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Abstract. Limited bandwidth and lacked compatibility information of the sensor nodes
in Wireless Sensor Network (WSN) are critical issues in implementing WSN applica-
tions. This paper proposes a method of improvement to data compression capability to
support SensorML interface for information exchange in the sensor nodes. The delivery
of the packets with XML format of all nodes in WSN could cause the traffic load in-
creases. This paper proposes a method of improvement of data compression capability for
exchanging data in the sensorML for the Internet of Things (IoT). The delivery of XML
formatted packets of all nodes in Wireless sensor networks (WSN) could cause the traffic
load increases. The proposed method suggests data compression condensing the packets
in the node and analyzes the relationship between the parameters and the performance.
The settings of sliding window size and comparing length are factors to affect the per-
formance of network traffic load significantly. The experimental results show that, with
a format of 256 bytes and LZSS compression, the transmission performance is improved
up to 48.8%, in comparison with the original approach. Besides, the proposed method
can deliver up to 204% of information than the other works.
Keywords: Internet of Things, SensorML, data compression, sensor nodes, LZSS.

1. Introduction. Cisco IBSG predicts there will be 26 billion devices connected to the
Internet by 2018 and 40 billion by 2020[1]. Gartner defined the Internet of Things (IoT)
is the network of physical objects that contain embedded technology to communicate and
sense or interact with their internal states or the external environment [2]. The goal of the
IoT is to expect devices can be connected to communication and operation together over
the network. One step further of IoT is to integrate data from different resources e.g.,
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machines, systems, media in real time that allow intelligently interact such as humans
with devices, devices with devices and devices back to humans upon the ultimate social
media collaboration of man and machine. Sensor node can be found in applications of
wireless sensor network (WSN) that is a typical form of the IoT [3]. Resource constraints
such as memory and energy are important issues when implementing WSN, especially
with having various kinds of sensors, in which acquired data can be a significant amount
of virtual database.

WSN applications such as the environmental monitoring systems utilize several sensor
nodes that have various kinds of sensors. These applications might need a large memory
space for collecting all acquired data from equipped sensors[4],[5],[26]. Transmission of
data over the wireless channel at node level in a network consumes higher energy than
data processing within the node. The communication consumes the most substantial
energy of a sensor node. Therefore, it is not appropriate to transmit data directly in
the networks; on the contrary, minimization by applying data compression algorithm
in sensor nodes before sending data over the air is one of the essential strategies for
energy-efficient of sensor nets [6].The traditional data format of sensors was insufficient
interoperability and could not be compatible with each other. The exchanging standards
between objects have not been able to achieve the interoperability and compatibility so
far. For example, the disaster-monitoring applications sensing data could not be used in
other types of applications with different monitoring devices that need a lot of workforces
to process [6][7]. Although the closed data format could reduce transmission bandwidth
requirements, it also significantly decreased the readability of the information.

Awareness of interoperability between devices in advance for the IoT, the interoperabil-
ity and compatibility have been developed for sensor information exchange standards by
International organization known as the Open Geospatial Consortium (OGC) [8]. This
organization OGC currently has included about 480 members, in which are accounted for
41 % of them are commercial organizations, the leading members namely NASA, Google,
Oracle, etc. They continuously update their formulation improvements for Sensor Web
Enablement (SWE) specifications to be able to carry out the heterogeneity of sensor inte-
gration, which including sensor information exchange, pre-processing, post-processing and
computing mode functions. These sensing data from various sensors become more popular
and available so that people can save them through the network, applications or platforms
of geographic information and services in the world for further use [9]. SWE introduced
a standard for the Sensor Model Language (SensorML) in sensing data observations and
processing data. Definition of XML syntax is a standard way to communicate for ge-
ographic information and data processing services of detecting components of systems
[10].

