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Abstract. QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm is a new
proposed population based optimization algorithm in tackling tough real-parameter opti-
mization problems. In this paper, a new parallel QUATRE algorithm, P-QUATRE, is
proposed to enhance the overall performance of the former QUATRE algorithm by incor-
porating a parallel mechanism. The general idea of the P-QUATRE can be summarized
as follows. Firstly, all particles are partitioned into different sub-populations. Then par-
ticles in every subpopulation evolve independently with the same evolution strategy as the
canonical QUATRE algorithm. Finally after every some fixed generations, the global best
particle in every subpopulation immigrates to their own neighbouring sub-populations to
replace some bad particles in corresponding neighbouring sub-populations, which would
accelerate the convergence speed. To validate the proposed P-QUATRE, several exper-
iments under BBOB2009 test suit are conducted to contrast the P-QUATRE, Particle
Swarm Optimization (PSO) variants, Differential Evolution (DE) and QUATRE algo-
rithm. Experimental results demonstrate that P-QUATRE outperforms the other algo-
rithms from a general perspective of view.
Keywords: Benchmark function, Optimization, Parallel mechanism, QUATRE

1. Introduction. There is a proverb in China, “absorbing it’s essence and resisting it’s
dark side”, which vividly explains what optimization is. Conventionally, we get a mini-
mum or maximum value of one function by means of gradient of the function. However,
when the function is a complex and high dimension function, calculating the gradient
will be time-consuming, furthermore some of functions are non-differentiable. Sometimes
it is not necessary to get the optimal solution of a function, and suboptimal solution of
a function meets our demand adequately. Intelligent computing is a discipline in which
algorithms solve optimization problem by imitating nature phenomenon, such as Particle
Swarm Optimization (PSO) [1] simulating the behavior of bird flock, Bat algorithm (BA)
[2] imitating bat searching for food, Ebb-tide-fish algorithm [3, 4] simulating the foraging
behavior of fish for food, Monkey King Evolution (MKE) algorithm [5] mimicking the
behavior of Monkey King, a character of a famous novel “Journal to the West”, and so
on. In these algorithms, differential evolution (DE) which uses mutation [6], crossover and
selection operators to evolve population has attracted more attention from researchers,
because of it’s effectiveness and simplicity for implementation. However, the performance
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of DE is highly related to the parameter settings and choice for mutation strategy [7, 8].
So there are many studies of DE on how to set up parameters or adaptive parameter,
such as [9, 10, 11, 12].

Recently, a new stochastic algorithm called Quasi-Affine Transformation Evolutionary
algorithm (QUATRE) [13, 14, 15, 16, 17, 18, 19] for real-parameter optimization was
proposed for tackling some weakness and inconvenience of the former MKE algorithm
and DE algorithm. However, QUATRE is still in it’s infancy, there is some room for
improvement. In QUATRE, there is only one population, going against accelerating the
search process. In this paper, in order to solve the aforementioned problems, we introduce
parallel mechanism that sub-populations share their knowledge obtained in the way that
the global best particle in one subpopulation immigrates to neighbouring sub-populations
to replace some certain percents of bad particles, after every predefined generation.

The rest of the paper is organized as follows. Section 2 reviews several related works;
Section 3, the detail of proposed algorithm is described; Section 4 discusses how to set
parameters and validates P-QUATRE algorithm; Section 5 gives the final conclusion.

2. Related Work. This part introduces QUATRE [13, 14, 15, 16, 17, 18, 19], shown in
Algorithm 1, and it’s variants. In Algorithm 1, a particle is represented as a vector ~xi,
i denotes the ith particle in the population. A population is represented as a matrix X.
There are ps particles in a population and each particle in a D-dimension search domain.
A particle and a population can be represented in Eq.(1) and Eq.(2) respectively. P is
a matrix of the ith row vector which represents the personal best particle of ith particle
(”pbest”) where the ith particle gets it’s best fitness value. ~g represents the global best
particle (”gbest”) in population from first generation to current generation.

In the initialization phase, all particles are randomly placed in the search domain, per-
sonal best particle is identical to current particle, global best particle is selected according
to the fitness value of particles, and control parameter c is set.

~xi = (xi1, xi2, ...., xiD) (1)

X =


~x1

~x2

....
~xps

 (2)

{
B = G + c ∗ (Xr1 −Xr2)

Xtrial = M ⊗X + M̄ ⊗B
(3)

