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ABSTRACT. The classical spatio-temporal fusion algorithms STARFM and SPSTFM will
have large fusion errors when the phenological changes or type changes appear. In this
paper, based on the spatial feature information of the image, we proposed a new spatio-
temporal information fusion method which combines SRCNN (Super-Resolution Convo-
lutional Neural Network) and sparse representation. Firstly, complete the feature recon-
struction of the reflectance change image by combining SRCNN and sparse representa-
tion, and then the reconstructed image is superimposed by the time weight to obtain the
predicated reflectance image. Ezperiments show that the proposed method is better than
the classic spatio-temporal fusion algorithms STARFM and SPSTFM.
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1. Introduction. With the continuous development of remote sensing technology, re-
mote sensing technology can provide various information about crop ecological environ-
ment and crop growth objectively, accurately, and timely. It is an important source for
accurate field data. However, under the constraints of the hardware technical conditions
of existing satellite sensors and the cost of satellite launching, remote sensing satellites
cannot obtain remote sensing images with multi-attribute fine resolution, which restricts
the application of remote sensing images. For example, Landsat satellites obtain images
with spatial resolutions in the 30m range, whereas a 16-day return visit cycle limits its
use to detect rapid land changes, on the other hand, medium resolution imaging spectra
carried on Terra/Aqua satellites radiometer (MODIS) provides daily observations, but
having a coarse spatial resolution of 250-1000m is not conducive to monitoring land cover
changes in heterogeneous landscapes. Therefore, spatio-temporal fusion has emerged as
a method of providing satellite imagery with fine temporal and spatial resolution.
During recent decades, the method of spatio-temporal fusion has been widely applied
and mentioned. Gao et al. (2006) first proposed the Spatial And Temporal Adaptive
Reflectance Fusion Model (STARFM) [1] for the identification of surface cover types
of fractured patches, which can effectively eliminate singular points and is suitable for
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detecting the gradual changes of the large-scale range of space. Zhu et al. (2010) proposed
Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) [2]
based on STARFM, which is more accurate and efficient for complex and heterogeneous
features, and it solved the “time smoothing” problem of the STARFM algorithm. Both
STARFM and ESTARFM are weight-based spatio-temporal fusion algorithms, which are
limited to fine-grained landscapes and will reduce the accuracy of their fused images in
fine-grained heterogeneous landscapes. Hilker et al. (2009) proposed a Spatial-Temporal
Adaptive Algorithm for mapping Reflectance Change (STAARCH) [3] to observe changes
in forest vegetation. Although this algorithm can analyze the change of reflectivity of
input images and handle the dynamic change of land cover type, it requires two landscape
Landsat images not suitable for areas where image acquisition is difficult. Wu et al. (2012)
proposed a Spatial And Temporal Data Fusion Approach (STDFA) [4] based on the time-
varying feature of the feature for the extraction of rice area. This algorithm also requires
multi-phase image support, which limits the application of the algorithm.

In recent years, machine learning has been widely used in various fields such as human
motion recognition [5] and video salient region detection [6], it also can be used to solve
problems in the field of remote sensing. and it can be used to solve problems in the field
of remote sensing. The spatio-temporal fusion algorithm based on machine learning has
received extensive attention in the field of image processing. Hong et al. (2012) proposed
a Sparse Representation-based Spatio-temporal Reflectance Fusion Model (SPSTFM) [7].
The model uses the difference images of the MODIS image pairs and Landsat image pairs
which on the front and back phases of the predicted phase to train fine-resolution and
low-resolution dictionaries representing time-varying features, and then uses the MODIS
image of the predicted time to generate a Landsat-like fusion image; Subsequently, Song
and Huang (2013) proposed a sparse representation spatio-temporal reflectance fusion
model using only one pair of known fine and coarse spatial resolution image [8]. The
model first uses the sparse representation algorithm to enhance the MODIS image to
obtain an intermediate transition image and then uses a high-pass filtering model to fuse
the observed Landsat image and the transition image. This model reduces the number
of known image pairs that need to be input, so that the algorithm can be applied in
the absence of data, and has universal applicability. The feature-based spatio-temporal
fusion methods take into account the spatial information characteristics of the changing
image and can make more accurate predictions of the complex surface reflectance image
compared to the weight-based methods.

