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Abstract. There are natural connections and structural similarities between the basic
characteristics of chaotic systems and cryptology. The application of chaotic systems
to data encryption has also become a trend. In this paper, a pipelined architecture is
introduced in the design of Logistic chaotic system, which greatly improves the operating
frequency of the system and finally realizes a high-speed chaotic pseudo-random sequence
generator based on the pipelined architecture on the Xilinx Artix-7 series FPGA chip.
The operation frequency has reached 296MHz, and achieves a throughput of 296Mbps.
Keywords: Logistic system, Pipelined architecture, Pseudo-random sequence generator,
FPGA

1. Introduction. In the second half of the 20th century, there were mainly two extremes
in the research field of nonlinear phenomena. One was the ”integrable” extreme of nonlin-
ear problems, and the other one was the so-called ”non-integrable” extreme [1]. The chaos
phenomenon is the ”non-integrable” extreme in nonlinear phenomena, i.e. the universal
properties of an non-integrable system. The so-called ”chaos” is a seemingly random phe-
nomenon that appears in a deterministic system. In 1963, the famous meteorologist E. N
Lorenz presented a deterministic nonperiodic flow model [2]. In 1975, Chinese scholar T. Y
Li and American mathematician J. A Yorke published the famous paper ”Period three
implies chaos” in the American Mathematical Monthly [3], first introduced the concept
of chaos, profoundly revealed the evolution from order to chaos.

The characteristics of sensitivity to the initial value and randomness of chaotic systems
meet the basic requirements that Shannon put forward in [4], i.e. ”confusion” and ”diffu-
sion”, which makes the chaotic systems have a very broad application prospect in the field
of secure communication. To implement the chaotic system, there are two main ways, i.e.
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analog methods and digital methods. The former is usually by analog electronic circuits
to implement, the typical technology is the chaotic masking. K. M Cuomo and A. V
Oppenheim constructed a chaotic masking system with Lorenz system [5, 6]. The analog
chaotic system is simple to construct but requires strict matching of circuit parameters
between the transmitter and receiver. When there are slight differences in parameters, it
will lead to failure of synchronization. An effective solution to these problems is based
on discretization and digitization processing techniques, using field-programmable gate
array, i.e. FPGA technology to implement chaos algorithm [7, 8].

This paper uses FPGA technology to digitize the Logistic chaotic system. The entire
design is performed in the form of 64-bit fixed-point number. At the same time, extremely
high calculation precision is obtained, and a more economical hardware resource overhead
is obtained compared to floating-point calculation. Due to its own iterative structure, the
traditional Logistic chaotic system often leads to longer combinational logic in the hard-
ware implementation, which makes the length of the critical path of the circuit longer and
the entire system is bounded by the propagation delay through the combinational logic
of the circuit, and this greatly slows the clock frequency of the circuit, the efficiency of
generating chaotic sequences is therefore low. In order to solve the above problems, the
design introduces a pipelined architecture, and pipelining reduces the number of levels in
the blocks of combinational logic, shortens the datapaths between storage elements, and
increases the throughput of the whole circuit, by allowing the clock to run faster, the effi-
ciency of the generation of pseudo-random sequences is effectively improved, which makes
the design obtain excellent application value. The work in this paper also includes the
randomness testing of the sequences generated by the pseudo-random sequence generator
in this design. The generated sequences were evaluated using the NIST SP800-22 test
suite [9].

2. Logistic Chaotic System. Logistic chaotic system is currently the most widely used
type of nonlinear dynamic chaotic mapping system. It has the characteristics of simple
form and easy implementation, and it has all the chaotic characteristics. So it is often
used in the design of chaotic pseudo-random sequence generator. The system equation is
as follows:

xn+1 = µxn(1− xn) n = 0, 1, 2 · · · (1)

Where the parameter xn ∈ (0, 1), µ ∈ (0, 4], when 3.5699 · · · < µ ≤ 4 the system is
in a chaotic state. When the system parameters change, the system’s dynamic state will
change, the specific performance is in the following aspects:

(1) When µ ∈ (0, 1), Logistic system has a fixed point of xn → 0;
(2) When µ ∈ [1, 3), Logistic system has fixed point xn → 0 and xn → 1− 1

µ
;

(3) When µ ∈ [3, µ∗), the Logistic system appears to have a phenomenon of period
doubling bifurcation. Here µ∗ = 3.569945672;

(4) When µ ∈ [µ∗, 4), the chaotic phenomenon occurs in the Logistic system.