After the initialization procedure, trial particles produced by Eq.(3) and selection are
repeated until termination criteria is satisfied. In line 2 of Algorithm 1, trial particles
are generated according to Eq.(3). Where Xr1 and Xr2 is a random matrix by means of
random permutation for all row vectors in X. c is a scale parameter of differential matrix
(the difference between Xr1 and Xr2), which is recommended 0.7 in [14]. G is a matrix
consisting of ps global best particles through tiling the global best particle like Eq.(4).
M is a selecting matrix. In order to obtain M , a unit lower triangular matrix with D
columns and D rows is tiled along column direction. Then there are two sequential steps.
First step, elements in every row vector are randomly permutated. Second step, row
vectors are randomly permutated, while elements in every row vector are unchanged. M̄
is reversed M , which means that one element in M is one, corresponding value in M̄ is
zero; one element in M is zero, corresponding value in M̄ is one. The transformation
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likes Eq.(5), here we assume the search domain is 4 dimensions and there are 9 particles.
The matrix M plays a role as a judgment, which determines components of the trial
particle from previous generation or B. The symbol ⊗ in Eq.(3) represents the element-
wise multiplication. Xtrial consists of all trial particles, all of which compare with their
personal best particle according to their fitness value such that the winners will survive in
the next generation. In lines 3-10 of pseudo code of QUATRE, if ith trial particle Xtrial,i is
more optimal than it’s personal best particle Pi , the ith personal best particle is replaced
by ith trial particle Xtrial,i; if ith trial particle Xtrial,i is more optimal than the global best
particle , the global best particle is replaced by ith trial particle Xtrial,i. Line 11 of pseudo
code of QUATRE, particles of next generation are generated by retaining all personal
best particles.

G =


~g
~g
...
~g

 (4)

Table 1. Six different schemas for generating B

No Schema Equation

1 QUATRE/target/1 B = X + c ∗ (Xr1 −Xr2)
2 QUATRE/rand/1 B = Xr1 + c ∗ (Xr2 −Xr3)
3 QUATRE/best/1 B = G + c ∗ (Xr1 −Xr2)
4 QUATRE/target/2 B = X + c ∗ (Xr1 −Xr2) + c ∗ (Xr3 −Xr4)
5 QUATRE/rand/2 B = Xr1 + c ∗ (Xr2 −Xr3) + c ∗ (Xr4 −Xr5)
6 QUATRE/best/2 B = G + c ∗ (Xr1 −Xr2) + c ∗ (Xr3 −Xr4)

In [13], author proposes 5 variants of QUATRE according to the different method gen-
erating B like Eq.(3), shown in table 1. In order to clearly explain the whole variants
of QUATRE, we use QUATRE/x/y to describe all variants of QUATRE. Where x de-
notes the matrix to be disturbed, and y denotes the number of difference matrix used in
corresponding schema. x and y together determine the disturbed matrix, B. Schema 1,
QUATRE/target/1, where target denotes the current population X, 1 denotes popula-
tion X is disturbed by one difference matrix. Schema 2, QUATRE/rand/1, where rand
denotes the random matrix obtained by permutating the row vectors of X, 1 denotes
the random matrix is disturbed by one difference matrix. Schema 3, QUATRE/best/1,
where best denotes the global best particles G Eq.(5), 1 denotes the G is disturbed by
one difference matrix. For schema 4-6, the meaning of symbols is identical or similar to
what mentioned above.

1, 0, 0, 0
1, 1, 0, 0
1, 1, 1, 0
1, 1, 1, 1
1, 0, 0, 0
1, 1, 0, 0
1, 1, 1, 0
1, 1, 1, 1
1, 0, 0, 0


step one



0, 0, 1, 0
1, 0, 0, 1
0, 1, 1, 1
1, 1, 1, 1
0, 1, 0, 0
0, 1, 1, 0
1, 0, 1, 1
1, 1, 1, 1
0, 0, 0, 1


step two



0, 0, 0, 1
1, 1, 1, 1
1, 0, 1, 1
0, 1, 1, 0
0, 1, 0, 0
1, 1, 1, 1
0, 1, 1, 1
1, 0, 0, 1
0, 0, 1, 0


= M M̄ =



1, 1, 1, 0
0, 0, 0, 0
0, 1, 0, 0
1, 0, 0, 1
1, 0, 1, 1
0, 0, 0, 0
1, 0, 0, 0
0, 1, 1, 0
1, 1, 0, 1


(5)
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Algorithm 1 Pseudo code of QUATRE

Require: Initialization: Initialize the search space V, locations of particles X,P ← X,~g
and benchmark function f(X)

Require: Iteration:
1: while exeT ime < MaxIteration | !stopCriteria do
2: according to Eq.(3) to produce trial particles Xtrial

3: for i = 1→ ps do
4: if f(Xtrial,i) more optimal than f(Pi) then
5: updating Pi Pi← f(Xtrial,i)
6: end if
7: if f(Xtrial,i) more optimal than f(~g) then
8: updating global best particle ~g ← Xtrial,i

9: end if
10: end for
11: X ← P
12: end while

3. Parallel QUATRE. QUATRE uses only one global best particle to complete the
evolution, all particles evolve surrounding the global best particle, ignoring some areas
of search space and going against accelerating the search process. To avoid these prob-
lems, we introduce parallel mechanism into QUATRE. The brief description of parallel
mechanism is as follow. Particles are partitioned into different parallel sub-populations
evolving independently, which facilitate the search of particles for different areas. Af-
ter a predefined generations i, neighbouring sub-populations will communicate with each
other by replacing a certain ratio of bad particles in neighbouring sub-populations with
the global particle in their own subpopulation, which accelerates the searching process
by means of sharing knowledge obtained by subpopulation. How to determine which
two sub-populations have neighbouring relationship will be described later. In parallel
QUATRE, there are four parameters, i, d, g, c. In order to explain the meaning of four
parameters, we assume there are four sub-populations A, B, C, D, A have 3 neighbouring
sub-populations B, C, D and the rest (B, C, D) have only one neighbouring subpopu-
lation A. The meaning of parameter c is identical to that of QUATRE. The meaning of
parameter i is that subpopulation A communicate with B, C, D after i generations, the
meaning of parameter d is that d percents of bad particles of B, C and D are replaced by
the global best particle of A, the meaning of parameter g is the number of sub-populations.