How to take advantage of the less amount of data transfer to meet the various sensor
incompatibility and interoperability. This paper considers a new design of sensor node
with data compression capability to provide a high-efficiency speed rate and more space
of store for the data message. The models can make the IoT not only for sensor nodes
can sense data, but also improve the efficiency of the transmission network bandwidth.
In the proposed method, the lossless data compression algorithm is applied to reduce the
amount of information and to occupy less bandwidth for data aggregation processing in
while data transceiver that leads the IoT increasing more efficiency of bandwidth usage.
Next sections present the details of the methodology and its related work.

2. Related Work. Applications of the IoT with relevant sensor networks have been
growing significantly. The information exchange standards have received more attention
from researchers [6][10]. The question is how to integrate the information from offering
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different applications for exchanging between objects in the interoperability and compat-
ibility that will be a significant challenge for the IoT technology and the information
processing standards of the sensor network. For solving this critical issue, the integration
of sensor networks with service-oriented architectures in Giovanni Aloisio et al. [6], re-
quires explicit representations of sensor information and interfaces. A strong candidate
language for modeling sensor information suggested is SensorML[8].

The main reason for using SensorML for sensor information exchange standards is
to describe exchanging information details before or after processing to facilitate the
exchange and calculation that in term of being better to improve interoperability. The
SensorML, as opposed to other sensor modeling languages, supports a specification of
a process model associated with a sensor system, Van Zyl et al. [11] also confirmed the
SensorML in sensor networks would be more appropriate information exchange standards.

Also, integration SensorML into applications has been gradually increasing, such as
applications of the sensing of the satellite measurements [12], the health care [13] and the
electrical systems [6]. The drawbacks of these applications can store and exchange effects
in the more massive data amount and a variant of the sensor nodes. Therefore, a design
of the sensor node with itself is the ability to compress data is necessary needed. On the
other hand, data compression issue is attracted as a mission-critical concern for solving
the data storage and transmission efficiency.

The several conventional data compression methods [14][15] is reviewed as follows.
Huffman coding uses a variable length code for each of the elements within the information
[15]. It involves typically analyzing the data to determine the probability of parts of the
data. The most likely items are coded with a few bits and the least likely coded with
a higher number of bits. The Huffman coded values are then read from left to right,
and the bits are listed from right to left. The significant advantage of Huffman coding is
that, although each character is coded with a different number of bits, the receiver will
automatically determine the style whatever their order. When transmitting or storing
Huffman encrypted data, the coding table needs to be stored with the data. It is a proper
compression technique, but it does not take into account higher order associations between
characters.

Adaptive Huffman coding [16] uses defined word schemes which determine the mapping
from source messages to codewords based upon a running estimate of the source message
probabilities. The code is adaptive and changing to remain optimal for the current fore-
cast. In this way, the adaptive Huffman codes respond to locality, and the encoder thus
learns the characteristics of the source data. The decoder must then determine along with
the encoder by continually updating the Huffman tree to stay in synchronization with the
encoder.

The second advantage of adaptive Huffman coding is that it only requires a single pass
over the data. In many cases, the adaptive Huffman method gives a better performance,
regarding some bits transmitted, than static Huffman coding. This does not contradict
the optimality of the static method as the static method is optimal only overall methods,
which assumes a time-invariant mapping. The performance of the adaptive techniques
can also be worse than that of the static method.

LZ77 coding [16] was developed the adaptive dictionary data compression techniques
which took into account repetition in phases, words or parts of words. These repeated
components can either be text or binary. A flag is typically used to identify coded and
un-encoded portions. The encoded sequence could be modified with the flag sequence
”#m#n” where m represents the number of characters to trace back to find the character
sequence and n the number of replaced characters. Usually, a long chain of text has many
repeated words and phrases, such as ’and’, ’there’, and so on. If the short sequences
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replaced with codes that were longer than the actual series itself, it could cause longer
files.