Figure 1 shows the bifurcation graph of Logistic chaotic system with the change of
system parameter µ.

As can be seen from figure 1, with the change of the system parameter µ, the system’s
time series also shows different states, which are the four stages of stable fixed point,
unstable fixed point, periodic phenomenon and chaotic state. When µ = 4, the degree of
confusion displayed by the system is the largest and the randomness is stronger. At this
time, the chaotic nature of the system is the best. Therefore, in this design, we take µ = 4.
When the system parameter µ takes a value of 4, the randomness of the pseudo-random
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Figure 1. Bifurcation graph of Logistic chaotic system

sequence is better, and because the parameter of the system is an integer power of 2, it
is more convenient in the hardware realization of the digital chaotic system.

3. Implementation.

3.1. Implementation principle. Figure 2 shows the development board used to imple-
ment this design. It can be known from the observation of equation (1) that the majority
of implementations of Logistic chaotic systems will use multiplier modules and subtractor
modules, and equation (1) can also be calculated in different ways in hardware imple-
mentations. According to the case of µ = 4 in this design, the common deformations of
equation (1) are (2) and (3), which are expressed as follows:

xn+1 = (4xn) ∗ (1− xn) (2)

xn+1 = 4xn − 4x2n (3)

Figure 2. The development board

For the above different forms, it will also correspond to different circuit structures
when implemented in hardware. For the operation of multiplication by 4, the circuit can
usually be implemented with a left shift operation, this not only improves the speed of
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the operation, but also reduces the resources occupied by the multiplier. However, in the
design of this paper, we did not adopt this method. The method adopted in this paper
will be described in detail below. Here we need to explain the fixed-point form we used in
this design. Figure 3 shows the architecture of this design. The calculation results passed
between the internal submodules are all 64-bit binary values, and the decimal point is on
the left of the 64th value. In other words, this is an unsigned pure decimal, for example,
a 64-bit binary number Mb = m63m62m61 · · ·m1m0, the decimal value it represents can
be expressed by equation (4):

Md =
64∑
n=1

(2n−65 ·mn−1) (4)

Figure 3. Architecture of the pseudo-random sequence generator

As shown in figure 3, the sel module is a data selector module, which is used to gate
the initial value signal from the init rom module when the initial value is injected; The
init rom module is an on-chip ROM for storing the initial value of the chaotic system; The
controller module is responsible for the control of the entire system, so that the sequence
generator works in an orderly manner, its output signals are the enable signals and control
signals of different submodules and the read address signal of the init rom module, and
also include a flag signal indicating that the output sequence is valid; The expression of
the function completed by the bn module is as follows:

bn[63 : 0] =∼ sel[63 : 0] (5)

Where the symbol ∼ indicates the operation of bitwise not and the add1 module com-
pletes the adding 1 operation of the input value, and its expression is as follows:

add1[63 : 0] = bn[63 : 0] + 1 (6)

The bn module and the add1 module cascade together to complete the calculation of
(1− xn), i.e. add1[63 : 0] = 1− xn; The delay module completes the function of delaying
the input data by one clock cycle, i.e. delay 2[63 : 0] = xn; In the multiplication module
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mult, the operation xn ∗ (1− xn) is completed. When the two 64-bit data are multiplied,
a 128-bit product will be generated inside the multiplier, as shown in figure 4:
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Figure 4. Bit width of multiplication result

In this design, the precision of the fixed-point operation is 64-bit, so under normal
circumstances, we will intercept the high 64-bit of the result and output it as the result.
However, here we can see from the nature of the Logistic chaotic system µxn(1 − xn) ∈
(0, 1), when µ = 4, we can get xn(1−xn) ∈ (0, 1