Initialization stage in Algorithm 2, the Pseudo code of Parallel QUATRE, the searching
space V and all particles are initialized, then all particles are partitioned into g (group size)
parallel sub-populations. Here we use superscript k to represent different sub-populations,
k = (1, 2 , 3, ..., g). For every subpopulation, P k and ~gk is initialized, where P k is a
matrix whose row vectors represent the personal best particle of kth subpopulation and
~gk represents the global best particle in kth subpopulation, where k = (1, 2, 3, ..., g).
Afterwards totalbest is initialized, where totalbest represents the best particle in all sub-
populations. Four control parameters are initialized.

sort(neighbor(g)) ∗ (d ∗ ps) = ~p g (6)

In the iteration stage, in line 3 of pseudo code of parallel QUATRE, every subpopulation
evolves independently to generate trial particles according to Eq.(3), where Xk denotes
trail particles in kth sub-population. In lines 5-8 of pseudo code of parallel QUATRE,
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Algorithm 2 Pseudo code of Parallel QUATRE

Initialization:
Initialize the searching space V, locations of particles for every group Xk,individual best
history for every group P k let P g = Xg,calculate the gbest of every group ~gg, calculate

the totalbest.Initialize the four control parameters i,g,d,c

1: while exeT ime < MaxIteration|!stopCriteria do
2: for k = 1→ gs do
3: updating location of particles of each group according to equation (3)
4: for j = 1→ ps do
5: if f(Xk

j ) more optimal than f(P k
j ) then

6: updating P k
j and ~p k

j

7: P k
j ← Xg,j, ~p

k
j ← f(Xk

j )
8: end if
9: if f(Xk

j ) more optimal than f(~g k) then

10: ~gk ← f(Xk
j ), ~g k ← Xk

j

11: end if
12: Xk ← P k

13: end for
14: if ~gk more optimal thantotalbest then
15: totalbest← gk

16: end if
17: end for
18: if exeTime % i == 0 then
19: for j = 1→ gs do
20: according to equation (6),best particle of every group immigrate to his

neighbors
21: end for
22: end if
23: end while

if the trial particle is more optimal than corresponding personal best particle, personal
best particle is replaced by the trial particle, where P k

j denotes the jth personal best

particle in kth subpopulation and Xk
j denotes the jth trial particle in kth subpopulation.

In lines 9-11 of pseudo code of parallel QUATRE, if the trial particle is more optimal than
global best particle, global best particle is replaced by the trial particle, where ~gk denotes
the global best particle in kth subpopulation. In lines 13-15 of pseudo code of parallel
QUATRE, if the global best particle in kth subpopulation is more optimal than totalbest
particle, the total global best particle is replaced by the global best particle. In line 16 of
pseudo code of parallel QUATRE, next generation of particles in every subpopulation are
generated. In lines 18-22 of pseudo code of parallel QUATRE, the global best particle in
every sub-population immigrates to neighboring sub-populations every i iteration.

In parallel particle swarm optimization (PPSO)[20], there are three strategies to imple-
ment commutation among sub-populations. In case of weak correlation or independency
between variables of function, the totalbest particle immigrates to all sub-populations.
In case of strong correlation between variables of function, the global best particle in
every sub-population immigrates to their neighbouring sub-populations. In case of un-
known correlation between variables of function, strategy three is produced by merging
together strategy one and strategy two. Because most of functions are non-sparable func-
tion, we use strategy two, and following experiments show strategy two has comparative
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Table 2. BBOB2009 benchmark functions

No function No function

f1 Sphere Function f13 Sharp Ridge Function
f2 Ellipsoidal Function f14 Different Powers Function
f3 Rastrigin Function f15 Rastrigin Function
f4 Buche-Rastrigin Function f16 Weierstrass Function
f5 Linear Slope f17 Schaffers F7 Function
f6 Attractive Sector Function f18 Schaffers F7 Function, moderately ill-conditioned
f7 Step Ellipsoidal Function f19 Composite Griewank-Rosenbrock Function F8F2
f8 Rosenbrock Function, original f20 Schwefel Function
f9 Rosenbrock Function, rotated f21 Gallagher’s Gaussian 101-me Peaks Function
f10 Ellipsoidal Function f22 Gallagher’s Gaussian 21-hi Peaks Function
f11 Discus Function f23 Katsuura Function
f12 Bent Cigar Function f24 Lunacek bi-Rastrigin Function

performance even in separable functions. Here, we introduce how to determine two sub-
populations have neighbouring relationship. Firstly, g sub-populations are numbered from
0 to (g-1). Then those numbers in decimal system are transformed into corresponding
binary format. If two binary numbers have only one different bit, the two binary numbers
have neighbouring relationship [20]. There is an example to explain the method. We
assume there are 4 sub-populations numbered with 0, 1, 2, 3. The corresponding binary
numbers of 0, 1, 2, 3 are 00, 01, 10, 11. 00 has one different bit compared with 01 and 10,
so the neighbors of subpopulation 0 are subpopulation 1 and 2. In Eq.(6), the function
neighbor(k) denotes finding all neighbors of subpopulation k and returning all neighbor
sub-populations of kth subpopulation. Function sort() sorts all particles in a subpopula-
tion by ascending fitness value. d percentage of bad particles in a population according
to ascending fitness value are replaced by ~gk, the global best particle in kth subpopulation