Nowadays, deep learning, as a branch of machine learning, is gradually maturing and it
can be applied to medical diagnosis [9] and drone surveillance [10]. Convolutional neural
network (CNN) [11] is one of the most representative neural networks in deep learn-
ing technology. Convolutional neural network (CNN) can be used to solve problems in
computer vision such as object recognition [12]and image classification [13]because of its
simple model structure. In addition, CNN also can be used to encoding [14] and decoding.
Girshick et al. (2014) proposed region-based Convolutional Neural Networks(R-CNN) [15]
which improves mean average precision (MAP). Dong et al. (2016) analogous to sparse
coding, proposed Super-Resolution Convolutional Neural Network (SRCNN) [16] model
to hide the automatic learning with layers replaces the dictionary modeling operation,
cleverly establishing CNN end-to-end mapping between low-resolution and fine resolution
images, which greatly improves the reconstruction accuracy and running speed. SRCNN
network has the advantages of simple data preprocessing, the convolution learning algo-
rithm is not limited by image patch size, and directly obtains the mapping relationship
between fine and coarse images, and can learn from the neighborhood relationship between
image patchs to complete the partial contour of the image features. Wang et al. (2020)
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proposed a deep learning method [17] based on the technology of Internet of Things and
fast R-CNN. Tseng et al. (2020) proposed a new convolutional neural network architec-
ture named DNetUnet [18], which combines U-Nets with different down-sampling levels
and a new dense block as feature extractor. In addition, DNetUnet is a semi-supervised
learning method, which can be used not only to obtain expert knowledge from the labelled
corpus, but also to enhance the performance of learning algorithm generalization ability
from unlabelled data.

In view of these trends, in order to reduce the fusion error and achieve better spatial
detail reconstruction, this paper improves the SRCNN to make it suitable for remote
sensing image super-resolution of small sample training sets. Combining SRCNN theory
with SPSTFEFM theory, an enhanced MODIS and Landsat reflectivity image fusion method
based on SPSTFM is proposed. The SRCNN theory is used to train the differential image
patches of Landsat and MODIS images to effectively extract the edge structure of the
image. The reconstructed images of the relative prediction phases at different observations
are superimposed by time weights to achieve the reflectivity fusion of the predicted phase.
Finally, the prediction results are compared with actual images, STARFM algorithm
prediction results and SPSTFM algorithm prediction results to verify the effectiveness of
the algorithm and the improvement of the fusion accuracy.

The remainder of this paper is organized as follows. In Section 2, sparse representation
and sparse coding are briefly introduced at first, and then the spatio-temporal fusion
algorithm based on sparse representation is introduced in detail. In Section 3, the theory
of SRCNN and the proposed method of combining SRCNN and SPSTFM are introduced
in detail. The experimental results with actual data are shown in Section 4 which also
includes comparisons with STARFM and SPSTFM. Finally, this paper is concluded in
Section 5.

The reminder of this paper is organized as follows. In Section 2, we introduce the pro-
posed method, which consists of the learning of the complete grouped basis, the acquisition
of stego images and the extraction of secret messages. The results of the experiments and
analysis are shown in Section 3. Section 4 concludes our work and outlines our future
research direction.

2. Spatio-temporal fusion based on sparse representation.

2.1. Sparse representation. Knowing matrix D € R™*" | each column of the matrix
represents a base atom, n represents the dimension of the atom, and m represents the
number of base atoms, where n < m . In the field of imagery, sparse representation theory
holds that image x can be represented linearly by some of the base atoms in D , namely:

x = Da (1)

Where a € R™ is the sparse representation coefficient and D is the overcomplete dictio-
nary of the image. The purpose of sparse representation is to design an efficient dictionary
by sparse coding algorithm and find the representation vector with the least non-zero el-
ements so that the combination of the two can express the original signal most closely.
The target expression is as follows:

a = arg min ||allo (2)

Where a is the estimator of a and ||al| is the lp-norm of a, i.e. the number of non-zero
elements in the vector.
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2.2. Spatio-temporal fusion based on sparse representation. There are Landsat-
MODIS image pairs on t; and t3 and MODIS images on ty (t; < to < t3 ) as known
conditions, Landsat images with a spatial resolution of 30m are used as fine-resolution
images, and MODIS images with a spatial resolution of 500m are used as low-resolution
images. Interpolate the MODIS image using bilinear interpolation and extend it to the
same size as the Landsat image. It is defined that H; and L; are Landsat images and
MODIS images on t; (t =1,2,3 ).

