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Abstract. Electric Vehicle Routing Problem with Time Windows (EVRPTW) is often
used in the transportation area. EVRPTW is difficult to solve by the traditional precise
method. The meta-heuristic algorithm is often used to solve EVRPTW and can obtain ap-
proximate optimal solutions. Equilibrium optimizer (EO), as a meta-heuristic algorithm,
is simple to implement by software and hardware. Given the shortcomings of EO, such as
low convergence precision and fall into local optima easily, we propose an advanced equi-
librium optimizer (AEO). In AEO, we improved EO with multi-population method, novel
quantum operator, and FPA-inspired pollination operator. Multi-population method con-
stitutes the algorithm structure of AEO. The novel quantum operator and FPA-inspired
pollination operator effectively enhance EO’s global exploration capabilities, improving
the convergence accuracy and stability of EO. Then we test the AEO by CEC2013. Ex-
periment results and Friedman’s mean rank show that AEO has better performance in
convergence than differential evolution (DE), flower pollination algorithm (FPA), grey
wolf optimizer (GWO), particle swarm optimization (PSO), and EO. Finally, AEO also
is applied to solve EVRPTW. From the test results of the instances, AEO is more suit-
able to solve the EVRPTW than some comparison algorithms.
Keywords: meta-heuristic algorithm, equilibrium optimizer, CEC2013, electric vehicle
routing problem with time windows.

1. Introduction. The meta-heuristic algorithm is widely used in transportation prob-
lems. One of the meta-heuristic algorithms is population-based algorithm [1, 2]. Differ-
ential Evolution (DE) [3, 4], Cuckoo Search (CS) [5, 6], PSO [7, 8], artificial bee colony
(ABC) algorithm [9, 10], FPA [11, 12], Grey Wolf Optimization (GWO) [13, 14] and Quasi-
Affine Transformation Evolutionary Algorithm (QUATRE) [15, 16] were some popular
population-based algorithms. EO, as a novel swarm intelligence algorithm, is proposed
by Faramarzi [17]. The idea of ABC comes from the gather honey behavior. Fish Mi-
gration Optimization (FMO) [18] is implemented based on the migration characteristics
of the fish. FMO has been applied to several applications [19, 20]. The enlightenment of
EO comes from the control volume mass balance model.

EO was introduced in 2020, some researchers have studied it. Wunnava proposed
adaptive equilibrium optimizer for multilevel thresholding in computer vision [21]. Gao
et al. presented two binary equilibrium optimizer algorithm and for selecting the optimal
feature subset [22]. Abdul-hamied et al. uses EO to solve the optimal power flow problem
[23]. Rabehi uses EO to optimal estimation of schottky diode parameters [24]. Nusair
uses EO to optimal power flow problem with high penetration of renewable energy, and
it provides the lower optimization value in term of electric power generation, real power
loss, emission index and voltage deviation [25].

The performance of many original swarm intelligence algorithms is not so satisfactory
in many applications, result in researchers have adopted many strategies for improvement.

Multi-population method is a simple way to make algorithm to avoid the local op-
tima. There are many researchers pay close attention to this method. PSO is improves
with multi-population with three communication strategies, has been tested by some op-
timization function with prospective results [26]. The ant colony optimization also use
multi-population and is improved by using some communication methods and is applied
for solving the TSP with promising solutions [27]. The cat swarm optimization (CSO),
proposed by Chu et. al., has been widely used in numerous fields, and the multi-population
method is also used in CSO, which gets better results and is applied to several problems
[28, 29, 30, 31, 32].

Many scholars have also studied the combination of intelligent computing and quantum
computing. Sun established a novel PSO with quantum behavior by quantum Delta
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potential well model [33, 34]. Similarly, Lu introduced the quantum operator into the
global pollination of FPA and named it as QFPA [35].

Although VRP was proposed by Dantzig in 1959, it has been many years [36], as a
branch of VRP, the related research of electric vehicle routing problem (EVRP) started
relatively late [37].