4. Experiment. In [21, 22], many complex benchmark functions are described. In this
paper, we utilize BBOB2009 test suite [21] to conduct several experiments. Benchmark
functions in BBOB2009 test suit are classified into five categories, separable function (f1-
f5), lowly or moderately conditional function (f6-f9), highly conditional and unimodal
function (f10-f14), multi-modal functions of strong global structure (f15-f19), multi-modal
functions of weak global structure (f20-f24). In each benchmark function in BBOB2009
test suit, there are many different instances, each of which is transformed. So on different
instances of each benchmark function, the minimums are different and locate in different
locations which are shifted to xopt. There is a global optima value f(xopt) in every instance
of all benchmark functions and a best value found by an algorithm denoted by symbol
f∗. The fitness error is (f∗ − ffopt). The 24 functions are listed in table 2, more detail,
please read [21]. There are two criteria to validate the performance of one optimization
algorithm, one is to compare precision (fitness error) of different algorithms under a fixed
number of function evaluations, and the other is to compare the number of function
evaluations firstly meeting the predefined target precision (fitness error). In following
experiments, we adopt the first criteria.

4.1. Parameters Setting. In this section, we discuss how to set up parameters, i, g
and d, conducting three experiments. The basic setting of the three experiments is that
times of iteration is 5000, the number of variables of function is 20, there are 320 particles
in total and our proposed algorithm is run 10 times for each of benchmark function,
using first 10 instances of each benchmark function. In order to show how to determine
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Table 3. Comparison results of best fitness error of 10-runs for Parallel
QUATRE with different coefficient i values

i=50 i=100 i=200 i=300 i=500 i=700 i=1000

f1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f4 1.99e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f6 7.11e-15 7.11e-15 3.55e-15 3.55e-15 7.11e-15 3.55e-15 3.55e-15
f7 2.27e-02 2.60e-02 2.82e-02 1.93e-02 2.88e-02 0.00e+00 2.64e-02
f8 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f9 1.78e-14 1.42e-14 0.00e+00 4.74e-10 3.57e-10 6.04e-08 2.98e-07
f10 5.88e+00 1.76e+01 4.92e+01 1.02e+01 2.44e+01 1.41e+01 1.21e+01
f11 2.28e-10 4.38e-08 6.40e-06 5.75e-05 1.16e-03 3.77e-03 1.03e-02
f12 3.90e-03 3.19e-03 4.13e-03 9.68e-05 4.44e-04 2.45e-04 1.41e-04
f13 1.21e-02 9.70e-05 1.80e-05 1.12e-06 1.20e-04 1.12e-06 6.45e-06
f14 5.44e-06 3.41e-06 9.82e-06 1.06e-05 6.61e-06 5.47e-06 7.94e-06
f15 3.04e+01 1.39e+01 2.09e+01 1.79e+01 1.09e+01 1.09e+01 1.19e+01
f16 1.75e+00 2.32e+00 1.84e+00 2.25e+00 3.42e-01 8.80e-01 1.83e+00
f17 8.38e-03 3.20e-03 2.04e-03 4.64e-04 8.81e-04 1.60e-03 3.84e-04
f18 1.01e-01 1.21e-01 2.47e-02 3.91e-02 2.83e-02 3.81e-02 4.26e-02
f19 3.22e+00 2.41e+00 3.14e+00 2.12e+00 1.75e+00 1.72e+00 2.13e+00
f20 2.90e-01 2.37e-01 5.92e-02 1.78e-01 1.18e-01 1.18e-01 1.18e-01
f21 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f22 6.92e-01 0.00e+00 0.00e+00 5.68e-14 6.92e-01 6.92e-01 6.92e-01
f23 1.17e+00 1.05e+00 1.10e+00 4.41e-01 3.39e-01 5.57e-01 5.49e-01
f24 6.21e+01 5.36e+01 5.82e+01 3.36e+01 4.00e+01 3.71e+01 2.73e+01

parameter i, we use i = (50, 100, 200, 300, 500, 700, 1000) to implement experiment, the
other control parameters, g = 8, d = 0.25, c = 0.7; for parameter g, we use g = (2, 4, 8,
16) to conduct experiment, the other control parameters, i = 100, d = 0.25, c = 0.7; for
parameter d, we utilize d = (0.5, 0.25, 0.2, 0.1, 0.05) to conduct experiment, the other
control parameters, i = 100, g = 8, c = 0.7. The results of three experiments are showed
in table 3 to table 5 and figure 1. In table 3 to table 5, the global optima of corresponding
function is zero, and the best minimum among the proposed algorithms with different
parameter is emphasized in boldface. In figure 1, the number of function whose global
optima is found is denoted by red bar (left bar) and the number of function whose best
minimum among the proposed algorithms with different parameters setting is denoted by
blue bar(right bar)