First, construct a difference image of the fine-resolution image pair and the low-resolution
image pair: the MODIS difference image from ¢; to t3 (i.e. the low-resolution difference
image LRDI) and the corresponding Landsat difference image of the same period (i.e.
the fine-resolution difference image HRDI). The difference images (LRDI and HRDI)
themselves have high-frequency detail. There is a close relationship among the difference
images (i.e. between t; and ty , ty and t3 , t; and t3 ). Therefore, the HRDI between ¢;
and t5 and the HRDI between ¢, and t3 can be predicted by the known HRDI between
t; and t3. In particular, our desired differential image patch can be predicted by a linear
combination of structural primitives extracted from known HRDI.

We use and represent HRDI and LRDI between ¢; and ¢; , respectively h;;, and [;; define
and as their corresponding image patches. The relationship diagram of these variables is
shown in Fig.1. The predicted results of Hy are as follows:

Hy =Wy % (Hy + Hoyy) + Wo x (Hs + Hjp) (3)

Where Hy; and Hso are predicted HRDI, W, is a weighted parameter for predicting the
Landsat reflectance image on ¢, using the Landsat reflectance image on ¢; , Wj is similar
to Wi. For the determination of the weighting parameters, please refer to Section I1I-D
in [5]. To calculate Hy; and Hsy , we first train the HRDI and LRDI image patches
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FIGURE 1. Relationship diagram for the images and difference images and
comparison diagram for Landsat image and MODIS image , where h%, and
I%, stand for the kth patches of Hz, and Lsg , respectively.

between t; and t3 to develop dictionary pairs Dy and D,, , respectively. Based on sparse
representation theory, dictionary pairs can use the following optimization equations:

{D}, Dj,.a"} = arg min {|H — DIAJ3+||L = DAl + Nall,} (®)

L m,
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Where H and L are column combinations of image patches arranged in lexicographic
order from Hs3; and L3 , respectively. Similarly, a is a column combination representing
the coefficients corresponding to each of H and L. In the algorithm of Yang et al. [19],
the training sample is the edge structure of the image, and two dictionaries are learned
by optimizing the following function connections:

{D",a"} = argmin{|Z — Da + Aol ,} (5)

Where Z = [Y;X] and D = [Dy;D,,) . Considering the difference in amplitude and
variance between HRDI and LRDI, we use the alternate update mode to solve for Dy ,
and D,, in (4). For the detailed procedure of the dictionary column update, please refer
to [20].

After obtained the dictionaries Dy and D, , since the sparse representation coefficients
are forced to be considered identical during the dictionary training process, if the sparse
representation coefficients of the LRDI image patches are obtained relative to the dictio-
nary D,, , the same sparse representation coefficients and corresponding the dictionary D,
reconstructs the corresponding HRDI image patch.We use 5, to represent the kth image
patch of Loy , and we can estimate the sparse representation coefficient by minimizing the
[1-norm problem:

1
a* = argmin f(a) = argmin§ H$12€1 — DmaHz + Alall, (6)

The corresponding image patch h%; of HRDI can be expressed as:
hy, = Dia* (7)

3. Methodology.

3.1. Theoretical basis of SRCNN algorithm. Supposing a low-resolution (LR) image
was interpolated using the Bicubic interpolation method to obtain the same scale image
as a fine-resolution (HR) image. The interpolated image is named Y. The purpose of the
algorithm is to use the restored image which is named F(Y') to maximize the proximity to
the fine -resolution original image named X. SRCNN algorithm is a 3-layer convolutional
network which analogous to the Super-Resolution reconstruction process based on sparse
representation. The 3-layer network corresponds to three functions of feature extraction,
nonlinear mapping, and image super-resolution. The network structure of the algorithm
is shown in Fig.2.

FiGURE 2. Flowchart of SRCNN network structure. The first step is fea-
ture extraction, the second step is nonlinear mapping, and the third step is
reconstruction.