The Variable-length-code LZW uses a variation of the LZW algorithm where variable-
length codes are used to replace patterns detected in the original data. It uses a dictionary
constructed from the patterns encountered in the original data. Each new pattern is
entered into it, and its indexed address is used to replace it in the compressed stream.
The transmitter and receiver maintain the same dictionary. LZ compression substitutes
the detected repeated patterns with references to a dictionary. Unfortunately, the larger
the dictionary, the higher the number of bits that are necessary for the recommendations;
the optimal size of the lexicon also varies for different types of data; the more variable
the data, the smaller the optimal size of the directory.

For multimedia data (audio, video, and still images) is taking up too much storage space
and high bandwidth transmission requirements, a significant reduction in the amount
of data is needed. The approaches to compressing in frequent use are lossy compres-
sion, especially in applications such as streaming media and internet telephony such as
H.264/MPEG-4 [17]. By contrast, lossless compression is required for text and data files,
such as bank records and text articles. In many cases, it is advantageous to make a master
lossless file that can then be used to produce compressed files for different purposes.

For example, a multi-megabyte data can be used at full size to generate a full-page
advertisement in a glossy magazine, and a 10-kilobyte lossy copy can be made for a
small image on a web page. To store data efficiently with the limited memory space, as
well as to reduce the flow of network traffic over time, the data compression methods
for captured data compression will reduce not only data storage space requirement, but
also improve memory capacity and reduce the efficiency of the transmission time. The
architecture in the context of medical sensors in compressed sensing algorithms for data
compression in wireless sensors was introduced in [14] to address the energy and telemetry
bandwidth constraints common to wireless sensor nodes. The drawback of this system is
data exchange format does not conform to the SensorML standards, therefore; it cannot
comply with the interoperability of the IoT.

This paper focuses on an approach to designing and implementing sensor nodes with
data compression capabilities as the future IoT for sensor nodes. The sensor nodes are not
only as data acquisition but also provide data compression function. For compatibility
with SensorML standard of the IoT for sensor nodes, the approach should be able to
meet a large of amount of sensing data storage and use bandwidth efficiently in the sensor
network. Strategy of compressing sensing data before transmitting data is applied as a
solution for this design. Moreover, the sensor nodes in the IoT requires of transmitting
sensing information accurately, whether, during transmission processing, the receiver gets
losing data in comparing the original data or losing its meaning of original data, this data
could not be used. Therefore, we apply the lossless compression scheme in the design. In
next section will present details this design.

3. Sensor Node with Data Compression Capability for SensorML.

3.1. Sensor node System architecture. In this section, we present framework of mod-
eling and design construction of a sensor node for IoT as general implications of the inte-
grating circuit analysis functions. In modern electronic systems, hardware, software and
firmware interconnect in the design process, in which have some built-in assumptions for
modeling of architecture system that has produced significant positive things [4][6][18].
Formal rules on the design of software have applied to the development of hardware sys-
tems. System development usually is a multi-stage process. It is iterative and a not
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Figure 1. Implementing function modules of a design of Sensor Node

Figure 2. Sensor Nodes Data packet format

sequential process and feedback from any part updates earlier stages [19]. We started
the phase of identification function system, a need for the system is defined to help a
design team produce a designing specification about the functionality of the complete
system. For example, assumed that the sensor nodes components perform ideally such
that the sampling module, compressing module and transceivers module. The inputs of
a presented modeling framework consist only terms of technical parameters, definition
functions and system specifications in applying to a designing sensor node. One obvious
extension of the model is to analyze the compression algorithm tradeoffs for SinsorML
which are identical to functioning modules of the system has been noted in Figure 1.