From table 3 to table 5 and figure 1, we can see that i = 200 is the best choice for
parameter i, g = 8 is the best choice for parameter g, d = 20 is the best choice for
parameter d. For parameter i, if i is too small, particles in each subpopulation have not
fully explore and exploit current area, then immigrants come here. Specially, in the later
of iteration, there are almost same particles in every subpopulation. Therefore i cannot
be too small. For parameter g, if g is too small, the advantage of parallel mechanism is
restrained, if g is too big, the diversity of particles is weakened. Therefore, g can’t be too
small and large. For parameter d, if d is too big, a large amount of immigrant particles
from neighbouring sub-populations join in current subpopulation, however these particles
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Figure 1. The number of functions with 10 trials that obtains global op-
tima and best minimum among different parameter settings

belong to only g(group size) types, which lead to reduction of diversity of particles, so d
cannot be too big.

4.2. Algorithm Analysis and Comparison. In order to validate the performance of
our proposed algorithm, we compare it with other algorithms, such as Particle Swarm
Optimization with inertia weight (IWPSO) [23], the constriction coefficient PSO (CCPSO)
[24], QUATRE [14], DE [6] in terms of convergence speed, precision and stability, where
the role of IWPSO, CCOPSO and DE is benchmark algorithm. The parameter settings
of all algorithms are shown in table 6. For IWPSO and CCPSO, the velocity is initialized
with zero. In our experiment, each benchmark function in BBOB2009 has 50 variables.
For all comparative algorithms, we use 16 particles in every dimension (convenient for
grouping), so there are 800 particles at one run in total. Every algorithm runs 20 times
(the first 20 instances of every benchmark function) with 5000 generations to obtain
the minimum of the benchmark functions from BBOB2009. Total number of function
evaluations of every run is 4 million. The best and standard deviation of fitness errors
in 20 runs are listed in table 7 and 8 respectively, where the best value is emphasized in
boldface. From table 7, best fitness error in 20-run among different algorithms, we can
draw several conclusions in terms of precision.

Firstly, for separable functions f1− f5, DE exhibits the best performance. P-QUATRE
and QUATRE exhibit comparative performance. CCPSO and IWPSO exhibits worse
performance than other algorithms. DE outperforms other algorithms on functions f3−f5,
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(d) BBOB2009 function4 comparison
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(f) BBOB2009 function6 comparison

Figure 2. BBOB2009 benchmark functions(f1 − f6) comparison of the
best of fitness errors

while P-QUATRE exhibits comparative performance on functions f4− f5. QUATRE and
P-QUATRE outperforms other peers on functions f1 and f2, in which QUATRE and
P-QUATRE finds the global optima. Secondly, as for lowly or moderately conditional
functions f6 − f9, P-QUATRE shows the best performance. P-QUATRE is superior to
other comparative ones on functions f6 − f8, while P-QUATRE is inferior to QUATRE
on function f9 where P-QUATRE shows comparative performance. Thirdly, for highly
conditional and unimodal functions f10 − f14, P-QUATRE shows the best performance.
QUATRE shows the second best performance. P-QUATRE is superior to other peers



A Parallel Quasi-Affine Transformation Evolution Algorithm for Global Optimization 39

0 1000 2000 3000 4000 5000
Generations

100

101

102

Fi
tn
e
ss
 e
rr
o
r

CCPSO

DE

IWPSO

PQUATRE

QUATRE

(a) BBOB2009 function7 comparison
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(b) BBOB2009 function8 comparison
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(c) BBOB2009 function9 comparison
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(e) BBOB2009 function11 comparison
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(f) BBOB2009 function12 comparison

Figure 3. BBOB2009 benchmark functions(f7 − f12) comparison of the
best of fitness errors

on functions f10, f13 and f14. DE shows better performance than other comparative
ones on function f12. CCPSO shows the best performance on function f11. Fourthly, as
for multi-modal functions of strong global structure f15 − f19, QUATRE shows the best
performance. QUATRE is superior to other peers on functions f16 − f18, P-QUATRE
shows better performance than other algorithms on function f15 and CCPSO exhibits the
best performance on f19. QUATRE shows comparative performance on functions f16−f19.
Finally, for multi-modal functions of weak global structure f20 − f24, P-QUATRE shows
the best performance. P-QUATRE shows best performance on functions f21 − f24, while
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(a) BBOB2009 function13 comparison
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(b) BBOB2009 function14 comparison
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(c) BBOB2009 function15 comparison
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(d) BBOB2009 function16 comparison
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(e) BBOB2009 function17 comparison
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(f) BBOB2009 function18 comparison

Figure 4. BBOB2009 benchmark functions(f13 − f18) comparison of the
best of fitness errors

QUATRE shows same performance as P-QUATRE on functions f21 − f22. There is an
interesting phenomenon that all algorithms find the same local optima on function f22.

