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Abstract. K-means is an effective way to gain experience in a variety of applications.
Although existing methods attempt to solve this problem by reducing the size, it is power-
less to process high dimensional data that typically includes noise and redundant features.
What is worse, an increase in complexity with a robust loss function performing a sim-
ilarity measure in the original limits their ability. This paper aims at developing an
adaptive algorithm which utilizes group sparse technique and feature learning via a joint
framework to reduce the impact of outliers. Thanks to the framework with special fea-
ture selection matrix, the eigenvalue decomposition operation can be properly avoided,
making it be easily applied to data with high dimensions. To verify the effectiveness of
the proposed method, we have applied it to six datasets. The advantages over several
state-of-the-art methods shows that it is suitable for real-world applications.
Keywords: K-means clustering; High-dimensional data; Feature learning; Dimension
reduction; Feature selection.

1. Introduction. Clustering is a conventional technique designed to distribute data with similar proper-
ties into the same group by exploring the underlying structure between the data. In the past few decades,
clustering has been widely used in various practical applications, including image processing, computer
vision and so on. Of all the recent published clustering algorithms, K-means clustering (KM) achieves
the highest interests for its simplicity. However, due to the rapid development of information technology,
a great quantity of high-dimensional data has been generated, which poses a considerable challenge to
traditional knowledge management. For example, for a 128 x 128 image with a relatively small resolu-
tion, if we use it as an instance, it contains 16384 features. Due to the curse of dimensions and higher
complexity, it is difficult to apply KM directly to these high-dimensional data. Another challenge for
KM is that it is sensitive to outliers. Specifically, as shown in previous work [1], KM needs to iteratively
update its centroid in an Equivalent l2-orm in Euclidean space. This expectation maximization (EM)
update method reduces the performance of clustering, especially when dealing with noisy data.

In order to cope with the first challenge of manipulating high-dimensional data, KM has found the
best low-dimensional feature space [2]. One conventional solution for clustering high-dimensional data is
to first project these data into low-dimensional data, such as principal component analysis (PCA) and
local linear embedding (LLE), and then perform KM through a dimensionality reduction algorithm. For
example, in [3], PCA is executed to learn the feature subspace of KM. However, due to the separation
between subspace learning and clustering, the obtained subspace may not be optimal for subsequent
clustering tasks. In order to solve this problem, Based on linear discriminant analysis (LDA), Ding et al.
[2] proposed a coherent objective function, in which KM and LDA are executed simultaneously in such
a way that KM generates ”cluster tags” for LDA, and in turn LDA finds the representative features for
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KM. Nevertheless, when facing ”small sample size” data, this algorithm is degraded, where the number
of instances is less than the number of features. However, all of these subspace learning methods involve
Eigenvalue Decomposition (ED), which is very time to consume for high dimensional data.

Clustering with feature selection is another solution for clustering high dimensional data. Feature
selection can preserve the intrinsic structure of the original features compared to dimensionality reduc-
tion, and thus has recently gained more and more interest. For example, Chen et al. [4] designed a
joint framework to combine feature learning and KM in an objective function, in which the weighted
feature mechanism searches for the optimal feature subset. Similarly, Huang et al. [5] proposed to find
the representative features of KM clustering by feature weighting method and extend it to multi-view
clustering application. However, all of these subspace clustering algorithms are ”soft subspace” methods
that need to update their cluster centroids in the original high dimensional feature space. Therefore, they
are inefficient and susceptible to noise and redundant features.

To address the second challenge of KM’s sensitivity to outliers, the researchers propose to extend KM
by imposing a new cluster centroid update mechanism or a new distance measurement between two data
points [6]. For example, under the promotion of the group sparse regularization technique [7], several
KM type methods have recently been developed [8]. Cai et al. [6] designed a KM based on the l2,1-norm
specification to reduce the impact of outliers. However, it is difficult to detect redundant features. Pan
et al. proposed an α-Fraction first method to solve wireless sensor networks arrangement problem [9].

In order to solve the above problem, we have proposed a K-means clustering for high-dimensional
data[10]. We discuss the Fast and Robust K-means Clustering with feature learning, namely FRKC. It
utilizes feature learning and clustering jointly by a newly designed objective function. Furthermore, the
feature selection matrix can be efficiently optimized without the assistance of ED. In addition, it imposes
a loss function based on the l2,1-norm, so it is robust to outliers. The remainders of the paper are
organized as follows. Section 2 is related works about clustering and feature learning with regularization.
The proposed method described in Section 3. Section 4 is Experimental arrangement and discussion and
give conclusions and future works on Section 5.