4
), then in the form of fixed-point number

agreed in this design, the value of bit127 and bit126 are always 0 for xn ∗ (1 − xn).
Here, we directly intercept the 64-bit of the product from bit125 to bit62 as the product
output. This is equivalent to the completion of the multiplication operation and also
completed the two-bit left shift operation, i.e. the multiplication by 4 at the same time.
Compared with directly outputting a high 64-bit product and then performing a left-
shifting 2-bit operation to achieve an operation that multiplication by 4, this method does
not reduce the precision by 2 bits, and it also reduces the shift operation; The module
quantizer completes the quantification of the chaotic sequence. Typical quantization
methods include threshold quantization method, incremental quantization method, and
interval quantization method. The applicable situations of various quantization methods
are not described here. In this design, we use interval quantification method, figure 5 is
the distribution of sequence values of the Logistic chaotic system.
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Figure 5. Value distribution of Logistic chaotic sequence

We divide the interval xn ∈ (0, 1) into eight intervals equally. The output is a single-bit
binary number. Its mathematical expression is as follows:
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Q0−1[xn] =


1, xn ∈

2m−1⋃
k=0

Im2k

0, xn ∈
2m−1⋃
k=0

Im2k+1

, k = 0, 1, 2 · · · (7)

Where m is any integer greater than 0, and Im0 , Im1 , Im2 ... are 2m continuous equalized
intervals in the range of real-valued sequence. If the real value falls in an odd interval, its
quantization value take 0, if it falls in an even interval, its quantization value is 1, in this
design m = 3.

In the absence of a pipelined architecture, the critical path to determine the maximum
working frequency of the whole pseudo-random sequence generator exists in the mult mod-
ule, because there are a large number of combinational logic circuits in this module. Here
we focus on the improvement of the operating frequency of the system after combinational
logic division of the mult module, because the combinational logics in other modules are
relatively simple and are designed as single shot latency sequential circuits. The module
with single shot latency in figure 2 is represented as a module with black borders, and
the module with non single shot latency is gray(only module mult here). After the mult
module is divided into different levels of combinational logic, the mult module has differ-
ent pipeline stages, i.e. has different latency. Figure 6 shows the relationship between the
LUT , FF , and the maximum operating frequency of the system Fmax, and the number
of pipeline stages inserted in the mult module. When latency ≤ 10, with the increase of
latency, the consumption of hardware resources and Fmax increase significantly. While
continuing to split the combinational logic in the module mult to increase the number
of pipeline stages, hardware resource consumption continues to increase, while Fmax does
not significantly improve. Until latency = 18, Fmax only slightly increases.

At this moment, the critical path of the system is no longer between the registers inside
the mult module. Therefore, continuing to split the combinational logic inside mult can
not obviously improve the maximum operating frequency of the system. Obviously, con-
sidering the two aspects of running speed and resource consumption, we choose to insert
a 10-stage pipelined architecture in the mult module, i.e. latency = 10. At this time, the
working frequency of the sequence generator can reach 296 MHz, and the throughput is
296 Mbps. The system has a higher operating frequency and lower resource consumption,
and a good balance between speed and resources is achieved. The design [10] eventually
achieved a clock frequency of 233 MHz while consuming 842 FFs, 313 LUTs, and 16
DSPs. This design uses a total of 981 FFs, 303 LUTs, and 16 DSPs, which are similar to
the resource consumption in [10], but have obvious advantages in speed. The throughput
is higher than the 250Mbps achieved by the design in [11], while the work in [12] only
achieves the operating frequency of 200MHz.

3.2. Workflow. It can be seen from Figure 3 that the entire pseudo-random sequence
generator has 4 input signals and 2 output signals, and the rest are internal signals.
Among them clk is the clock signal, rst n is the reset signal of the system, after the system
begins to work the init rom module injects the initial value into the system at first, after
the initial value is injected, the sequence generator begins to output the pseudo-random
sequence. The sequence generator workflow is briefly described as follows:

(1) After the system power-on reset, when receiving a high level from start, the pseudo-
random sequence generator starts to work;

(2) When the sequence valid output is high, the sequence output is valid;
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Figure 6. Relationship between resources, speed and pipeline stages

(3) When the working pseudo-random sequence generator receives a high level from
stop, the pseudo-random sequence generator suspends operation until it receives a
high level from start to continue operation or is reset by rst n.

