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Abstract. It is a challenging task to develop a robust appearance model due to com-
plicated appearance variations such as illumination variation, partial occlusion, motion
blur and background clutters. Some existing appearance models are often built upon a
linear combination of a set of templates with least square methods. With such kind of
representation, visual tracking is not robust when significant appearance variations are
in presence. In this work, we propose a novel target representation for visual tracking. A
target candidate is represented by a linear combination of a set of target templates from
previous frames with `1-norm to characterize the coding residual. In the meantime, `2-
norm is used to regularize the coding coefficient. The proposed target appearance model
is robust to partial occlusion. A novel likelihood evaluation function is proposed based on
the reconstruction residual and coding coefficient. Experimental results on challenging
video sequences in comparison with state-of-the-art algorithms demonstrate the effective-
ness and robustness of the proposed tracking algorithm.
Keywords: Visual tracking; Particle filter; Non-sparse representation; Appearance
model.

1. Introduction. Visual tracking is a well-known issue in computer vision with a variety
of tasks such as vehicle navigation, security and surveillance, human-computer interaction,
etc. Despite much progress has been made in recent decades [1], it remains a challenging
task due to factors such as partial occlusions, illumination variations, background clutters
and out-of-plane rotation. In visual tracking, a target candidate is usually manually
selected in the first frame. Thereby, a tracking algorithm is required to associate the
tracked target in the rest video frames. The appearance model is primarily important
in a tracking algorithm, which represents a target candidate and is used to evaluate the
observation likelihood of a target candidate belonging to a target in the current frame. A
good appearance model should be robust to significant appearance variations.

A target is usually represented by a set of dictionary templates. Each target candidate
is described by a linear combination of pre-defined templates. The observation likelihood
is evaluated based on the distance between a target candidate and the corresponding
templates. Recently, sparse representation techniques [2] have been applied to visual
tracking [3, 4], where a target candidate (i.e., an image patch) is sparsely represented by
a set of templates with online update. These tracking algorithms use `1-norm sparsity
constraint on coding coefficients and achieve robustness to appearance variations caused
by partial occlusions and outliers. However, the expensive computation is a drawback
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due to solving `1-norm minimization problems. Moreover, in these tracking algorithms, a
number of templates are used to learn and represent target candidates. The computational
cost grows with the number of templates.

Inspired by collaborative representation based face recognition [5], in this work, we
propose a novel appearance model based on a set of target templates by using `1-norm to
characterize the coding residual (i.e., the reconstruction error between a target candidate
and the templates) to achieve robustness to occlusions and outliers. In the meantime, by
exploiting non-sparse `2-norm to regularize coding coefficients the computational cost is
less expensive than using `1-norm to regularize coding coefficients. Moreover, we propose a
novel likelihood evaluation function based on the reconstruction residual and the estimated
template coefficient, which makes tracking algorithm more stable. Finally, we propose a
robust tracking algorithm based on the proposed appearance model and the observation
likelihood in a particle filter framework. Experimental results against several state-of-the-
art tracking algorithms demonstrate that the proposed tracking achieves superior tracking
results.

The remainder of this paper is organized as follows. Section 2 summarizes the related
work. Section 3 presents the proposed visual tracking algorithm, which includes `1 and
`2-norms based target representation, a novel observation likelihood and the template
update scheme. Section 4 evaluates experimental results of the proposed tracking algo-
rithm in comparison with state-of-the-art algorithms on some challenging video sequences.
Section 5 concludes this work.

2. Related work. Visual tracking is an important issue in computer vision with numer-
ous applications. Generally speaking, based on the types of appearance models adopted,
visual tracking algorithms can be categorized as either generative [6, 7, 8, 9] or discrim-
inative [10, 11, 12, 13, 14, 15]. Here, we briefly review some representative tracking
algorithms related to our work.

Generative tracking algorithms typically learn an appearance model to represent a
target candidate and localize the target by searching for the image region that has the
minimum reconstruction residual to the target model in the current frame. Adam et
al. [9] divides a target candidate into multiple non-overlapping image patches. The
Earth Mover’s Distance (EMD) is used to measure the similarity between a patch and
the corresponding patch in the target model. The proposed algorithm represents a target
candidate by a histogram which takes into account the spatial distribution of the pixel
intensities. The tracking algorithm can alleviate the drift problem because of fixed target
templates. However, it is not robust to cluttered background and drastic illumination
variations. In [16], representative samples are used as target templates by undergoing the
principle component analysis. A target candidate is represented by a set of basis vectors.
The proposed tracking algorithm is robust to pose and illumination variations. In [17],
a local subspace collaborative tracking algorithm is proposed, which uses multiple linear
and nonlinear subspaces learned to model target appearances.