Figure 1 shows design module of the tradeoff for sensorML to support underlying struc-
ture IoT for sensor nets. The input specification is defined as a sampling function of the
system to sense data as the original data; the output specification is identified as an opti-
mal a function of the system regarding data compression and improve throughput. There
are some necessary described function modules as follows. First, the sampling module is
responsible for building packet format and reading packet headers. This module allows
for modifying header structures, packet types and the method for actually making the
header. It defines explicitly methods for building configuration and data headers, as well
as reading, received headers.
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Figure 2 describes data header in sensor node of its MAC packet format to facilitate
encoding sensorML. Second, the compressing data module provides methods for being
ability compression data before transmission. This major component consists of the group
of modules including predictive coding, predictor, and entropy coding table (see Fig. 1).
These modules allow for new compression algorithms to be implemented and plugged
into sensor node with minimal modification. Moreover, the sensor node design allows for
changing implementations of predictors and entropy coding tables with little adjustment.
With a standardized interface for compression algorithms, this module allows a new com-
pression algorithm merge with the sensor node. A new module supports interface and
modify the compression module to point a specific algorithm.

The predictive coding module implements the defining a compression radius and error
bound as well as choosing and executing sync operations and lossless compression. The
predictor module supplies a module with a well-defined interface for predictors. The
coding module does the same as the predictor module for entropy coding. This allows for
new predictors and entropy coding techniques to be implemented to match our interfaces
and merely switch in and out for easy testing as well as customized algorithms to optimally
fit the sensor data characteristics at given tasks. Finally, the generating signal module and
transceiver module are responsible for everything related to streams. It provides methods
for building and sending streams as well as passing stream data to other modules that
may require these data. These modules provide the interface for initializing the lower
level network, sending packets and receiving packets.

3.2. Software Architecture and Data Compression Algorithms. As describing
resource of the sensor is through SensorML that use mechanism for describing IoT. For
example scientific workflows and facilitating wholly distributed workflow descriptions on
the web [11]. However, in the specific cases like sensor network whose has the open and
distributed environments, sensorML should be extended by trading off to fully capture
the requirements as relating to its open and distributed environments. This section, the
data compression methods for SensorML sample message formats are considered as the
application for a design of sensor node for the Internet of Things. The lossless compression
algorithms (Huffman, Adapted Huffman, Arithmetic, and LZSS) [16] use a generated
dictionary table for compressing or decompressing correctly. Due to being based on the
dictionary table, the data compression ratio can make changes for the better.

Figure 3 shows the LZSS data compression algorithm is better than the other com-
pression algorithms concerning it is more suitable for sensing node data compression.
Therefore, this paper recommends and emphasizes on applying LZSS data compression
algorithm in the design and to implementation for sensor nodes. Lempel-Ziv-Storer-
Szymanski, otherwise known as LZSS that is a derivative of the LZ77 lossless data com-
pression algorithm, which is a dictionary encoding technique. It attempts to replace a
string of symbols concerning a dictionary location of the same string. For example, Input
stream for encoding:

The LZSS data compression presented as the mandatory inclusion of the next non-
matching symbol into each code-word that could lead to situations. The explicitly coded
symbol despite the possibility of the next match as shown in Algorithm 1. For example,
in the string of ”abbca‖caabb” included the matches. The first match is a reference to
”ca” (with the first non-matching symbol being ”a”). And the next match then is ”bb”
while it could have been ”abb” if there were no requirement to code the first non-matching
symbol explicitly. Its algorithm uses fixed-length code-words consisting of offset (into the
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Figure 3. Typical efficiency of lossless compression algorithms

search buffer) and length (of the match) to denote references. Only symbols for which no
match can be found or where the recommendations would take up more space than the
codes for the symbols are still explicitly coded.