The first layer of the network extracts and characterizes the image patch, which can be
expressed as:

Fi(Y) =max(0,W; Y + By) (8)
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Where W; and B; represent filter and deviation, * represents convolution. The filter

named W consists of the number of ¢ x f; x fy filters is ny ,c is the number of channels
included in the image, f; is the size of the filter’s spatial domain. Therefore, W; performed
ny convolutions on the image, using the ¢ x f; x fi as a convolution kernel. This layer
outputs five feature maps, B; is a ni-dimensional vector with each element corresponding
to a filter. Using ReLU as the activation function, i.e. maz(0,x) .

The first layer of the network extracts the ni-dimensional features of the image patch;
the second layer of the network maps the n;-dimensional feature vector to the ny-dimensional
feature vector, which is a feature-to-feature mapping. The second layer of the network
can be expressed as:

Fy(Y) = max(0, Wy % Fi(Y) + By) (9)

Where W5 contains the number of ny X fy x fo filters is ny , and Bj is a ng-dimensional
vector.

Traditional methods usually predefine the way of the fusion, such as calculating the
average of overlapping part. SRCNN uses a learning method to merge overlapping im-
age patches and complete the process of image reconstruction by using the three-layer
network.The third layer of the network can be expressed as:

F(Y)=W;x F5(Y) + By (10)

Where W3 contains the number of ny; x fy x f5 filters is ¢ , and Bjs is a c-dimensional
vector.

According to equations (8)-(10), in order to calculate the end-to-end function F(Y),
it is required to learn to obtain the parameter 0 = {W;, Wy, W3, By, By, Bs, } of the
convolutional neural network. If there is a training set consisting of a large number of HR
images {X;} and its corresponding LR image {Y;} ,0 could be obtained by interpolation
between the minimized F'(Y7,0) and the original HR image X; . The SRCNN algorithm
uses the mean square error(MSE) as the loss function:

L0) = Y IF(Ys0) = X, (1)

Where n is the number of training samples. SRCNN uses the standard gradient descent
method to minimize the randomness of the loss function.

3.2. Proposed methodology. Time-series remote sensing images are repeated obser-
vations of the same region. The overall structure of the image will not change greatly
during a period of time, but the images of different phases will have changes in spectral
and spatial information. This is mainly caused by two factors: on the one hand, owing
to natural objects are affected by phenological effects, such as vegetation features will
show different growth states during different crop growth periods, resulting in changes in
spectral information; On the other hand, it is a change in the type of ground objects.
This is mainly due to the changes in the natural surface caused by artificial construction
or sudden natural phenomena. It can also be reflected by changes in spectral information
and spatial information on remote sensing images. Different from the reconstruction of
image information with the completely different overall structure in the super-resolution
of a natural image, the reconstruction of the predicted time-phase remote sensing image
is mainly to capture change information of the image and consider the temporal varia-
tion of the remote sensing image, in this paper, the difference between remote sensing
images in different time periods is used to represent the temporal change. Combined with
the characteristics of SRCNN and sparse representation algorithm, the spatio-temporal
reconstruction of the fine-resolution reflectance difference image representing the change
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of spatio-temporal information is realized. Finally, the fine-resolution image of the un-
known phase is linearly combined by the fine-resolution image of the known phase and
the reconstructed difference image. The main steps of the model can be divided into three
steps: remote sensing image SRCNN network construction and training, residual image
fine and coarse-resolution joint dictionary training, and fine-resolution reflectivity image
reconstruction. The specific process is shown in Fig.3.

(1) Make a difference image between the Landsat images H; and H3 on t; and ¢, , and
obtain the difference image Hs; , then resample the simultaneously corresponded MODIS
images L; and L3 to the same size as H;, and then obtain difference image Lg3; .

(2) Using Ls; and Hj; as the input to the trained SRCNN network, fine-resolution dif-
ference image H3, can be reconstructed by using the trained SRCNN network. Calculate
the difference between Hs; and H3, to obtain a residual image H3, containing details that
have not been reconstructed.

(3) Making fine-resolution residual image H};; and coarse-resolution difference image
L3y in patch form (this article uses 8 X8 ), and expand into 64 x 1 column vector. Forming
fine-resolution training sample set H;, = {hi3,, b2, ..., hi% } and low- resolution training
sample set Lg; = {13;,13,, ..., 1%

(4) Randomly extract 1024 column vectors of corresponding positions from the fine- and
coarse-resolution sample sets as the initial joint dictionary of fine and coarse resolution.
The OMP algorithm [21] is used to sparsely optimize the initial joint dictionary, and the
sparse representation coefficient a is obtained. Utilizing the K-SVD algorithm [20] to
update the joint dictionary to obtain the fine-resolution dictionary D) and the coarse-
resolution dictionary D; .