Kwon et al. [7] learn a set of basic appearance models and basic motion models to
cover complicated appearance variations and motion variations, respectively. The tracking
algorithm is robust to motion variations. Wang et al. [6] use the least soft-thresold
squares (LSS) distance to measure the similarity between a target candidate and the
target templates, which is robust to partial occlusion and illumination variations. Xiao
et al.[18] use the `2-regularized least square to model target appearances, which provides
a fast tracking performance. In [19, 20], correlation filters are used to model appearance
models. In [21, 22], correlation filters based trackers are proposed and achieve robust
performance.
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Recently, sparse linear representations have been introduced to target representations.
In L1 algorithm [3], a target candidate is sparsely represented by using both target tem-
plates and trivial templates. The target templates are used to represent target appear-
ance, and trivial templates are used to describe outliers or occlusions. The L1 algorithm
is robust to partial occlusions. However, it is time-consuming in solving `1 minimization
problem, which limits the tracking performance in real time. Jia et al. [23] propose a
structural local sparse appearance model, where a target candidate is sparsely represented
by using the partial information and spatial information via a alignment-pooling method.
Taking advantage of generative and discriminative models, Zhong et al. [4] propose a
sparsity-based collaborative appearance model based on both holistic templates and local
representations. Recently, Zhang et al. [24] propose structural spare tracking algorithm
by exploiting the spatial layout structure among the local patches inside each target can-
didate. In [25], a target candidate is represented by sparse combinations of particles by
exploiting underlying low-rank constraints.

Discriminative tracking algorithms consider visual tracking as a binary classification
problem, in which a classifier is learnt to distinguish a target from the around background.
Avidan [10] proposes an ensemble tracking algorithm by combining a set of weak classifiers
into a strong classifier and computes the confidence value for each pixel. The target is
located by a vote confidence map. Bai et al.[11] consider the contribution of confidences as
a weight vector and combine a set of weak classifiers into a strong classifiers. Babenko et al.
[15] introduce the multiple instance learning framework into visual tracking where positive
and negative bags are considered as training samples. Kalal et al. [14] formulate visual
tracking in a tracking-learning-detecting framework. In [14], a bootstrapping classifier is
learnt and used to select potential samples for updating unlabeled data with positive and
negative constraints. Hare et al.[12] propose a tracking-by-detecting algorithm based on
an online structured output support vector machine (SVM). Ning et al. [26] learn linear
structured SVM and explicit feature map to track object. In [27, 28, 29], the features
based on deep convolutional neural networks are learnt.

3. The proposed visual tracking algorithm. In this section, we describe `1-`2 norms
based target representation and a likelihood evaluation based on the reconstruction resid-
ual and the coding coefficient. Based on the target representation and the likelihood
evaluation, we outline the proposed tracking algorithm in a particle filter framework [30].

3.1. `1-`2 norms based target representation. During tracking, m particles (i.e.,
target candidates) are sampled at the t-th frame, the state of a particle is denoted as
xit, i = 1, 2, · · · ,m. The corresponding observation of xit is denoted as yit at frame t. The
state of the located target at frame t is denoted as x̂t, and the corresponding observation
is denoted as ŷt.

In visual tracking, the observation yit of a target candidate is often represented by a
linear combination of target templates

yit ≈ d1α1 + d2α2 + · · ·+ dnαn, (1)

where D = [d1,d2, · · · ,dn] is a set of target templates, α = [α1, α2, · · · , αn]T ∈ Rn is the
corresponding template coefficient vector.

Different from sparse linear representations in [3, 4, 23], in the proposed tracking algo-
rithm, the observation yit of a target candidate is approximated in the form of non-sparse
combinations of a set of target templates by solving

α̂ = arg min
α
‖yit −Dα‖1 + λ‖α‖22 , (2)
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where D is a set of templates, ‖ · ‖1 and ‖ · ‖2 denote the `1 and `2 norms, respectively. In
[3], D includes target templates and trivial templates, which are used to represent target
candidates and to handle partial occlusions, respectively. In Eqn. (2), D only includes a
set of target templates.