Algorithm 1 The LZSS algorithm

Step 1: place the coding position to the beginning of the input stream;
Step 2: find the longest match in the window for the lookahead buffer:
P := pointer to the match;
L := length of the match;
Step 3:
if L >= MINLENGTH then

Output P and move the coding position L characters forward;
else

Output the first character of the look ahead buffer and move the coding position
one character forward;
end if
Step 4:
if There are more characters of the input stream then,

go back to Step 2.
end if

Figure 4 shows the process of the encoding scheme in which, each pointer or character
added an extra bit to distinguish between them. The output is packed with no unused
bits. Implemented LZSS encoders and decoders can be simplified by numbering the input
text characters modulo N . The window is an array of N characters. To shift in character
number r (modulo N), it is merely necessary to overwrite element r of the variety, which
implicitly shifts out character r − N (modulo N). Instead of an offset, the first element
of an (i, j) pointer can be a position in the array [0..N − 1]. It means that i is capable of
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Figure 4. A phase of encoding LZSS compression algorithm

indexing substrings which start in the look-ahead buffer. The coding parameters N and
F can be specified in terms of the number of bits they are to be coded in, which will be
denoted as n and f, respectively. N and F are calculated from following equations:

p = |(1 + n + f)/8| (1)

N = 2× n, (2)

F = 2× f + p (3)

To code the rth character of a string s under LZSS, a window w of N characters and a
look-ahead buffer l of F characters is used as given:

w = s× (r + F −N, r + F − 1) (4)

l = s× (r, r + F − 1) (5)

where s is a string of n characters, s = s1, s2, ...sn, then si is written as s(i), and the
substring sisj is written as s(i, j). Given two strings s and t of length n, the match
between the strings, M(s, t), is defined to be the length of the longest common prefix
of s and t. Given a set of q strings of length n, U = [u1, u2, , uq], the longest match,
LM(s, U), is a function on a strings and the set of strings U , which returns the ordered
pair (i,M(s, ui)), where M(s, ui) is maximal over all the strings in U . The ordered pair
gives the position and size of a longest match for s in U . This need not be unique, but any
one of the different possible values may be used, since the main concern is the length of the
match. To be consistent with the implementation of the window, a special case is made
for numbering the string w. Each character in w is given the same index that it has in the
original string, modulo N . This means that s(j) corresponds to w(j mod N), provided
that s(j) is in the window. Substrings are extracted from the window using wraparound,
so if j > k then w(j, k) is evaluated as if a copy of w is concatenated to the end of w. The
strings of length F in the window are denoted by xj = w(j, j + F − 1), j = r + F − N.
Note that l = xr.X is the set of all distinct strings of length F in the window, apart from
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l, i.e., X = [xj : j = r+F −N ], where there are two substrings xi = xj : ij, the substring
which entered the window most recently is chosen for inclusion in X. To perform LZSS
coding, a procedure is needed to evaluate (g, h) = LM(l, X). The first h elements of the
look-ahead buffer may then be coded with the pointer (g, h).

For example, if the ”strings = abcabcbacbababcabc” is being encoded with the pa-
rameters N = 11 and F = 4, and coding is up to character 12, then the window is

and l = x1 = babc, and x5 = bcba, x6 = cbac, x7 = bacb, x8 = acba, x9 = cbab, x10 = baba,
x0 = abab. By inspection, the longest match is x10, i.e., LM(l, X) = (10, 3). The straight-
forward algorithm evaluates M(l, Xi) for each member of X. This requires up to N - F
evaluations of M to obtain each pointer in the coded form of the input string s.

3.3. Hardware architecture. As described the LZSS compression algorithm in subsec-
tion B, and this subsection adapted its parameters into a set of the required hardware
specifications. Figure 5 shows the initialization and the timer setting for sensing nodes’
hardware. The procedure external interrupt is implemented as a design for compression
algorithms. The external interrupt checks whether requests for information exchange,
if any required data exchange sensing information will be packaged into the SensorML
coding, and packed data compression. The sensor node encoder essentially amounts to
performing a linear projection from the N -dimensional input, f, to an M -dimensional set
of measurements, y, using the matrix, Φ. In the context of data compression, this amounts
to transforming every block of N samples of f into M measurements (s). Bf and By are
the bits needed to represent the dynamic range of each sample in and respectively. ∆ is
to use a pseudo-random Bernoulli matrix where each entry, Φm,n is 1 [19][20]. The signal
bandwidth in Hertz is BWf . Any other choice of a full rank M ×N matrix would result
in circuit complexity, data storage, and computation requirements.