(5) The low-resolution image on t; and t3 are upsampled to the spatial resolution of
the fine-resolution image, and the coarse-resolution difference image Lo, between t; and
to is obtained. Input Lo; into the trained SRCNN network and output the estimated
fine-resolution difference image Hj; .

(6) Divide Loy and Hj; into 8 x 8 image patches and expand the image patch into 64 x 1
column vectors. Obtain fine-resolution difference initial estimate image patch vector h,
and coarse-resolution training sample vector ls; .

(7) Estimate the sparse representation coefficient a of each ly; for the low resolution
dictionary D; by the OMP algorithm. Since the sparse representation coefficients of fine-
and coarse-resolution dictionary are the same during the joint dictionary update process,
the corresponding high resolution image patch ho; can be reconstructed by the formula
Dha .

(8) The hj, obtained in step (6) and the hg; obtained in step (7) are linearly superim-
posed, and step (7) is repeated until the image-by-image patch operation is completed.
The image patches are superimposed and restored into an image, and the overlap between
the image patches is averaged.

Thus obtaining predicted fine-resolution difference image H%, between t; and to . Simi-
larly, the predicted fine-resolution difference image H%, between ¢, and t3 can be obtained.
Finally, the predicted fine-resolution image H5 can be obtained by formula (3).

4. Simulation experiments and results analysis. The geographic coordinates of the
center of the experimental area are 45° north latitude and 126° east longitude. The ex-
perimental area has a temperate continental climate and it is an important commercial
grain base in China with a vast territory and abundant resources. The type of land cover
is mainly farmland. These characteristics facilitate the development of our experiment.
This paper uses the Landsat8 OLI images of the experimental area and the corresponding
MODIS images as experimental data. The Landsat8 OLI images use the ENVI-Flassh
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FiGURE 3. The experimental flow chart is divided into two parts: train
dictionary and image reconstruction.

Atmospheric Correction Module to achieve atmospheric correction. Geometrically cor-
rected atmospherically corrected images were geometrically corrected using a 1:10000
topographic map and re-projected to UTM-WGS84. The coordinate system has an error
of fewer than 0.5 pixels. The pixel area (with a spatial resolution of 30 m) was intercepted
as an experimental analysis area. The MODIS reflection raw data is projected by a si-
nusoidal projection method. Reproject the MODIS image into the same UTM-WGS84
coordinate system as the Landsat 8 OLI image by using MODIS Reprojection Tools. The
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surface coverage type of this area is stable, and the change in surface reflectance is con-
sidered to be determined only by the phenological phenomena of the vegetation. Fig.4
(A) and (B) show the Landsat and MODIS images on May 29 in 2015 respectively, Fig.
4 (C) and (D) show the Landsat and MODIS images of the experimental area on June
27 in 2015 respectively, and Fig.4 (E) and (F) show the Landsat and MODIS images of
the experimental area on August 9 in 2015 respectively. Both are standard false-color
images, select bands 5, 4, 3 for Landsat8 OLI images and select bands 2, 1, 4 for MODIS
images, the combination of NIR, Red, and Green bands. It can be seen that the MODIS
and Landsat images on the same day are very similar, and both images clearly reflect the
change in surface reflectance during this period. In this section, we compare the proposed
method with the well-known STARFM algorithm and SPSTFM algorithm by using the
Landsat 8 OLI images and MODIS images of the experimental area. The predicted image
is then compared to the actually observed image, and subjective evaluations and goals
are evaluated to assess prediction accuracy. Root mean square error (RMSE), the mean
absolute difference (AAD), exponential-structural similarity (SSIM) ‘[22] and ERGAS [23]
were chosen as objective quality evaluation indicators.