Let e = yit −Dα. Eqn. (2) can be-written as

α̂ = arg min
α
‖e‖1 + λ‖α‖22 , s.t. yit = Dα + e. (3)

In Eqn. (3), α̂ can be efficiently computed by Augmented Lagrange Multiplier method
[5]. The corresponding augmented Lagrangian function is as follows

Lµ(e,α, z) = ‖e‖1 + λ‖α‖22 + 〈z,F〉+
µ

2
‖F‖22, (4)

where F = yit −Dα− e, µ is a constant that penalises large reconstruction error. z is a
Lagrange multiplier vector. z and α are iteratively estimated in Eqn. (4).

In the proposed target appearance model, we use `1-norm measure the coding residual
for the robustness to partial occlusions or outliers. `2-norm regularization on α brings
much less computational cost than `1-norm regularization. In the mean, the `2-norm is
used on the coding coefficient, which prevents any single template from taking a dominant
role in representing a target candidate. The proposed appearance model can obtain a more
stable target representation.

As shown in the following experiment section, non-sparse `2-norm regularization on
coding coefficient can enhance the discrimination of target representation. The proposed
appearance model turns out to robust to illumination variations, partial occlusions, etc.

3.2. Likelihood evaluation. The likelihood evaluation is a key issue in visual tracking,
which reflects the similarity between a target candidate and the corresponding target
models. Based on the estimated α̂ in Eqn. (2), the reconstruction residual between a
target candidate xit and the templates D is measured

d(yit,Dα̂) = (yit −Dα̂)T (yit −Dα̂) (5)

where D is dictionary templates, α̂ is the coefficient vector estimated by Eqn. (2).
The regularization coefficient reflects the importance of target templates in represent-

ing a target candidate. In the proposed appearance model, it is introduced into the
observation likelihood. The proposed likelihood evaluation is computed based on the re-
construction residual with the coding coefficient. Based on Eqn. (2), the observation
likelihood is computed as

p(yit|xit) ∝ exp
{
−η(d(yit,Dα̂))− λ‖α̂‖1

}
, (6)

where d(yit,Dα̂)) is the reconstruction residual between a target candidate xit and target
templates D, η is the standard deviation of the Gaussian function.

3.3. Target location and template update. The proposed tracking algorithm is pro-
posed in a particle filter framework. A particle (i.e., a target candidate) corresponds to
an image patch in terms of motion state variables in each frame image, which is described
by a motion state variable including 2D position (x, y) and target scale s.

In a particle filter framework, visual tracking is formulated as an estimation of the
posterior distribution p(xt|y1:t), where y1:t = {y1,y2, · · · ,yt} are observations from the
first frame to frame t. The goal of visual tracking is to estimate the target state xt
recursively

p(xt|y1:t) ∝ p(yt|xt)
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (7)
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Algorithm 1: Proposed tracking algorithm

Input: the t-th frame, target state x̂t−1 at the (t− 1)-th frame.
1 Sample m target candidates {xit}mi=1 according to x̂t−1 at the (t− 1)-th frame and

motion model by a Gaussian function with Eqn. (8).
2 Extract the feature and obtain yit for {xit}mi=1.
3 Compute the observation likelihood p(yit|xit) for each particle with Eqns. (2), (6)

and target template Dt−1.
4 Evaluate target state x̂t with Eqn. (9).
5 Update Dt according to the update scheme in Section 3.3.
Output: Target state x̂t at t-th frame.

where p(xt|xt−1) denotes the motion model. In this work, p(xt|xt−1) is modelled by a
Gaussian distribution

p(xt|xt−1) = N (xt;xt−1,Σ), (8)

where Σ = diag(x, y, s) is a diagonal covariance matrix whose elements are the parameters
of the target 2D position and target scale.

Maximizing the posterior in Eqn. (9) is equal to maximizing the observation like-
lihood p(yt|xt). In visual tracking, the posterior probability p(xt|y1:t) in Eqn. (7) is
approximated by a set of particles with corresponding importance weights {wit}mi=1, where
wit ∝ p(yt|xit). The optimal state of the target at frame t is defined by maximizing the
posterior probability estimation

x̂t = arg max
{xi

t}mi=1

p(yt|xit)p(xit|xit−1). (9)

Since target appearances vary significantly during the tracking process, target templates
should be updated in order to maintain the effectiveness. Fixed target templates are not
sufficient to handle recent appearance variations. Target templates are updated to capture
appearance variations. In the first frame, the first target template is manually selected.
The remaining target templates are selected by perturbating a few pixels (4 pixels in our
experiments) with a radius around the corner of the first target template. The first target
template is the most informative information, so it is always remained in target templates.
During tracking, the recent tracking result reflects appearance variations. At the current
frame, the tracking result is added into target templates. In the mean, the oldest target
template is swapped out.