EVRP is an important issue. On the one hand, it’s a practical problem, which uses
electric vehicles (EVs), EVs are powered by electricity and have the advantages of zero
greenhouse gas emission, low noise and strong maintainability. There are logistics services
and transportation companies that intend to use EVs for cargo distribution tasks [38].
On the other hand, EVRP is also a challenging scientific issue. Because the vehicle adopts
EV, it is more complex than traditional VRP that is NP-hard problem [39], and more
factors need to be considered, which makes it more difficult to solve.

Many scholars have studied EVRP. It can be regarded as a variant of GVRP [40],
and it mainly involves alternative fuel vehicles, which have a limited range and should
be recharged on the way [41]. Schneider introduce the EVRP with time windows and
recharging stations, its charging can be done at any available charging station using an
appropriate charging scheme [42]. Kancharla introduces a three-index formulation for
EVRP with non-linear charging and load-dependent discharging [43]. Gao establishes
a EVRPTW model with penalty function, uses genetic algorithm to solve, and genetic
operators are designed [44].

In this paper, AEO is proposed, that improved with multi-population method, novel
quantum operator, and FPA-inspired pollination operator. Then the algorithms are tested
by CEC2013 functions [45], and AEO has better convergence precision and stability than
DE, FPA, GWO, PSO, and EO. We also applied these algorithms to solve EVRPTW.
From the experimentation of the EVRPTW, AEO achieved good results.

The following is the remaining of this paper. In section 2, the EVRPTW model is
described. Section 3 introduces EO. AEO is described in section 4. In section 5, the
experiments of CEC2013 functions and EVRPTW are described. In section 6, a conclusion
is given.

2. EVRPTW. EVRPTW is that using EVs to deliver goods from the depot to customer
with time windows, in which EVs need to be charged, and its goal is to minimize the total
distance in this research.

There are some assumptions in EVRPTW. Each EV can enter each charging station
at most once. Each EV is fully charged through the charging station. All EVs have the
same and constant speed. The flow of goods is one-way, pure delivery without collection.
The departure time of the EV from the depot is 0 o’clock. All EVs start and end with
the depot. The energy of EVs is restricted by the driving range, and the driving range of
EVs is known. The EVRPTW model is as follows [44].

min f = Costdistance
∑

k∈KV eh

∑
i∈Vpoint

∑
j∈Vpoint

xkijdij +
∑

k∈KV eh

∑
i∈Ncus

penaltyFunci(ti) (1)

s. t. ∑
k∈Kvel

∑
i∈Ncus

xkoi=
∑
k∈Kvel

∑
j∈Ncus

xkjo (2)

∑
i∈Ncus,i 6=j

xkij =
∑

j∈Ncus,i 6=j

xkij = yki ,∀k ∈ Kvel (3)
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i∈Ncus

yki qi ≤ Q, ∀k ∈ Kvel (4)

∑
k∈Kvel

∑
i∈Vpoint,i 6=j

xkoi ≤ |Kvel| (5)

∑
i∈Ncus

∑
j∈Vpoint,j 6=i

xkij ≤ |Ncus|,∀k ∈ Kvel (6)

t2o = 0 (7)

tij =
dij
speed

,∀i, j ∈ Vpoint (8)

t2i = t1i + tfi + twi, i ∈ Ncus ∪Mstation (9)

t1j =
∑

i∈Vpoint

∑
j∈Vpoint,i 6=j

xkij(t
2
i + tij),∀k ∈ Kvel (10)

twi = max[0, (ei − t1i )],∀i ∈ Ncus (11)

p1ik = p2ik,∀i ∈ Ncus,∀k ∈ Kvel (12)

p2ik = P, ∀i ∈ O ∪Mstation,∀k ∈ Kvel (13)

p1vk ≥ 0,∀v ∈ Vpoint, ∀k ∈ Kvel (14)

xkij, y
k
i ∈ {0, 1} , ∀i, j ∈ Vpoint,∀k ∈ Kvel (15)

penaltyFunci(t
1
i ) = EarlyP ×max(ei − t1i , 0) + LaterP ×max(t1i − li, 0) (16)