The data compression must be split after data partition items will depend on the
total length, and the range of the partition after partition will start the data transfer
mechanism, through the data transport mechanism to ensure will divide the excellent in-
formation entirely fed every data exchange a single chip will go through this process. To
achieve the goal of the proposed method of design and implementation for sensor nodes:
low power consumption, high-performance computing and full peripheral interface of the
sensor node. Hardware core of sensor node for data processing, compressing and decom-
pressing modules of forming the sensor nodes are beneficial for performance validation.
The internal function blocks of the experiment are shown in Figure 6.
Analog-to-Digital Converter (ADC): the input signal is first amplified and then dig-
itized by a single ADC sampling at the Nyquist rate, fs[21]. In which, the sampling
frequency of each ADC only needs to be fs/N where fs ≥ 2BWf and N is the number
of integration samples per compression block. The ADC output is passed to M parallel
accumulators that accumulate the incoming sample based on their respective sequence of
matrix coefficients Φi(t). The matrix coefficients Φi(t), need to be applied at the Nyquist
frequency, fs of the signal or higher in order to avoid aliasing [19]. For sensor node for
Internet of Things application, systems are typified by low sampling frequencies, medium
resolutions and small amplitude input signals. The output of each ADC produces one
sampling block result, f [n], so the resolution of the ADC should be equal to the required
measurement resolution, Bs. Because the coefficient matrix is a Bernouli random matrix
where all elements are 1, so the multifunction could be implemented with XOR gate and
the carry in input of the accumulator. The output of the accumulator is then captured
every N samples at which time the accumulator is reset. The resulting power of the array
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Figure 5. The hardware flowchart of sensor node

Figure 6. Internal design single chip of sensor node for sensorML

of ADCs is then
PADC = (M/N) ∗ FOM ∗ 2Bs ∗ fs (6)

where FOM [21] is the figure-of-merit of the ADC, Bs is number bits needed for each
sample s, fs sample frequency.
Matrix Generation: the generating the measurement matrix coefficients Φi(t) needs
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to approximate a random matrix, one straightforward approach [22] is to use a lookup
table or a memory to implement the matrix in running at the Nyquist rate. Since power
consumption is important in sensor Internet of Things applications, the matrix generation
that requires only two pseudo-random binary sequence (PRBS) generators. The matrix
generation consists of the state of one PRBS generator XORd with the output of a second
PRBS generator to create the columns of Φ(t) on a sample by sample basis. The seed
and sequence length of each PRBS is programmable to enable the synthesis of a wide
variety of pseudo-random matrices. The input is often over sampled; the inner product of
a measurement matrix that is derived from a single shifted PRBS sequence and the input
will appear correlated.
In mixer: each measurement, si[k], requires an accumulator with at least Bs bits of
resolution which results in Bf flip-flops and XORs, and a Bs -bit adder. In order to
model the delay and energy costs associated with these circuits, a logical effort [23] model
is adopted to determine the sizing of each gate and the methodology for sizing the adder
is similar to [14]. A slightly simplified version of the alpha-power law delay model used
in [23] is used to map the normalized delay of the logical effort model to real delay. The
logical effort delay of the accumulator is used to scale until the timing constraint is just
met, resulting in the following minimum operating. Mixer is described in [21],[23] where
it is shown to have a theoretical voltage conversion gain Gc ranging between -3.92 dB and
2.1 dB and a measured noise figure (NF ) of 3.8 dB. The impact of the mixer performance
is its impact on the specifications for the operational trans-conductance amplifier. For a
Gc = −3dB and a NF = 3.8dB, the current noise density at the output of the mixer:

i2 = i2noise.10(GC/2+NF )/10 (7)

where i2 is the noise current density out of the amplifier into the mixer. For a pseudo-
random bit sequence of samples, the resulting noise accumulated during an integration
window is N times the output noise of a single sample, where the output noise density
is filtered by the gain and effective noise bandwidth of an integrator with 1/Nth the
integration period. In integrator, the frequency response is a since pulse where the gain
GI and noise bandwidth BWN of the integrator can be expressed as