Parameter selection of SRCNN: the initial values of the three-layer filter fi X f1 , fo X fo
and f3 X fsare 9 x 9,1 x 1,5 x5 n;is 64, ny is 32, respectively. Due to the influence
of the learning rate of the end convolutional layer on the convergence, the learning rate
of the first two layers is 17, = 1, = 107" and the last layer is 53 = 10™® . In order to
compare and analyze the advantages and disadvantages of different methods, the Landsat
and MODIS remote sensing images of May 29, 2015 and August 9, 2015 are used as two
sets of base time images, and the Landsat remote sensing image on June 27, 2015 is used
as a reference. The images were compared and analyzed in three models: STARFM,
SPSTFM, our method.
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FIGURE 4. Landsat image and MODIS image of the study area. (A) Land-
sat image on May 29, 2015. (B) MODIS image on May 29, 2015. (C)
Landsat image on June 27, 2015. (D) MODIS image on June 27, 2015. (E)
Landsat image on August 9, 2015. (F) MODIS image on August 9, 2015.
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FiGure 5. Comparisons between actual and predicted surface reflectances
with focus on seasonal changes. (A) is actual surface reflectance. (B)
is predicted surface reflectance using STARFM. (C) is predicted surface
reflectance using SPSTFM. (D) is predicted surface reflectance using our
method5.

TABLE 1. Accuracy evaluation of fusion results in experimental areas

Fusion method AAD RMSE SSIM ERGAS
Red Green | Nir Red Green | Nir Red | Green | Nir

STARFM 0.0179 1 0.0145 | 0.0117 | 0.0238 | 0.0207 | 0.0126 | 0.791 | 0.770 | 0.823 | 1.4578

SPSTFM 0.0160 | 0.0139 | 0.0092 | 0.0199 | 0.0171 | 0.0092 | 0.820 | 0.782 | 0.832 | 1.0926

Our method 0.0153 | 0.0132 | 0.0090 | 0.0175 | 0.0156 | 0.0077 | 0.842 | 0.791 | 0.841 | 0.9527

From Fig.5, we can see that compared with the proposed method and SPSTFM algo-
rithm, the fusion result of the STARFM algorithm has a large fusion error, mainly because
the method searches for similar pixels near the center pixel based on the reference time.
It is assumed that adjacent similar pixels in the two basic phase periods experience a
similar phenological change with the center pixel, and the reflectance of the similar pixels
is used to obtain the reflectance of the center pixel of the predicted phase. When large
phenological changes occur, due to the high heterogeneity of the selected regions, the
central pixel and adjacent similar pixels have different degrees of phenological changes in

the cycle, which results in inaccurate fusion results. The comparisons in terms of AAD,
RMSE, ERGAS, and SSIM are listed in Tab.1, the average AAD values of the three bands
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FIGURE 6. Scatter plots of the predicted reflectance against the actual
reflectance for NIR-red-green bands from left to right. (A)-(C) are scatter
plots of the predicted reflectance by using STARFM against the actual
reflectance in the NIR, red, and green bands, respectively. (D)-(F) are
scatter plots of the predicted reflectance by using SPSTFM against the
actual reflectance in the NIR, red, and green bands, respectively. (G)-(I)
are scatter plots of the predicted reflectance by using our method against
the actual reflectance in the NIR, red, and green bands, respectively..

for STARFM, SPSTFM, Our method are 0.0147, 0.0130, 0.0125, and 0.0125,respectively,
and the average RMSE values of the three bands for these models are 0.0190, 0.0154,
0.0136,respectively. These indicate that our method can reconstruct the Landsat surface
reflectance more precisely than STARFM and SPSTFM. The average SSIM values of the
three bands for these methods are 0.795, 0.811, 0.825, respectively, and this indicates
that our method can retrieve more precise structural details with smaller reflectance de-
viations on the surface reflectance than STARFM and SPSTFM. The ERGAS values for
these methods are 1.4576, 1.0926, and 0.9527, respectively, and this indicates that the
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spatial details and spectral colors of our fusion result are better than this of STARFM
and SPSTFM.

5. Conclusions. This paper proposes a spatio-temporal fusion model based on sparse
representation and SRCNN. Using our method to compare with STARFM and SPSTFM,
the results show that our method has better fusion precision and better spatial detail
reconstruction.

Spatio-temporal fusion is the complementary advantage of remote sensing image infor-
mation. In the future research, on the one hand, how to make full use of remote sensing
image information to make it more widely used in agricultural monitoring and other fields;
on the other hand, in order to explore the spatial information of low -resolution image
MODIS more widely, more and more reasonable training sample sets are extracted to
train the SRCNN network to obtain better Landsat prediction results.
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