where Ncus is the of customers number, and Kvel is the number of vehicle, Mstation is
the number of charging station, O is the depot, Vpoint is the point set that consist of
customers, stations and depot, Costdistance is the transportation cost of per unit distance
of EV. dij is the distance of traveling from the ith customer to jth customer, qi is the
demand of the ith customer. The capacity of the EV is Q. p1ik is remaining power when
the kth EV reaches the ith customer. p2ik is remaining power when the kth EV leaves the
ith customer. P is the energy of power of EV. ei is ith customer’s early arriving time
windows. li is ith customer’s later arriving time windows. EarlyP is the penalty of early
arriving. LaterP is the penalty of later arriving. t1i is time for EV to reach ith customer.
t2i is time for EV to leave ith customer. twi is waiting time for EV at ith customer. tfi
is service time of EV at ith customer or charging time at ith charging station. tij is time
required for an EV to go from ith point to jth point. speed is speed of EV. If the kth EV
goes from ith point to jth point, xkij equal to 1, otherwise, xkij equal to 0. If ith customer

is serviced by the kth EV, yki equal to 1, otherwise, yki equal to 0 [44].
Equation (1) is the fitness function that is to minimize the total distance and total

time penalty function. Equation (2) ensure that the starting and ending points are depot.
Equation (3) guarantees that each customer can be served only once. Equation (4) is
capacity limitation. Equation (5) indicates that the EV used in the service does not
exceed the maximum number. Equation (6) indicates that the number of customers
served by each EV should not exceed the number of customers. Equation (7) shows the
departure time of the EV. Equation (8) is the calculation of travelling time. Equation (9)
indicates that the time for the EV to leave ith customer is equal to the sum of the time
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for the EV to arrive at ith customer, the service time at ith customer, and the waiting
time at ith customer. Equation (10) is the calculation of jth customer’s arriving time
that is the sum of ith customer’s leaving time and travelling time from ith customer to
jth customer. Equation (11) is the calculation of waiting time. Equation (12) ensures
that EVs do not consume energy during their stay at customer. Equation (13) indicates
that the EV is fully charged when it leaves the depot or changing station. Equation (14)
ensures that EVs have enough energy to leave. In (15), xkij is decision variable. Equation
(16) is time penalty function [44].

In this paper, demand constraint and energy constraint are regarded as penalty function
and put them into fitness function to facilitate program design. The following is the final
fitness function [44].

min f = Costdistance
∑

k∈Kvel

∑
i∈Vpoint

∑
j∈Vpoint

xkijdij

+
∑

k∈Kvel

∑
i∈Ncus

penaltyFunci(ti)

+
∑

k∈Kvel

ML max(
∑

i∈Ncus

yki qi −Q, 0)

+
∑

k∈Kvel

ML max(
∑
i

∑
j

xkijdij −DisLimit, 0)

(17)

where ML is large number for penalty, and DisLimit is the driving range limitation,
representing the energy constraint.

3. EO. EO, as a novel population-based and physical-based algorithm, is inspired by the
control volume mass balance model. EO initialize concentrations like population-based
algorithms, the following is EO’s initialization.

C = Cmin + rand× (Cmax − Cmin) (18)

where rand is a random vector, and obeys uniform distribution from 0 to 1. A mass
balance equation, is the core updating equation of EO. The following is balance equation.

V
dC

dt
= QCeq −QC +G (19)

where C is the concentration inside the control volume V , and V is considered as a unit.
V dC

dt
is the rate of change of mass. Q is the volumetric flow rate. Ceq is the equilibrium

state concentration. G is mass generation rate. Using turnover rate λ to rearrange mass
equation. λ is calculated as follows.

λ = Q/V (20)

To integrate the mass equation, from C0 to C and from t0 to t. C0 and t0 are the
start time and initial concentration. The following is the result equation, or the updating
equation.

C = Ceq + F (C0 − Ceq) + (1− F )G/(λV ) (21)

In equation (21), there are three parts. The first is equilibrium state concentration that
is selected from equilibrium pool. The second is about global searching, with respect to the
difference between a solution and the equilibrium concentration. The third is associated
with generation rate, is often act as exploiter, and sometimes is act as explorer.

The equilibrium pool includes five solution, which are first four better solution and a
mean solution of mentioned four solution. The following is equilibrium pool.

Ceq,pool = {Ceq1, Ceq2, Ceq3, Ceq4, Ceq,ave} (22)
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Exponential term F balances between exploration and exploitation. The following is
the calculation of F .