3.4. The complete tracking algorithm. We outline the proposed tracking algorithm
in Alg. 1 by integrating the `1-`2 norms based target representation, the regularized
observation likelihood and the template updating in a particle filter framework. At the
t-th frame, a number of particles are generated according to the motion model and extract
the corresponding image patch feature (i.e., steps 1-2 in Alg. 1). Then, the observation
likelihood of each particle is computed according to Eqns. (2) and (6) and target template
Dt−1 obtained at frame t−1 (i.e., step 3 in Alg. 1). With evaluated observation likelihood
of each particle, the tracked target is located. The current tracking result is added into
the target templates and the oldest target template is replaced.

4. Experiments. In this section, we evaluate the proposed tracking algorithm on six
challenging video sequences against seven state-of-the-art algorithms. These tracking
algorithms include: Struck [12], VTS[8], SCM [4], FCT [13], DLS [26], LSST[6] and
PCOM[31]. We use the source codes or binary codes provided by the authors. These
competing algorithms demonstrate excellent tracking performances in a recent evaluation
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[1] except for DLS, LSST and PCOM which are recently proposed. All the evaluated algo-
rithms are implemented in MATLAB on a PC with Inter(R) Core(TM) i5-2400 3.10GHZ
and 8GB memory. The number of particles is set to 300. Histograms of Sparse Codes
(HSC) [32] is extracted as feature descriptors. The average processing time of the pro-
posed tracking algorithm is 0.75 s per frame. The size of the target templates is set to
25.

Table 1 summarizes the main attributes of the video sequences. In the Bolt sequence,
the target moves fast and rotates in-plane and out-of-plane. In the mean, the target is
occluded by himself and the other athletes. In the CouponBook sequence, the appearance
of the target change drastically and the other distracters which has a similar appearance
as the tracked target. There are drastic illumination variations in the Fish and Man
sequence. In the Football and Football1 sequences, the targets are occluded by the other
similar objects in these sequences with a complicated background and rotate in plane and
out-of-plane.

4.1. Quantitative Evaluation. The tracking results are presented using four evalua-
tion measures: average center location error, success rate and average overlap rate and
precision[1].

Table 2 show the average center location errors (in pixels) of the eight tracking algo-
rithms on the six sequences. Fig. 1 also shows the precision plots in terms of location error
threshold for these evaluated algorithms. From Table 2 and Fig. 1, we can see that the
proposed tracking algorithm achieves the best or the second best tracking results on five
sequences against the other tracking algorithms. In the meantime, DLS and the proposed
tracking algorithm achieve robust tracking performance over all these sequences.

Table 3 shows success rates of the eight tracking algorithms on the six video sequences.
We also present the success plots of the tracking algorithms in Fig. 2. From these
quantitative evaluations, we can see that the proposed algorithm achieves favorable results
in most of the video sequences against the evaluated tracking algorithms. Table 4 show
the average overlap rates of the tracking algorithms on the six sequences. As seen from
Table 4, the proposed algorithm produces the best or the second best tracking results on
five video sequences.

4.2. Qualitative Evaluation. Fig. 3 show some tracking results of all the evaluated
algorithms. A detailed analysis on the tracking results is discussed based on the main
challenging factors in each video sequence.

Illumination variation and Occlusion: In the Fish and Man sequences, the tar-
gets undergo drastic illumination variations. Struck learns the appearance variations and

Table 1. The main attributes of the six video sequences. Target size: the
initial target size in the first frame; BC: background clutter; OPR: out-
of-plane rotation; IPR: in-plane rotation; IV: illumination variation; Occ:
occlusion; Def: deformation.

Sequence Frames Image size Target size Color BC OPR IPR IV Occ Def

Bolt 350 640×360 26×61 RGB
√ √ √ √

CouponBook 327 320×240 62×98 RGB
√ √

Fish 476 320×240 60×88 Gray
√

Football 362 624×352 39×50 Gray
√ √ √ √

Football1 74 352×288 26×43 RGB
√ √ √

Man 134 241×193 26×40 RGB
√
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Figure 1. Precision plots in terms of location error threshold.

achieves robust tracking results in the Fish sequence. PCOM uses the probability con-
tinuous outlier model to alleviate the influence of illumination variations. The proposed
tracking algorithm performs well in these sequences via the `1-norm constraint on the
coding residual. DLS achieves robust tracking performance via learn structured SVM
classifier. In the Football sequence, the target is occluded by other distracters which are
similar to the target in appearance. FCT, Struck and PCOM drift to track the target
when the target undergoes rotation and is occluded. In contrast, DLS and the proposed
tracking algorithm achieve more accurate tracking results.