In the case that mult has a latency of 10 clock cycles, the latency of the entire system
is 13 clock cycles, which means that it needs to send 13 initial values of chaos into the
system within the first 13 clock cycles after startup. These initial keys are pre-stored
in the init rom module and output under the control of the controller. Therefore, the
initial key length of the system is 13 × 64bits= 832bits, and the key space is 2832bits.
Compared with the traditional non-pipelined Logistic chaotic pseudo-random sequence
generator [13], it has a larger key space.

In the 13 clock cycles that we send the initial values, the system does not generate
a valid pseudo-random sequence. At this time, the output signal sequence valid is low
which means the sequence output is not ready for using. After the 13 initial keys are
input, the output signal sequence becomes valid, the sequence valid is pulled high and a
sequence value is generated for each clock cycle. A consecutive 13 bits output sequence
corresponds to the results of 13 initial values iterated by corresponding times.

4. Randomness Testing. The statistical test of the randomness of the sequence gen-
erated by the pseudo-random sequence generator designed in this paper is the NIST
SP800-22 [9] test suite. The NIST test is an internationally recognized statistical ran-
domness testing for the random number and pseudo-random number. A set of statistical
tests for randomness are included, and the entire test contains 15 sub-tests. The final
criterion is measured using normalized P − values. If the value is greater than 0.01, it
means that the test is passed and the rest indicates that the test failed. Of the 15 tests,
10 were judged by one P − value. For the rest of the test items with multiple P − values,
we will calculate the pass rate to determine whether it passed the test, and the indicator
is set to 80%, i.e. when at least 80% of P − values is greater than 0.01, the sequence
passed this sub-test. A set of test results is given in Table 1.

We also tested 30 sets of different initial values, each generating a pseudo-random
sequence of 220 bits in length and counting the pass rate of each sequence in 15 NIST
tests. The results are shown in figure 7. It can be seen that 27 of the 30 groups of data
have a NIST pass rate of 100%. Although there are 3 groups that have not passed all the
test items, they still have a high pass rate. The tests have proved that the pseudo-random
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Table 1. Results of NIST test

Test items P − value/Pass rate Results

Frequency 0.382638 pass
Block Frequency 0.610685 pass
Cumulative Sums1 100% pass
Runs 0.648183 pass
Rank 0.399605 pass
Longest Run 0.193732 pass
Discrete Fourier 0.249134 pass
Linear Complexity 0.771830 pass
Universal 0.756480 pass
Overlapping-Templates 0.862924 pass
Approximate Entropy 0.285989 pass
Non-Overlapping Template2 96.6% pass
Random Excursions3 100% pass
Random Excursions Variant4 100% pass
Serial5 100% pass

1 This item has 2 P − values.
2 This item has 148 P − values.
3 This item has 8 P − values.
4 This item has 18 P − values.
5 This item has 2 P − values.

sequence generated by this design has excellent random characteristics and can be applied
to the field of data encryption.
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Figure 7. NIST test pass rate

5. Conclusions. The design and verification of the high-speed chaotic pseudo-random
sequence generator based on the pipelined architecture proposed in this paper are based
on Verilog HDL, Xilinx Vivado ver.2017.4 and Xilinx Artix-7 series. The design has the
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characteristics of high speed and high resource utilization. It finally reaches 296MHz
operating frequency and 296Mbps throughput. In applications where higher throughput
is required, it can be achieved by changing the chaotic sequence quantization method
in the design. In the randomness test of the output sequence of this design, we used
the NIST SP800-22 test suite and achieved excellent test results. It is proved that the
pseudo-random sequence generator proposed in this paper has high speed and its gener-
ated sequence also has excellent randomness. It can be applied to various fields of data
encryption and has good practical value.
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