F = e−λ(t−t0) (23)

where λ is random vector, obeys uniform distribution from 0 to 1. t is the function of
generation. t and t0 are calculated as follows.

t = (1− gen

Maxgen
)(a2

gen
Maxgen

) (24)

t0 = t+ (ln(−a1 × sign(r − 0.5)× (1− e−λt)))/λ (25)

where gen and Maxgen are the current and maximum generation, sign(r− 0.5) controls
the direction of exploration and exploitation. r is a random vector similar to λ. It is
suggested that a1 = 2 and a2 = 1 in [17]. Then the revised formula about F is as follows.

F = a1 × sign(r − 0.5)× (e−λt − 1) (26)

In third term, G is calculated by the following equation.

G = G0e
−k(t−t0) (27)

G0 = GCP (Ceq − λC) (28)

GCP =

{
0.5r1 r2 ≥ GP

0 r2 ≺ GP
(29)

where G0 is the initial value in equation (27), and k is decay constant, k = λ. r1 and
r2 are random number and are similar to λ. GCP is generation rate control parameter.
GP = 0.5 that is suggested by Faramarzi [17]. EO also has the particle’s memory saving
mechanism. The steps of EO is as follows.

Step 1. Initialize population number (ps), maximum generation (Maxgen), dimension
of solution (d), a1 = 2, a2 = 1, GP = 0.5, V = 1, population (C).

Step 2. Calculate fitness of current generation particles. Update Ceq1, Ceq2, Ceq3, Ceq4
and their fitness.

Step 3. Particles’ memory saving.
Step 4. Calculate Ceq,ave by Ceq,ave = (Ceq1+Ceq2+Ceq3+Ceq4)/4. Establish equilibrium

pool. Calculate t using (24).
Step 5. Each particle choose Ceq randomly in Ceq,pool, produce λ and r randomly,

calculate exponential term F by (26), calculate GCP , G0, G by (27)-(29), update by
(21).

Step 6. Step 2 to 5 are repeated until reaching the given threshold fitness, or maximum
generation. Finally, record global best concentration Ceq1 and fitness of it.

4. Proposed Advanced EO. EO has strong practicability in software and hardware
for its simple mass balance equation that is similar to FPA. It also has shortcomings such
as low convergence precision and fall into local optimum easily. Given the shortcomings
of EO, we use novel multi-population method, novel quantum operator and FPA-inspired
pollination operator to promote EO’s exploration ability and convergence precision and
stability.
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4.1. Multi-population method. Multi-population method is a simple way to make
algorithm to avoid the local optima. In this paper, EO with multi-population method,
that is MEO. The population was divided into groupNum groups, each group runs EO.
Because communication destroys the parallelism of multiple groups and affects the global
search capability, in order to avoid this situation and from the point of view of simplicity
and practicality, we do not use communication. This constitutes the algorithm framework
of AEO.

4.2. Novel quantum operator. In [33], Sun et al. proposes PSO with quantum behav-
ior, which uses wave function in quantum mechanism. The wave function is calculated by
following formula.

i~
∂ψ(X, t)

∂t
= Ĥψ(X, t) (30)

where ψ is wave function, i is imaginary unit, ~ is the Planck constant, the position vector

of the particle is X, and Ĥ is a Hamiltonian operator, calculated by the following formula
[33].

Ĥ=− ~∇2

2m
+ V (X) (31)

where m is the mass of the particle, V (X) is the potential field, ∇2 is the Laplace operator.
A δ potential well is established with p as the center of the attraction potential and its
potential function is V (X). The following is the calculation of V (X) [33].

V (X) = −γδ(X − p) = −γδ(y) (32)

Through above equations, the wave function is obtained as follows [33].

ψ(y) =
e−|y|/L√

L
L = ~2/(mγ) (33)

The probability density function is calculated as follows [33].

PDF (y) = |ψ(y)|2 = (e−2|y|/L)/L (34)

The above formula is the formula of quantum space, and we need to convert to the
classical space, Monte Carlo method is a way to achieve [33]. Let u/L=PDF (y), u is
random vector, obeys uniform distribution from 0 to 1, then the value of y is as follows.

y = ±L ln(1/u)

2
(35)

where L is evaluated by the following formula [34].