Background clutters and deformation: The target is partially occluded and in-
fluenced by the other coupon book In the CouponBook sequence. Struck, SCM, DLS,
PCOM and the proposed tracking algorithm track the target accurately throughout the
video sequences. In the Football sequence, the targets are in a cluttered background.

Table 2. Average center location errors (in pixels). The best two results
are shown in red and blue colors, respectively.

Sequence Struck VTS SCM FCT DLS LSST PCOM Ours
Bolt 387.8 369.8 203.2 267.9 4.5 376.4 363.3 9.9

CouponBook 15.0 65.1 6.0 18.6 5.4 8.0 8.3 4.9
Fish 3.9 43.6 8.3 19.6 3.9 2.9 11.8 6.1

Football 15.3 115.3 6.9 15.8 4.8 13.2 54.2 4.7
Football1 7.0 7.5 10.4 23.7 4.4 8.6 23.4 3.9
man 2.3 22.7 2.9 16.5 3.8 2.4 2.5 2.4

Average 71.9 104.0 39.6 60.3 4.5 68.6 77.2 5.3
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Table 3. Success rate (in percentage). The best two results are shown in
red and blue colors, respectively.

Sequence Struck VTS SCM FCT DLS LSST PCOM Ours
Bolt 1.4 2.9 14.3 0.9 99.7 0.9 0.9 80.3

CouponBook 100 39.4 100 98.5 100 97.0 100 100
Fish 100 35.9 86.6 54.0 100 100 96.4 100

Football 69.3 41.4 88.7 55.3 96.4 62.7 53.9 97.5
Football1 89.2 58.1 39.2 6.8 89.2 51.4 44.6 98.7
man 99.3 22.4 98.5 13.4 100 100 100 100

Average 76.5 33.4 71.2 38.1 97.6 68.7 66.0 96.1

Table 4. Average overlap rate (in percentage). The best two results are
shown in red and blue colors, respectively.

Sequence Struck VTS SCM FCT DLS LSST PCOM Ours
Bolt 1.7 2.3 12.9 1.4 75.9 1.0 1.0 61.8

CouponBook 70.2 35.5 82.3 64.8 83.1 80.2 80.5 86.0
Fish 84.3 34.4 74.0 54.3 83.3 80.9 65.4 78.6

Football 55.7 30.8 60.3 47.5 71.4 53.0 42.4 70.1
Football1 66.0 53.2 45.4 16.9 70.3 53.9 48.2 73.3
man 81.9 27.4 71.9 26.4 67.5 70.0 82.3 82.2

Average 60.0 30.6 57.8 35.2 75.2 56.5 53.3 75.3
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Figure 2. Success plots in terms of overlap threshold.
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(a) Bolt (b) CouponBook

(c) Fish (d) Football

(e) Football1 (f) Man

Figure 3. The tracking results obtained on the 6 video sequences.

DLS and the proposed algorithm achieve good tracking performance in dealing with ap-
pearance variations by background clutters. In the Football1 sequence, FCT and PCOM
fail to track the target after the 43rd frame due to the influence of cluttered background
and rotations. The proposed algorithm can track the target successfully.

In-plane and Out-of-plane rotations: The Bolt, Football and Football1 sequences
are influenced by both in-plane and out-of-plane rotations. In the Bolt sequence, the
proposed tracking algorithm and DLS achieve favorable tracking performances in the
whole sequence, while all the other tracking algorithm only tracking the target in the first
50 frames. DLS and the proposed tracking algorithm can accurately track the target in
the Football and Football1 sequences.

5. Conclusion. We have presented a simple but effective tracking algorithm, in which a
target is represented by a linear combinations of a set of templates from previous frames
with `1-norm to characterize the representation residual. In the meantime, `2-norm is
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used to regularize the coding coefficient. As shown, this target representation is robust to
partial occlusions. Moreover, a novel likelihood evaluation method is proposed to obtain a
stable likelihood evaluating. Experimental results demonstrate the favorable performance
in comparison with some state-of-the-art algorithms. The proposed algorithm turns out
to be robust to partial occlusions, drastic illumination variations and rotations.
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