G2
IBWN =

∞∫
0

|Hi(f)|2df =

(
N

fsCL

)2

︸ ︷︷ ︸
gain

(
fs
2N

)
︸ ︷︷ ︸
bandwidth

(8)

where Hi(f) is the transfer function of the integrator, N/fs is the integration period.
The outputs of the integrator are sampled as a string of n characters, s = s1, s2, ..sn. and
samples Bs are collected at each path.
Since the purpose of the design sensor node encoder sensorML is for being ability of data
compression, with LZSS compression algorithm, compression block lengths between 100 to
1000 samples require roughly 11-17 measurements si[k] per significant term to reconstruct
3-4 significant terms per block requires the range of specifications for the system.

4. Experimental Results and Analysis.

4.1. The experimental results. Four results of the proposed method with data com-
pression capabilities can be obtained through the experimental evaluations included the
compressing rate, throughput, flexible adaption, and easy use.
The first, the compressing rate is a compression ratio with a format of 252 bytes and
LZSS compression, the transmission performance is improved up to 48.8%, in comparison
with the original approach with raw data. Figure 6 and Figure 7 show the comparative
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Figure 7. Original data exchange through sensor node with hardware ar-
chitectures based on the IEEE 802.15.4/ZigBee protocol [24], which uses
the W3C XML as the encoding for the exchange of information

performance between data compressed and uncompressed data on a new sensor node and
sensor node with hardware architectures based on the IEEE 802.15.4/ZigBee protocol
with the same data format of data packets 252 bytes.

Figure 7 shows a sensor node with hardware architectures based on the IEEE 802.15.4
/ZigBee protocol [24]. This sensor node uses the W3C XML schema definition language
as the encoding in the binding of the data model defined in IEEE Std., 1484.11.1 TM-2004
[25], which allows for interoperability and the exchange of data-model instances between
various systems. The figure shows the sensor node receives amount 252 bytes packet
format of original data for the exchange of information.

Figure 8 shows a newly proposed sensor node uses data model defined in IEEE Std
1484.11.1TM-2004, as the encoding, with the same amount 252 bytes packet format of
original data. Apparently, the proposed sensor node with data compression capabilities
shows amount only receives 123 bytes compression data for the exchange of information.
This receiving amount one occupied only of a haft of non-compression data sensor node.

The second, the node throughput is improved significantly. The figure 8 shows the com-
parison of amount delivering of cumulative information between data compression sensor
node and non-data compression sensor node. In which, the solid line of data compression
increased significantly, it got over 1409 kb in the 23th hours, whereas the dotted line of
the non-data compression sensor node is not only the highest located approximately 700
kb at same time with solid line, this value only equal a half the solid line of data com-
pression. This means the evaluation demonstrates that new proposed sensor node with
applied compression algorithm can improve the compressed data streaming throughput
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Figure 8. A new proposed sensor node as the for compressed data exchange

Figure 9. The comparison amount delivering of cumulative information
between data compression sensor node and non-data compression sensor
node