L = 2a |p−X| (36)

where a is a decreasing number [34]. Then the quantum operator is as follows.

y = ±a |X − p| ln(1/u) (37)

Through some experimental analysis of F and using MATLAB to draw the trend of
F in iteration, it can be concluded that F attenuates from the approximate [−a1, a1]
range of oscillation to near 0, and its maximum amplitude is less than a1 in EO. We
propose a novel quantum operator, where a is replaced with EO’s exponential term (F )
and attraction center (p) is as follows.

p = ζ1Pbest+ ζ2Ceq1 + ζ3Ceq + ζ4Ceq3 + ζ5Ceq4
ζ1 + ζ2 + ζ3 + ζ4 + ζ5 = 1

(38)
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where Pbest is the mean vector of total particle’s history best solution, ζ1 to ζ5 is random
number, obeys uniform distribution from 0 to 1, and the sum of them equals to 1. EO
with novel quantum operator is QEO. The revised updating equation in QEO is as follows.

C = Ceq + F (C0 − Ceq) + (1− F )G/(λV )
±F |C− p| ln(1/u)

(39)

4.3. FPA-inspired pollination operator. The FPA has two processes: global pollina-
tion and local pollination. It uses switching probability to switch pollination methods.
Global pollination uses Levy flight to explore, and local pollination uses particle difference
to exploit. We design an FPA-inspired pollination operator for EO updating equation,
that effectively utilize the advantages of FPA. Based on the FPA-inspired pollination op-
erator, the novel EO is FEO. The following is the updating equation with FPA-inspired
pollination operator [11, 12].

C = Ceq + F (C0 − Ceq) + (1− F )G/(λV )
+t ∗ γ ∗ Levy(Dimcurrent) ∗ µrand ∗ (Cm − Cn)

(40)

where the last part in (40) is FPA-inspired pollination operator. γ is the scaling factor.
Levy(Dimcurrent) is random number based on Levy flight, which reflects the global pol-
lination capacity of the FPA. µrand is a random vector, obeys uniform distribution from
0 to 1. Cm − Cn is the particle difference of two different randomly selected particle.
µrand ∗ (Cm−Cn) reflects the local pollination capacity of the FPA. t is calculated by (24),
and it is the oscillation decays to 0, we add it to this operator to improve the convergence
ability of it.

4.4. AEO. In this paper, we have designed a AEO that combines the multi-population
method, novel quantum operator and FPA-inspired pollination operator. Not only the
global search capability of the multi-population method and novel quantum operator is
effectively utilized, but also the pollination optimization capability of FPA is integrated,
which further improves the convergence performance of EO. The following is the updating
equation of AEO.

C = Ceq + F (C0 − Ceq) + (1− F )G/(λV )
±F |C− p| ln(1/u)

+t ∗ γ ∗ Levy(Dimcurrent) ∗ µrand ∗ (Cm − Cn)
(41)

For AEO, we set the total population is groupNum × ps. Firstly, concentrations are
divided into groupNum groups. Each group updating EO with (41). While meeting
the max number of iteration or calculate fitness is just less than the threshold fitness,
terminate the AEO. The following are the detailed steps.

Step 1. Initialization: The population is divided into groupNum groups, each group
runs EO independently. Produce the mth group’s ps concentrations Cgen

m with Dimcurrent

dimensions, where ps is the size of population, gen is the present generation and set
gen = 1. To initialize maximum generation Maxgen, a1, a2, GP , V , γ, total best
solution gbest and total best value gbestval. Assign each group’s equilibrium candidates’
fitness and total best value gbestval a large number. Each group’s Ceq1, Ceq2, Ceq3, Ceq4
and gbest are set to zero vector.

Step 2. Evaluation: Calculate each group’s current concentration fitness f(Cgen
m ). Up-

date the mth group’s Cgen
m,ceq1, C

gen
m,ceq2, C

gen
m,ceq3 C

gen
m,ceq4 and corresponding fitness. Update

total best solution gbest and total best value gbestval.
Step 3. Particle’s history best update: If gen > 1, update each group’s particle history

best solution Pbest and fitness Pbestfit. According to (38) to calculate attraction center
p.
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Step 4. Memory saving: If gen > 1, each group’s particle memory saving mechanism
is used.