2. Related works.

2.1. Notations. Given n training instances X = [x1, x2, ..., xn] ∈ R(d×n) with d dimensionality. For
concise illustration, we assume the data are centered. We use ||.||F to denote the Frobenius norm and
F = [f1, .., fn]T ∈ R(n×g) be the cluster indicator matrix with g clusters. fi × R(g×1) is the cluster
indicator vector of sample i, if data xi belongs to class j, fij = 1, otherwise fij = 0). For brevity, we use
Inf to denote the cluster indicator matrix set.

2.2. K-means clustering. The general process of KM can be divided into two steps. It first assigned
several random centroids and grouped these data into k groups G1, G2, ..., Gk according to their distance
to centroids. After that, it recalculated the centroids of each cluster. These two steps interleave repeat
until these centroids are no longer changed. Mathematically, KM has the following formulation:

min
F

k∑
j=1

∑
i∈gj

(xi − cj)T (xi − cj) (1)

where cj is the j − th cluster centroid.
From Eq.(1), it can be found that KM judges the closeness among centroids and data samples using

squared l2-norm, which will generate larger bias when the outliers with great distances to the centroids
appear [6] [8].

2.3. Feature learning for clustering with regularization. Feature selection (FS) is a well-known
technology to locate the most representative features and has shown its efficiency in many applications.
Recently, several FS methods have been published, among which the regularized FS achieves comprehen-
sive performance and updates the researchers’ interest. For example, an unsupervised FS was developed
in [11]. It can explore clear structures by constructing graphs under l1-norm constraint and find the
importance of features by l2, 1-norm group sparsity.

To improve the performance of knowledge management and retain the original feature structure, some
researchers try to integrate feature learning into knowledge management. For example, Wang et al. [12]
imposed an l2, 1-norm standard regularization and discriminative technique on traditional knowledge
management and showed good performance in improving clustering. However, this algorithm relies on
ED, which is very complex for practical applications. The ”soft subspace” algorithm can solve this
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problem. For example, De Amorim et al. [13] proposed a Minkowski weighted K-means clustering in
which feature weights are converted into feature rescaling factors. However, all of these algorithms need
to iteratively update their cluster centroids in the original high dimensional data space, which is very
time consuming and difficult to apply to large datasets.

3. The proposed method.

3.1. Robust KM with Feature Selection. The objective function of KM in Eq.(1) can be reformu-
lated as:

min
G, F∈Inf

g∑
i=1

∑
xi∈Cj

xi − gj22 (2)

where C = [c1, c2, · · · , cg] ∈ Rd×g is the cluster centroid matrix. Eq.(2) can be rewritten as:

min
C,F∈Inf

n∑
||

i=1

xi − CfTi ||22 (3)

Nevertheless, as discussed in previous studies [14], the l2-norm term in Eq.(3) is sensitive to noise,
which frequently appears in many real-world applications. To address this problem, a non-squared l2-
norm based loss function is imposed as:

min
C,F∈Inf

n∑
i=1

∥∥xi − CfTi ∥∥2 (4)

To reduce the influence of redundant features, following[4], we introduce a special selection matrix into
Eq.(4) and have:

min
c,F∈Inf

n∑
i=1

∥∥WTxi − CfTi
∥∥
2

(5)

where W = [w1, w2, · · · , wm] ∈ Rd×m (m << d) is the selection matrix, whose i-th column vector wi
is defined as:

wi =

 i−1︷ ︸︸ ︷
0, ..., 0, 1,

D−i︷ ︸︸ ︷
0, .., 0

T (6)

It can be easily observed that W in Eq.(6) is a column-full-rank transformation matrix and is extremely
sparse, making the subsequent optimal procedure for feature subset efficient and independent of ED. We
will show this optimization strategy in Section 3.2.

3.2. Optimization. Our proposed objective function in Eq.(5) involves a non-square l2-norm term,
which is non-smooth and hard to optimize directly. In this section, we recommend alternately optimizing
it. More specifically, we optimize one of these variables by constantly fixing other variables. Before that,
we first rewrite equation (5) as follows.

min
c,F∈Inf

n∑
i=1

∥∥diWTxi − CfTi
∥∥2
2

(7)

where di = 1

2
√
‖xi−cfT

i ‖2+σ
and σ is a small enough positive constant. D is a diagonal matrix with its

i-th diagonal element equals to di. Then Eq.(7) can be reformulated as:

min
C,D,F∈Inf

Tr
(
XTW − FCT

)T
D
(
XTW − FCT

)
(8)

a.Fixing W,D,C, and optimizing F. When fixing W and C, D, Eq.(8) becomes:

fij =

{
1, j = arg min

k

∥∥WTxi − ck
∥∥2
2

0, Otherwise.
(9)

