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Abstract. Multipermuted Multinomial Measures (MMM) are considered for character-
izing outdoor images. First, we recall the Multi-fractal properties of MMM’s and the basic
principle of a method for the parameters estimation. Secondly, we apply this method to
textures drawn from the Brodatz album so as to show the relevance of the model to texture
representation. The next part exemplifies how different textures can be characterized by
a set of several ”scale-stable” parameters directly computed from the parameters. Final
results are given on outdoor images.
Keywords: Multipermuted Multinomial Measures; Texture Segmentation; Multifractal.

1. Introduction. Despite a huge literature on texture analysis, there is no general model
for computing textures from raw data especially when some structural information must
be taken into account. For instance, satellite images exhibit hierarchical man-made struc-
tures and statistical natural patterns which both share the property of self-similarity at
several scales. In fact, outdoor images including trees, bush and trails may still exhibit
some statistical estimates typical of self-similarity. Such a structural property may be
easily injected within fractal concepts so as to provide a suitable tool for unifying data
and structures. In this paper, we deal with some generalization of Multi-fractal measures
for performing automatic segmentation of satellite and outdoor images. A seminal work
on the generation of textures based on the fractional Brownian motion (fBm) is Pent-
land’s[18]. For t > 0, a fBm with Hurst exponent H(0 < H < 1) can be defined with
respect to Brownian motion B(t,) as:
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Since the increments of the fBm are stationary, their variance scales as ||h||2H; when

t is in Rn, one has H = nD: In natural scene modeling, fBm’s have been widely used as
surfaces[1] whose roughness parameter is H. Unfortunately, there is no straightforward
relationship between H and any structure, and the scaling law holds for a limited range
of values of h only which makes the estimation of H very inaccurate. An IFS F is a set of
mappings (f1, , fm)(m ≥ 2) acting on non-empty compact subsets of R. A fundamental
property of a contractive IFS is the existence of a unique attractor: A = Um

i=1fi(A).
This time, it is possible to compute F from some geometric structures extracted from
the images but the features of the generated images remain very basic and regular. An
improvement is Levy-Vehel’s Generalized IFS (GIFS)[11] but as pointed out, one gets
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Figure 1. Original grass (D9), bark (D12) and raffia (D84) textures of
size 243× 243.

a good approximation of a set if it is nearly (with respect to some distance) fractal; if
not, the parameters will be so numerous that the analysis becomes untraceable. Within
the framework of radar analysis, Martinez [16] adapted Universal Multi-fractals [19] (i.e.
continuous cascaded processes) to turbulence phenomena.

Any fractal approach makes use of the fractal dimension FD. For instance, Espinal[4]
introduced a new definition of FD computed by wavelet analysis while in other papers,
natural textures [9, 13] or medical textured images [14] are finitely approximated by
fBm. In [8], Keller took into account lac unary and fractal dimension for natural texture
modeling and segmentation. In [17], Peleg defined the fractal signature which provides
spectral information on the textures. But whatever the dimension is, the metric yields
a global characterization. In particular, different studies showed the improvement of
segmentation results when considering local fractal dimensions [10, 15]. Chaudhuri and
Sarkar proposed [3] a set of 6 metrics which are computed from fractal and Renyi’s
generalized dimensions.

In [12], Levy-Vehel and Mignot defined capacities for texture analysis based on the
Multi-fractal spectrum; as for Renyi’s generalized dimensions, the measure is defined re-
gardless of the data. As a conclusion, we might say that if indeed Multi-fractal analysis
seems suitable for texture modeling and analysis, some adaptation to the current applica-
tion should be considered. In this paper, we present a Multi-fractal texture model which
can be used in airborne and outdoor image segmentation. Since the object types occur-
ring in this class of images are numerous, the model must be general but at the same
time, its parameters identification must remain computationally tractable. In section 2,
a new Multi-fractal measure is introduced. Section 3 deals with the suitability of the
model to texture representation. Two ”scale-stable” parameters, derived from the model
parameters, are proposed for texture characterization and image segmentation. Finally,
experimental results are shown in section 4.

2. MMM’s: Multipermuted Multinomial Measures. In [7], we introduced the so-
called MultipermutedMultinomialMeasure (MMM) as a generalization of classical de-
terministic multinomial measures which are defined in the limit of multi-cascaded pro-
cesses. Let us consider C0 = [0, 1)× [0, 1) as the support of the MMM, namely µΠp. The
construction is based on an iterated splitting of C0combined with a multiplicative rule
between two successive stages. More precisely, C0 (p(C0) = 1) is partitioned regularly
into 2 subsets C1

i,j at the first stage. Each of them is simply a reduction of C0 by a factor
p fitted with a measure Pi,j such that the total measure of these subsets is 1. At the next
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Figure 2. MMM approximation of natural textures computed with p = 3
and n = 5.

stage, the same splitting procedure is carried out over each C1
i,j leading to (p2)2 subsets

C2
ki,lj

whose measure is defined by a recurrent multiplicative rule:

∀n ≥ 1, µΠp

(
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)
= Pπn
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(
Cn
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)
(1)

where ki = k + b(i+ 1) /pc and [lj = l + b(j + 1) /pc, (bxc denotes the integral value
of x); πni,j is a permutation related to each subset Cn

i,j at the stage n, its role is to permute
the position of the measures Pi,j for the multiplicative rule involved at the next stage.
One gets the MMM by iterating. We must notice that if all the permutations are equal to
the identity function, the limit measure corresponds to a classical multinomial measure.
Multi-fractal analysis of a cascaded process is usually achieved by means of a repartition
function Γ(q, τ) [6]. Since the permutations do not change Γ, one gets[7]:
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n→+∞
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The Multi-fractal behavior of a MMM is thus fully characterized by the Rnyi exponent
τ)(q) which is the unique function such that Γ(q, τ) converges to a non-vanishing value
(equal to 1). According to their definition, MMM’s are self-similar measures whose prop-
erties can be revealed either by the Hausdorff, or the Legendre, or the large deviations
spectrum [5]. In fact, this assumption allows us to consider that a MMM has at least
the same Multi-fractal properties as the related multinomial measure with the same pa-
rameters p and Pi,j. The inverse problem of parameters identification has been addressed
in [7]. In brief, if the free parameter p is known, all the parameters (i.e. the measures
Pi,j.and the permutations) of the MMM model can be estimated by using equation (1)
successively from the finest resolution (pixels) to the coarsest one (image).

3. Natural texture representation. Experiments showed that p = 3 yields a relevant
approximation and a good discrimination of natural textures as well. This is the value
being used in the following. Figure 1 (resp. 2) shows the grass (D9), bark (D12) and
raffia (D84) textures of the Brodatz album (resp. the MMM approximations). Despite
a few artifacts due to the deterministic construction of the model, one can see that both
the structures and the low-level information are well preserved. More precisely, the model
fits well unstructured microscopic texture (like grass), macroscopic texture (like bark) as
well as the structured microscopic texture (like raffia). This impressive adaptation ability
is mainly due to the effect of the permutations which introduce a kind of randomness in
the deterministic multiplicative rule.
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Figure 3. A blurred non structured road image and its segmentation result

Similar computations have been performed on other Brodatz and natural textures with
similar visual qualities. The outstanding results demonstrate the relevance of the MMM
model for natural texture approximation.

4. Automatic image segmentation for robot vision. Our model has been success-
fully applied to the automatic segmentation of a video stream. The video camera is on the
top of a small autonomous vehicle and the segmentation process distinguishes the trail
from the bush. For image segmentation purposes, a couple of Multi-fractal attributes are
defined from the parameters of the MMM:

αmin = −
log

(
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i,j

Pi,j

)
2 log p

, αmax = −
log

(
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Pi,j

)
2 log p

(3)

Which are the minimum and maximum singularities of the set of local Hlder exponents
[5]. Their choice is motivated by their scale-invariant property which is convenient for
characterizing the structures occurring at the different scales of real world images. Given
an image I to be processed, our new unsupervised segmentation algorithm consists of the
following steps:
a. Compute (αmin, αmax) within a 9× 9 window centered at each pixel of I ;
b. Estimate the smoothed histogram of the spatial distribution of the attributes ;
c. Inverse the smoothed histogram such that the modes appears as basins ;
d. Apply a watersheds technique [2, 20] on the inversed histogram for getting a partition
of the attribute space ;
e. Cluster the pixels according to this partition ;
f. Regularize I by removing non- significant clusters (less than 5%of the pixels).
The smoothed histogram of the attributes has been computed with a resampling step equal
to 0.003 and a smoothing factor (width of the filtering kernel) of 0.015. The watersheds
algorithm yielded 4 clusters corresponding to the sky, the plants, the road and an un-
significant one which has been removed by the regularization procedure. One can see the
pixel accuracy of the method on an excerpt from the stream on the right of figure 3. The
same segmentation has been achieved on the unprocessed 140 images of the stream (which
are blurred due to the movement of the camera) with the same parameters for histogram
computation. The results remain stable and accurate during the whole sequence.

5. Conclusion. We have introduced a fully automatic image segmentation algorithm
based on a multi-fractal approximation model called Multi-permuted Multinomial Mea-
sures (MMM). The key point of this model is to take into account both numerical data and
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structural information, allowing the approximation of either deterministically or statis-
tically self-similar measures fitted with macroscopic and microscopic spatial distribution
law. The computation of the model parameters from images allows their characterization
and thus an accurate segmentation. The discussed segmentation algorithm consists in
discretizing the spatial distribution of a couple of Multi-fractal attributes and in labeling
within the image the pixels according to them. This is a rather classical approach in-
deed, the tremendous results we computed are mainly due to the good properties of the
Multi-fractal model. As a conclusion, it is important to notice that the model is rather
general, at least for textures. The images may be heterogeneous as the model can deal
with patchworks of various textures and regular patterns. Other type of images may be
processed, with various results. The model parameters computation is about 104 faster
than any other existing algorithm. One of the improvements of the present algorithm
may consist in its generalization to 4D images, allowing real video processing.
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