Step 5. Each group’s EO updating: Calculate each group’s average concentration
Cgen
m,eq,ave. Establish each group’s equilibrium pool. Calculate each group’s t by (24).

Updating: Select Cgen
m,eq from each group’s equilibrium pool, generate λ and r randomly,

calculate each group’s exponential term F , GCP , G0, G. Update each group’s concen-
trations by (41).

Step 6. Termination: Step 2 to 5 are repeated until reaching the given threshold
fitness, or maximum generation. Finally, record the total best fitness gbestval and total
best solution gbest among the concentrations.

4.5. Setting for EVRPTW. Both the EO and the AEO are continuous optimization
algorithms, which are often used in continuous optimization problems.

In this paper, for EVRPTW, we adopt n + m method [46] for solution representation,
means route is n + m dimensions, that is m vehicles and n customers, and the path is
the sequence of numbers between the two zeros in the solution, as is shown in figure 1,
there are three ways, 0-4-2-3-0, 0-1-6-0, 0-5-0. 0 is the depot point, is the start and end
of a path.

Figure 1. n + m method.

For continuous solution to discrete route solution, we design a novel encoding way
for EVRPTW. Suppose there are m vehicles, n customers and c charging stations. The
solution of the continuous algorithm is set as n+c dimension, and the value of each
dimension is range from 1 to m + 1. After rounding each dimension, the result is the
path to which the customer or charging station is assigned. In the same path, sort from
small to large according to the corresponding continuous value of each dimension, and
the result is the final path. As is shown in figure 2. There are 3 vehicles, 4 customers
and 2 charging stations that are Point 2 and 6. According to encoding, the final paths
are 0-4-2-3-0, 0-1-6-0, 0-5-0.

Similarly, we designed the corresponding decoding method. Suppose we have the solu-
tion shown in figure 1. First, the solution is allocated by vehicle, from front to back, the
first path, the second path, and so on. Then, randomly generate random numbers that
follow a uniform distribution from 0 to 1, and sort them from small to large. Finally, the
number obtained by adding the random number to the vehicle serial number is the value
corresponding to the point value. The decoding steps are shown in figure 3.

To further improve the quality of the solution, we optimize the worse solution that
exceeds the energy constraint, that is local searching. Traverse the population, randomly
pick two solutions one after another without repeating. If there is a worse solution that
exceeds the power constraint, local searching method will be performed, which is inspired
from [44]. But we only use crossover operator [44] to produce new solutions within worse
solution, and select the better solution in the end. With the iteration, the number of
worse solutions decreases and the number of runs of local searching decreases, which is
different from the operation mechanism of crossover operator in [44]. We also optimize
the solution that not exceeds the energy constraint, with certain probabilities. To switch
two points in a path of a solution in turn, if the new one is better, than replace it.
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Figure 2. Encoding way for EVRPTW.

Figure 3. Decoding way for EVRPTW.
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5. Experiment and Application. In this section, we utilized CEC2013 to test our
proposed algorithm, detail function is shown in table 1. First, AEO results show in table
3 to 5. The convergence curves of AEO show in figure 4 to 6, which compare with DE,
FPA, GWO, PSO, and EO. Then, we fixed the number of iterations to compare the
performance of two AEO operators and multi-population method in different dimensions,
detail results are shown in table 6 to 8. Finally, we apply AEO to solve the EVRPTW,
the result is as shown in table 9 and figure 7.

Table 1. Function of CEC2013

No. Type Optimum No. Type Optimum

F1 Unimodal -1400 F15 Multimodal 100
F2 Unimodal -1300 F16 Multimodal 200

F3 Unimodal -1200 F17 Multimodal 300

F4 Unimodal -1100 F18 Multimodal 400
F5 Unimodal -1000 F19 Multimodal 500

F6 Multimodal -900 F20 Multimodal 600

F7 Multimodal -800 F21 Composition 700
F8 Multimodal -700 F22 Composition 800

F9 Multimodal -600 F23 Composition 900

F10 Multimodal -500 F24 Composition 1000
F11 Multimodal -400 F25 Composition 1100

F12 Multimodal -300 F26 Composition 1200
F13 Multimodal -200 F27 Composition 1300

F14 Multimodal -100 F28 Composition 1400

5.1. Experiment setting. Three types of functions are included in CEC2013, as shown
in table 1. The first type is unimodal function, which test the exploitation ability. The
second is the basic multimodal function, which test the exploration ability. The third type
is composition function, representing challenging problems. The search range is [-100,100].