by over 204 % in comparison to use the original data transmission of the amount of in-
formation in represented by the same condition for transferring traffic, and with good the
distances (network latencies) between interacting nodes.
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In addition, it is assumed that the amount of information accumulated during the day,
with the duty cycle working of sensor nodes is 30 seconds; the communication capabilities
of the new proposed sensor node is better efficiency of transmission than the transmis-
sion of original data accumulate information on the same conditions. The third, flexible
adapted architecture of the proposed architecture of sensor node has benefit of basic qual-
ities: (i) sensor node supports SensorML standard self-descriptions and processes in the
adopted SensorML model language, so as the entire network can be sufficiently described.
Because, the formal SensorML for sensors and processes inside network complexes and
rather heavyweight of describing in a dynamic manner. (ii) Openness: sensor node sup-
ports in a plug and play mode, so it can be added or removed from the network. The
provided that, sensor node is self-described via a valid SensorML document, preserving
this way the unobtrusive operation of the network. (iii) Sensor nodes can be reconfigurable
in run-time, in the sense of adapting their operation logic. For example, the sampling
frequency of a data sensing parameter of humidity and temperature may have to change,
depending on certain personalized criteria, personalized thresholds for parameters of a
physiological phenomenon should also be reconfigurable to meet requirement by using
SensorML.

Table 1. The comparative length in a set of relationship between the
compression of ratio (n = 18)

The finally, this new sensor node is flexible using in different sensor net applications
with two created commands for requirement of formatting data packet and exchanging
information e.g. ”AT + TXTD = MACP = Command”. The command for formatting
data packet acts on the sensing nodes MAC address to require sensor node compression
data of information exchange such as a command ”AT + TXT D = MACP = EDD”, if
it needs the sensor nodes use original data for exchange of information, a command such
as ”AT + TXTD = MACP = EEE”

4.2. Data compression performance analysis. The experiment evaluation provides
not only remarkable compression ratios, but the new sensor can also signicantly improve
its sensor net throughput by reducing retransmissions in noisy wireless sensor net. The
reducing data retransmissions and the total lower layer packet overhead altogether make
substantial savings in overall transmitted bytes. As the experimental results are men-
tioned above, due to applying the compression algorithm LZSS to sensor node in both
hardware and software design, it is based on standard sensorML tradeoff for senor net ap-
plications. The core compression module in Fig.6 includes a mixer for encoding/decoding
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Figure 10. Compression performance diagrams for two parameters in def-
erential setting

to a window and dictionary size generator by matrix generation. The mixer and integrator
act applicably to a compression algorithm.

The compression algorithm LZSS could be achieved compression by replacing common
strings with pointers to previously seen occurrences of the string. In other words, LZSS
works by trying to replace the current string being encoded with an offset to a matching,
previously seen, string and its length. The compression algorithm uses a buffer of the
preceding several bytes (called the sliding window) to look for the next several bytes
(called the comparative length). The size of the sliding widow and the comparative length
determine the size of the generated codes, the maximum compression possible. At each
step of the compression process, the number of bits required by an optimum parsing of the
input ending at the current position is known. There are two parameters are considered
to have strong influence on the compression ratio and processing quality (as throughput).

Overall, the proportion of the data compression rate of two kinds of the comparative
length (including 6 lines) decreased significantly over of increasing number of packet for-
mat in original data byte 207 bytes, 807 bytes, 1156 bytes, 3018 bytes, 5507 bytes and
7956 bytes. At the data format packet of 207 bytes, the percentage of the data compres-
sion rate gets highest made at peak is 49% for comparative length N =18, and 48 % for
comparative length N = 32. In a while range of original data packet format from 207
bytes to 3018 bytes, the size of slide window F is not affected much in compression rate.
However, for the size of 3018 bytes to 7856 bytes of original data, the value of F impacted
in compression rate; the lowest of the data compression rate on size of 7956 bytes data
raw is only 36 % with N = 18, and 26 % with N =32 respectively.

5. Conclusions. In this paper, we presented a novel method of the improvement to
data compression capability to support SensorML interface for information exchange in
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Table 2. A set of relationship between the compression of the ratio with
the comparative length (n = 32)

the sensor nodes. Data compression capability implemented before transmitting reduces
not only the data retransmissions but also less total byte transmitted in lower layer packet
overhead.

The experimental result offers the remarkable compression ratios and improves the
transmission performance is up to 48.8%, in comparison with the original approach with
raw data. Besides, the proposed method can deliver up to 204
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