: difference images between the original low-
dose image and the four restoration images; third row: the difference images
between the original four restoration images and the original standard dose
image)

4.3. Modified Shepp-Logan head CT experiments. As shown in Fig. 12, different
algorithms were used to filter the low-dose X-ray modified Shepp-Logan head image, and
the quality of the restored image was different. In the first row in Figure 12, it can be
found that some stripe artifacts remain near the mid-line of the reconstructed image in
the PM algorithm. The TV regularization method suppresses most of the noise and stripe
artifacts in the original low-dose modified Shepp-Logan head model, but causes the block
artifacts at the same time. The TGV regularization method offers improved rejection of
noise and stripe artifacts compared to the TV and PM algorithms, but its image edge-
preserving ability is unsatisfactory. The proposed algorithm preserves the important edge
features of original low-dose images while suppressing noise and streak artifacts and the
quality of reconstructed images is good. In the second row in Fig.12, it can be seen that
the artifacts of the low-dose modified Shepp-Logan head model image appear to be vertical
stripes near the mid-line. In terms of the amount of removed artifacts and filtered noise,
the algorithm described in this paper is superior. The strongly intense stripe artifacts near
the vertical line are filtered out, as shown by the white arrows in the figure. As far as edge
information retention is concerned, our proposed algorithm is also the best. The other
three algorithms smoothed the edges of important structures of original low-level images
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to a greater or lesser extent. The images in the third row of Fig.12 display many stripe
artifacts and much noise neither of which are present in the ideal image near the vertical
line in the restoration image of the PM algorithm, and there are block artifacts that are
not present in the ideal image near the vertical line in the image restored by the TV
algorithm. Obviously, in the smoothing process, the edge information of the original low-
dose modified Shepp-Logan CT image is filtered out in the PM algorithm, TV algorithm,
and TGV algorithm. For the proposed algorithm, the difference between the restored
image and the ideal image is the least, and there are no obvious stripe artifacts and noise.
In summary, from a visual point of view, the quality of the restored image obtained by
this algorithm is superior. Observation of the localized enlargement of the restored image

Figure 13. Partial enlargements of the modified Shepp-Logan head
restoration images (as shown in Fig.12)

of the modified Shepp-Logan head model (shown in Fig.12), as shown in Fig.13, indicates
that a large number of stripe artifacts and amount of noise remain in the image after
processing by the PM algorithm. Clearly, the TV algorithm is more effective than the
PM algorithm in suppressing noise and stripe artifacts, but its processed images contain
block artifacts that are not present in the original low-dose image of the TV algorithm
restoration image. The TGV algorithm smooths the important edges of the image while
suppressing noise and streak artifacts. Compared with the other three algorithms, the
ability of the proposed algorithm to suppress noise and streak artifacts is superior, and
to a large extent it does not destroy the edges of important structures in the original
low-dose images. Table.3 compares the performance of the four algorithms and contains
the PSNR, rRMSE, and SSIM values for the four restoration images (shown in Fig.12)
within three different ROIs. Because the streak artifacts in the original low-dose modified
Shepp-Logan model are mainly distributed near the vertical line of the model, in terms
of noise and artifact suppression ability, it is more likely that the ROI is selected near the
mid-vertical line. In each ROI, compared with the other three algorithms, the proposed
algorithm produces the largest and smallest values of the PSNR and SSIM, respectively.
Obviously, within the three ROIs, the SSIM value of the restoration image of the proposed
algorithm is far greater than that of the other three algorithms. This can also be explained
in terms of the comparatively superior ability of this algorithm to remain at the edge of
the structure.

5. Conclusions. In summary, the experimental results of different algorithms are closely
related to the distribution characteristics of streak artifacts. The streak artifacts in differ-
ent low-dose CT images have different shapes, different densities, and different distribution
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densities. In particular, the low-dose thoracic CT images used in this work display hori-
zontal and vertical streak artifacts with different orientations. The amplitude of artifacts
in the middle region, in which the streak artifact distribution density is large, is close to
the amplitude of the tissue structure. There is no obvious pattern of the distribution of
streak artifacts. The artifacts of the low-dose pelvic model were mainly distributed in the
horizontal direction, and the distribution intensity at the horizontal edge of the model
was greater than that in the middle region. The artifacts of the low-dose modified Shepp-
Logan head model are mainly distributed in the vertical direction, and are most dense
in the vicinity of the vertical line in the model. The results of the algorithm proposed
in this work show that the algorithm is feasible and effective, and has some advantages
compared with other algorithms. Our experimental analysis revealed that the object to
be processed by the low-dose CT image post-processing method is the low-dose image
itself. Compared with the projection method and the reconstruction method, the post-
processing method is computationally less complex and has lower operational cost. At
the same time, because of the complexity, variability, and irregularity of the distribution
of low-dose CT image artifacts, the post-processing methods are diversified and can be
designed from many different angles to design low-dose CT images for different tissue site
restoration methods.
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