From table 8, standard deviation of fitness error in 20-runs among different algorithms,
we can draw several conclusions in terms of stability. Firstly, for separable functions
f1 − f5, DE shows the best stability. P-QUATRE shows comparative stability. DE
beats other comparative algorithms on functions f3 − f5. P-QUATRE is superior to
other peers on functions f1, f2 and shows comparative stability on functions f3 − f5, in
which P-QUATRE shows the second best stability. Secondly, as for lowly or moderately
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(b) BBOB2009 function20 comparison
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(c) BBOB2009 function21 comparison
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(d) BBOB2009 function22 comparison
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(e) BBOB2009 function23 comparison
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Figure 5. BBOB2009 benchmark functions(f19 − f24) comparison of the
best of fitness errors

conditional functions f6−f9, P-QUATRE shows the best stability. P-QUATRE is superior
to other comparative algorithms in terms of stability on functions f6, f7 and f9, while
inferior to QUATRE on function f8 where QUATRE shows the best stability. Thirdly, for
highly conditional and unimodal functions f10−f14, P-QUATRE shows the best stability.
P-QUATRE is superior to other comparative algorithms in terms of stability on functions
f10, f12 − f14, while inferior to CCPSO on function f11 where P-QUATRE shows the
second best stability. Fourthly, as for multi-modal functions of strong global structure
f15−f19, DE shows the best stability and QUATRE shows the second best stability. DE is
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Table 4. Comparison results of best fitness error of 10-runs for Parallel
QUATRE with different coefficient g values

D=20 g=2 g=4 g=8 g=16

f1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f3 1.9899e+00 9.9496e-01 0.0000e+00 0.0000e+00
f4 2.9849e+00 1.9899e+00 0.0000e+00 0.0000e+00
f5 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f6 3.5527e-15 3.5527e-15 3.5527e-15 7.1054e-15
f7 1.6543e-02 2.4292e-02 2.6954e-02 7.6524e-02
f8 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f9 3.5527e-15 7.1054e-15 0.0000e+00 3.1287e-09
f10 9.6523e+00 5.5705e+00 2.3038e+01 1.7856e+01
f11 1.4282e-08 3.7961e-09 3.0290e-08 1.8519e-07
f12 3.5934e-04 1.5040e-03 1.1388e-03 2.5449e-03
f13 2.8913e-02 3.1396e-03 7.2894e-05 1.2927e-03
f14 4.5465e-06 5.0012e-06 7.4787e-06 6.9238e-06
f15 1.9868e+01 1.4882e+01 1.8904e+01 2.0946e+01
f16 1.7161e+00 3.6535e+00 1.2860e+00 3.4590e+00
f17 2.1998e-04 5.0076e-04 8.8440e-03 1.5962e-02
f18 7.5174e-02 3.9362e-02 7.2980e-02 7.2740e-02
f19 3.2014e+00 3.0131e+00 1.7371e+00 2.7166e+00
f20 4.1453e-01 2.8623e-01 1.7766e-01 5.9219e-02
f21 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f22 6.9186e-01 6.9186e-01 7.1054e-15 7.1054e-15
f23 7.4693e-01 7.8736e-01 4.4215e-01 1.0864e+00
f24 5.4065e+01 4.6254e+01 6.8051e+01 3.1093e+01

superior to other comparative algorithms on f15, f16 and f19. QUATRE bests other peers
on functions f17, f18. P-QUATRE also shows comparative stability. On function f15,
P-QUATRE beats CCPSO, IWPSO and QUATRE; on function f16, P-QUATRE beats
QUATRE; on functions f17 and f18, P-QUATRE beats other comparative algorithms
except for QUATRE. Finally, for multi-modal functions of weak global structure f20−f24,
P-QUATRE and QUATRE shows the best stability. P-QUATRE is superior to other
peers on functions f21 and f22. QUATRE is superior to other comparative algorithms on
functions f23 and f24. IWPSO beats other peers on function f20.

From figure 2-5, the comparison of the mean of the fitness errors among comparative
algorithms, we can draw several conclusions in terms of convergence speed, here slope
of lines is used as assessment criteria. Firstly, for separable functions f1 − f5, CCPSO
and P-QUATRE shows the best convergence speed. CCPSO shows the best convergence
on functions f1 and f2. P-QUATRE is superior to other peers on f3 and f4. DE beats
other comparative algorithms on function f5. On functions f1 and f2, P-QUATRE has
similar convergence speed as IWPSO; P-QUATRE is superior to QUATRE, while infe-
rior to DE and CCPSO. On function f5, P-QUATRE shows the second best convergence
speed. Secondly, as for lowly or moderately conditional functions f6 − f9, P-QUATRE
shows the best convergence speed. On functions f6, f7 and f9, P-QUATRE is superior to
other peers. On function f8, QUATRE is superior to other comparative algorithms and
P-QUATRE shows the second best convergence speed. Thirdly, for highly conditional



A Parallel Quasi-Affine Transformation Evolution Algorithm for Global Optimization 43

Table 5. Comparison results of best fitness error of 10-runs for Parallel
QUATRE with different coefficient d values