Obviously, Eq.(9) is the traditional K-means in low-dimensional feature space.
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Table 1. The procedure of the proposed method

b.Fixing D,F, and optimizing C,W. Taking the derivative of Eq.(8) w.r.t. C to zero, we have:

C = WTXDF
(
FTDF

)−1
(10)

Substituting Eq.(9) into the Eq. (7), we have:

min
W

Tr
(
WTMW

)
= min

W

m∑
i=1

Tr
(
wTi Mwi

)
(11)

where M = XNXT and = D −DF (FTDF )−1FTD
Considering the feature selection matrix in Eq.(6), Eq.(11) can be effectively optimized by locating

the first m smallest elements of u ∈ Rd, where ui =
∥∥∥(XN 1

2

)
i:

∥∥∥2
2

c.Fixing F, G, W and updating D by:

D =


1

2‖WT xi−CfT
i ‖2

. . .
1

2‖WT xn−CfT
n ‖2

 (12)

Table 1 shows the procedure of the proposed method.

3.3. Complexity analysis. To show the effectiveness of the proposed method, we briefly discuss its
complexity. From Table 1, to find the optimal F, we need O(mcn) multiplications. Then, to calculate
C need O(mcn+ c2n) complexity. To optimize W, we have to locate the first m smallest elements of M
in Eq.(11), whose computational complexity is O(dn + mlogm). As m << d and g << n, thereby, the
complexity of FRKC is O(dn). Thus, FRKC can be applied to high-dimensional data.

4. Experiments and Discussion. In our experiments, we first demonstrated the effectiveness of FRKC
on the toy sample dataset, and six selected datasets (summarized in Table 2), including three UCI datasets
(Cars, Wine, and Vote), two image datasets (MSRA25 and Yale), and one text dataset (WebKB). We
then compared FRKC with several closely related KM type algorithms as follows.
• KM: the widely used K-means clustering algorithm.
• RKM: a single-view version of the robust multi-view KM in [6].

4.1. Experiment Setup. The compared KM type clustering algorithms are sensitive to the initial
cluster centroids. For fair comparison, we independently repeat clustering procedure 50 times and report
the average results for each dataset. For the KM type subspace clustering, i.e. FRKC, we record
the average clustering with optimal feature subset. Accuracy (ACC) is used as the evaluation metric.
Mathematically, given an arbitrary data point xi, denote pi as the predicted cluster labels vector and qi
as the ground truth label vector. ACC is defined as follows:
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Table 2. Details of selected datasets

Table 3. Clustering performance comparison of different algorithms

ACC =

∑n
i=1 δ (pi,map (qi))

n
(13)

where n is number of instances, σ(x, y) = 1 if x = y; σ(x, y) = 0 otherwise, and map(qi) is the mapping
function based on Kuhn-Munkres algorithm. A larger ACC indicates a better clustering performance.

4.2. Toy Example. In this section, we will present an example of a two-dimensional synthetic dataset
(it contains the x-direction and the y-direction) to illustrate how FRKC works. This dataset can be
categorized into two parts. Every part contains 30 samples. More concretely, data points of the right
part (blue square) are generated from a two-dimensional normal distribution with the mean [4,4.4] and
covariance matrix [0.001,0;0,0.02]. Data points of the left part (red circle) contains two components. The
first component is 25 samples generated by a two-dimensional normal distribution with the mean [3.7,4.2]
and covariance matrix [0.01,0;0,0.02]. The second component is 7 samples, which can be taken as the
outliers for the left part shown in Fig 1(a) (red circle). The samples in this component are generated
randomly by a normal distribution with the mean [3.6,3.6] and covariance matrix [0.001,0;0,0.01].

To show the effectiveness of FRKC, we first perform FRKC and KM on the 2-D dimensional dataset
without feature selection, that is we set m = d in FRKC. Then we perform FRKC in 1-D dimensional
data space to demonstrate its embedding clustering performance. The clustering results of KM on 2-D
dimensional data are shown in Figure 1(b). We can observe that KM has misclassified 3 data points (3
red circles connected by blue lines) by the effect of outliers. The reason may be that KM always assigns
a higher weight value for the data far away from its cluster centroid. For example, in Figure 1(b) the
data points with a large distance to its cluster centroid will have a large weight (thick red line or thick
blue line). Such an assignment will cause a vast bias when updating the cluster centroids.