D=20 d=0.5 d=0.25 d=0.2 d=0.1 d=0.05

f1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f3 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f4 1.9899e+00 9.9496e-01 0.0000e+00 0.0000e+00 9.9496e-01
f5 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f6 7.1054e-15 3.5527e-15 3.5527e-15 3.5527e-15 3.5527e-15
f7 4.0956e-01 3.0530e-02 3.5497e-02 1.2131e-02 0.0000e+00
f8 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f9 1.9371e-09 7.1054e-15 5.3291e-14 5.6843e-14 3.5989e-12
f10 1.5816e+01 1.2063e+01 1.9322e+01 8.5713e+00 1.5636e+01
f11 1.5192e-07 2.6978e-08 8.0807e-08 5.4914e-07 3.1347e-05
f12 5.4743e-03 3.0827e-03 8.5431e-05 3.8987e-03 8.5009e-05
f13 5.2233e-03 9.1819e-05 7.4416e-07 1.7172e-04 5.0920e-04
f14 5.6730e-06 5.8906e-06 6.8364e-06 9.5189e-06 1.1237e-05
f15 2.4217e+01 1.7909e+01 1.8905e+01 1.8229e+01 1.5919e+01
f16 3.6311e+00 3.1469e+00 1.6558e+00 2.7705e+00 1.7740e+00
f17 2.1474e-02 2.2285e-03 3.5935e-03 2.0879e-03 3.2275e-04
f18 2.5436e-01 1.5766e-01 1.8746e-01 3.1804e-02 1.8360e-02
f19 3.4253e+00 3.7832e+00 3.6561e+00 2.2683e+00 1.1473e+00
f20 3.5176e-01 2.9610e-01 1.6779e-01 1.6779e-01 2.6649e-01
f21 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
f22 6.9186e-01 6.9186e-01 0.0000e+00 6.9186e-01 6.9186e-01
f23 1.2422e+00 1.0757e+00 6.6382e-01 1.0607e+00 9.4269e-01
f24 8.5042e+01 4.2139e+01 3.5404e+01 4.4408e+01 3.0437e+01

Table 6. Parameters setting of different algorithms

Algorithms Parameters settings

IWPSO c1 = c2 = 2.0, iw = 0.5
CCPSO c1 = c2 = 2.05, iw = 1, K = 0.7298
DE Cr = 0.1, F = 0.5
QUATRE c = 0.7
PQUATRE c = 0.7, i = 200, d = 0.05, g = 8

and unimodal functions f10 − f14, P-QUATRE and CCPSO shows the best convergence
speed. P-QUATRE is superior to other peers on function f10 and f13. CCPSO is superior
to other comparative algorithms on f11 and f14. DE shows better convergence speed than
other peers on function f12. P-QUATRE shows the second best convergence on functions
f11, f12 and f14. Fourthly, as for multi-modal functions of strong global structure f15-f19,
P-QUATRE shows the best convergence speed. IWPSO, CCPSO and P-QUATRE have
similar convergence speed on functions f15 and f16. P-QUATRE shows better conver-
gence speed than other algorithms on function f17-f19. Finally, for multi-modal functions
of weak global structure f20 − f24, P-QUATRE shows the best convergence speed. P-
QUATRE is superior to other peers on functions f20, f23 and f24. There is an interesting
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Table 7. Comparison results of best fitness error of 20-runs between dif-
ferent algorithms

D=50 CCPSO DE IWPSO P-QUATRE QUATRE

f1 4.4409e-16 4.4409e-16 4.4409e-16 0.0000e+00 0.0000e+00
f2 1.7764e-15 1.7764e-15 1.7764e-15 0.0000e+00 0.0000e+00
f3 4.6763e+01 0.0000e+00 1.7909e+01 9.9496e-01 1.9899e+01
f4 6.6662e+01 2.9849e+00 2.4874e+01 4.9748e+00 2.0894e+01
f5 1.2820e+02 3.4106e-13 9.8014e+01 5.9117e-12 8.6638e-05
f6 1.7982e+00 6.9037e+00 1.1960e+01 1.0088e-06 1.8636e+00
f7 2.4645e+01 1.0163e+01 2.0133e+01 2.0848e+00 2.3415e+00
f8 1.8045e-01 3.6431e+01 1.8646e+01 2.4443e-12 7.1023e-07
f9 3.7399e+01 4.1535e+01 4.4470e+01 2.5405e+01 2.4377e+01
f10 1.8794e+04 8.8538e+04 1.3672e+04 5.6293e+02 7.9937e+03
f11 8.7598e-02 5.3410e+01 5.8673e+00 1.4883e-01 2.6410e+01
f12 1.3804e-02 4.7342e-07 3.0198e-02 2.5917e-04 3.3889e-05
f13 5.2816e-02 1.1190e-02 1.7199e-02 1.2393e-05 1.1708e-03
f14 3.7611e-04 7.0517e-03 8.6333e-04 1.5534e-04 7.3773e-04
f15 7.7607e+01 2.6025e+02 6.4672e+01 4.6763e+01 5.6713e+01
f16 4.7877e+00 1.3660e+01 5.4180e+00 4.7696e+00 1.8209e+00
f17 5.8246e-01 1.2944e-01 4.2254e-01 3.4006e-03 1.9279e-04
f18 3.4435e+00 1.6145e+00 2.6955e+00 8.1219e-02 2.0560e-02
f19 1.8763e+00 5.7145e+00 5.2009e+00 3.4045e+00 5.7545e+00
f20 9.9114e-01 9.5070e-02 7.3814e-01 5.8825e-01 4.5402e-01
f21 2.2204e-16 7.1054e-15 7.1054e-15 0.0000e+00 0.0000e+00
f22 6.9186e-01 6.9186e-01 6.9186e-01 6.9186e-01 6.9186e-01
f23 9.0694e-01 2.5276e+00 1.8774e+00 8.4688e-01 2.3713e+00
f24 1.0696e+02 3.1879e+02 1.5545e+02 8.9983e+01 3.2494e+02

phenomenon that P-QUATRE converge faster than QUATRE on almost all functions,
even on unimodal functions f10− f14. One reason for this phenomenon is different matrix
(Xr1 −Xr2) in a subpopulation contains more zero row vector (because 5% bad particles
are replaced by the same one particle, the global best particle in neighbor subpopulation,
in every communication with neighbor subpopulation) than corresponding different ma-
trix in QUATRE, which enhance the exploitation for the area in which there is current
global best particle.

In summary, DE has best performance in terms of precision and stability on sepa-
rable functions, decent performance in terms of precision on multi-modal functions of
weak global structure, best performance in terms of stability on multi-modal functions
of strong global structure. P-QUATRE has best performance in terms of precision on
lowly or moderately conditional functions, highly conditional and unimodal function and
multi-modal functions of weak global structure, decent performance in terms of precision
on separable functions, best performance in terms of stability on lowly or moderately
conditional functions, highly conditional, unimodal function and multi-modal functions
of weak global structure, decent performance in terms of stability on separable functions.
QUATRE has best performance in terms of precision on multi-modal functions of strong
global structure, decent performance in terms of precision on separable functions and
multi-modal functions of weak global structure, decent performance in terms of stability
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Table 8. Comparison results of standard deviation of fitness error of 20-
runs between different algorithms

D=50 CCPSO DE IWPSO P-QUATRE QUATRE

f1 2.6958e-14 2.6958e-14 2.6958e-14 6.3479e-15 2.7450e-14
f2 2.0010e-14 2.0010e-14 2.0010e-14 3.5104e-15 1.7665e-14
f3 1.8154e+01 6.7713e-01 7.1120e+00 2.1038e+00 5.3752e+00
f4 3.2665e+01 1.6547e+00 1.0838e+01 2.5336e+00 7.5918e+00
f5 1.6627e+01 5.3675e-14 8.3088e+00 1.8849e-12 3.1351e-05
f6 8.3572e+00 6.3460e+00 4.2284e+01 1.6883e-05 5.8590e+00
f7 1.9414e+01 3.1447e+00 1.3395e+01 1.8825e+00 2.2976e+00
f8 2.4191e+01 2.3921e+00 2.9256e+01 8.9144e-01 5.3325e-06
f9 4.7531e+01 2.6033e+01 5.2823e+01 6.7179e-01 2.4183e+01
f10 4.5886e+04 2.8380e+04 3.0239e+04 1.1392e+03 3.1610e+03
f11 1.4178e-01 1.0165e+01 2.7517e+00 3.0116e-01 7.0742e+00
f12 3.1371e+03 1.8922e+00 7.1288e+04 7.3090e-01 4.0950e+00
f13 9.5330e+00 2.2473e+00 9.0837e+00 1.3485e-02 1.5416e+00
f14 5.3905e-05 1.0698e-03 1.1919e-04 3.7814e-05 1.2050e-04
f15 5.7695e+01 1.7888e+01 4.5955e+01 2.1031e+01 2.1690e+01
f16 2.7762e+00 2.2071e+00 3.5314e+00 3.5789e+00 5.6536e+00
f17 9.0831e-01 3.2164e-02 1.0011e+00 6.6077e-03 3.5102e-03
f18 3.7049e+00 6.3718e-01 3.4507e+00 2.1634e-01 1.2494e-01
f19 1.5831e+00 1.8001e-01 5.4280e-01 6.3456e-01 2.5922e-01
f20 1.6393e-01 2.6400e-01 1.0122e-01 1.3303e-01 1.3103e-01
f21 5.0094e+00 2.5510e+00 5.7605e+00 8.1358e-01 9.5553e+00
f22 7.7389e+00 6.7068e+00 6.4461e+00 2.7059e+00 1.0896e+01
f23 6.8616e-01 2.0912e-01 3.3776e-01 5.6958e-01 1.9324e-01
f24 3.5807e+01 2.8100e+01 6.2837e+01 3.6709e+01 2.2933e+01

on separable functions and multi-modal functions of strong global structure. CCPS and
IWPSO have poor performance on both all function categories.

5. Conclusions. In this paper, we propose Parallel QUATRE algorithm, discuss the
parameter settings, and then we use BBOB2009 test suit to validate the global search
capacity of the proposed algorithm. Comparisons are made among our algorithm and
other well-known algorithms. The comparison results demonstrate that proposed P-
QUATRE has excellent performance in general. However the proposed Parallel QUA-
TRE has poor performance than QUATRE on multi-modal functions of strong global
structure (P-QUATRE shows better performance on multi-modal functions, considering
multi-modal functions of weak global structure), which will be a studied key point in the
future. Parallel QUATRE has too many parameters, another studied key point in the
future will be studied on how to reduce the number of parameters.
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