Compared with KM, FRKC is able to obtain more stable results in Fig.1(c) by evaluating the impor-
tance of data points by their contributions to the cluster (that is the fitness to their clusters). Besides,
FRKC can precisely find the optimal feature subset, which can be seen from the results show in Fig.1(d).
We can observe that FRKC can correctly separate these two groups by preserving the x-direction features.

From the results shown in Fig.1, we can conclude that: 1). With the help of clustering, FRKC
improves the performance of clustering once finding the suitable feature subset; (2) With the help of
feature selection, the clustering performance, including accuracy and efficiency, can also be increased
obviously.

4.3. Clustering Performance Comparison. Table 2 gives the clustering comparison results. We can
conclude that (1) mostly, RKM performs better than KM by integrating the l2,1 − norm regularizaiton,
particularly, when dealing with data encoded by different types of features, e.g. Cars and Wine. (2) RKM
designs a re-weighted iterative approach to optimize the l2,1−norm loss function. However, it is sensitive
to small loss. Therefore, when processing data with plenty of redundant features, i.e. MSRA25, Yale,
and WebKB, RKM fails. 3) FRKC gets the best clustering results over the other compared algorithms.
The primary reason may be that it combines feature selection and robust learning simultaneously. This
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Figure 1. Clustering results of KM and FRKC on toy example dataset

also demonstrates that it is beneficial to select the most discriminative feature subset for l2,1−norm loss
function.

4.4. Computational Time Comparison. Since computational efficiency is a very important quality
metric for clustering, we conduct a corresponding experiment to verify FRKC.

We selected all the 6 public datasets for comparison. For impartiality, KM and FRKC, are implemented
in their original formulation, without any other accelerating operation. For RKM, we download the source
code from the author’s websites and follow their experimental setting. All algorithms were realized by
Matlab 2015b and executed on Intel R© Xeon R© CPU E5-2620 2.00GHz with 48G memory and Windows
Server 2008 operating system. Following [11], for the subspace clustering algorithm, i.e. FRKC, we fixed
the reduced dimensionality as g-1. The computational time of different algorithms is listed in Table
3, where the subscript “ms” means milliseconds and “s” means seconds. We can make the following
observations:

(1) Of the different methods on the different datasets, KM and FRKC consume the least time for most
of the datasets. RKM takes the most computational times compared with the others except WebKB.
The reason for this may be that RKM iteratively updates the cluster centroids and feature weights in the
high-dimensional feature space. Besides, the implementation of RKM involves too many loop operations,
which are hard to be optimized by MATLAB.

(2) When dealing with datasets with few features, i.e. Cars, Wine, and Vote, KM needs few computa-
tional time compared with FRKC. However, FRKC is more capable of handling high-dimensional data,
i.e. MSRA25, Yale, WebKB. This may be caused by the fact that FRKC iteratively updates the cluster
centroids in a low-dimensional feature space. For example, FRKC is nearly 84 times faster than KM on
WebKB dataset. Therefore, we can conclude that FRKC is suitable for high-dimensional data.

4.5. Influence of Selected Features. As feature selection is a key component in subspace clustering,
we perform an experiment to study how the number of selected features can affect the clustering per-
formance. This experiment can help us to better understand the general tradeoff between performance
and computational cost for real-world applications. From these results in Figure 2, we can observe when
supplied with more features, not all methods achieve higher performance. Therefore, we can conclude
that feature selection is beneficial for clustering. What is more, the optimal feature subset varies with
different kinds of the datasets, e.g., 40 for WebKB and MSRA25, 7 for Wine. The underlying reason lies
in that different datasets have different intrinsic dimensionality. Thus, we conclude that FRKC can both
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Table 4. Computational time (in A microsecond)of different methods on
various datasets (mean ± STD)

Figure 2. Clustering results on 4 datasets with different number of se-
lected features

improve the clustering performance and computational cost (by performing on low-dimensional feature
space), if the optimal feature subset is determined. However, how to select the optimal number of reduced
features is still an open problem for FRKC, which will be investigated in the future.

5. Conclusion. To cope with the difficulty of clustering high-dimensional data, we have designed a fast
and robust clustering framework. In this framework, we have introduced a special selection matrix to
locate the representative features by extracting the discriminative power among clusters. To achieve a
robustness clustering, we also utilized the l2,1-norm group sparsity technique to constrain the loss function.
As the proposed objective function is non-smooth and is hard to be optimized directly, we have constructed
a efficient optimizing algorithm to solve it. Experimental results on six public datasets demonstrated that
our algorithm is simple and less energy-consuming, and can be applied to high-dimensional data.
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