Table 2 shows the setting of algorithms. For example, as for AEO, its population is
divided into groupNum=4 groups, each group update EO with (41), a1 = 2, a2 = 1, GP =
0.5, V = 1, γ=0.1. In this paper, each algorithm has 100 particles that is ps=100, with
Dimcurrent. Each algorithm has 31 independent runs in each benchmark, and Maxgen
equal to 10000×Dimcurrent/ps. The dimension in this section are 10, 30, 50.

Qualitative metric use convergence curve, the quantitative measure comprises of the
mean and standard deviation values of the specific benchmark functions. We also use
Friedman’s mean rank in analysis.

Table 2. Setting of each algorithm

Algorithm Parameter

DE F = 2, CR = 0.9, use DE/rand/1/bin

FPA p = 0.8
GWO α decreases linearly from 2 to 0

PSO c1 = c2 = 2,ω = 0.8

EO a1 = 2, a2 = 1, GP = 0.5, V = 1
AEO groupNum=4, a1 = 2, a2 = 1, GP = 0.5, V = 1

γ=0.1, with novel quantum operator

5.2. AEO experiment. Table 3 to 5 are experiment result of AEO with DE, FPA,
GWO, PSO, and EO. We use fitness error F − Foptimum for simplicity. The mean item is
the mean value of 31 runs and the std item is stand deviation. The UniNum item records
the best number of each algorithm in unimodal functions, including mean and std item.
The MulNum item is about multimodal functions, the ComNum item is about composed
functions, the Total item is about total functions. In each table, if an algorithm achieves
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the best of the four algorithms in a function test, the number of records is increased by
one. Note that two algorithms get the same best results in the same function, we record
both algorithms getting the best results. The final line is the Friedman’s mean rank.
figure 4 to 6 are the convergence curves of AEO that compare to DE, FPA, GWO, PSO,
and EO.

Figure 4. The convergence curve of AEO with the dimension of 10.

Figure 5. The convergence curve of AEO with the dimension of 30.

As shown in table 3 to 5, AEO has a better mean result, mainly multimodal functions
and composition functions, proving that AEO’s global searching ability, or exploration
ability, is better than DE, FPA, GWO, PSO and EO. AEO is also more applicable to
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Table 3. Experiment result of AEO with the dimension of 10

Fun Item DE FPA GWO PSO EO AEO

F1 mean 1374.7048 0.053809 4.4232 9.5959e-11 4.4008e-14 2.2004e-13
std 313.238 0.01836 24.6015 1.9884e-10 9.1315e-14 1.0958e-13

F2 mean 10544369.19 591.8552 1124842.676 125.3745 96091.217 255847.5315

std 3892127.833 250.8412 1055318.053 261.3769 80849.9335 177156.0021
F3 mean 2796114774 30073804.36 24320736.08 55948289.19 279693.1813 4947.9666

std 1002927427 13448862.81 41947509.96 123494921.8 660114.9891 8765.0567
F4 mean 13873.873 25.7877 7108.4316 0.583 524.6526 2791.1638

std 4288.9387 9.1141 3922.2683 2.4465 579.6013 1444.908

F5 mean 79.8038 0.2651 27.4086 0.0020148 8.0681e-14 3.2738e-10
std 15.4533 0.055204 40.7751 0.0041672 6.6895e-14 3.6243e-10

F6 mean 107.2844 0.31426 11.1103 1.1373 7.9435 5.4304

std 23.1788 0.27676 3.0177 1.6778 3.8794 4.503
F7 mean 77.551 46.6776 12.7381 37.3117 0.81536 0.14931

std 12.2059 9.3871 9.9732 26.4922 1.0688 0.11302

F8 mean 20.3495 20.3569 20.3554 20.3757 20.3646 20.352
std 0.060131 0.082015 0.048784 0.093069 0.062883 0.07739

F9 mean 8.8429 5.9584 3.6059 5.803 2.6679 1.7061

std 0.60593 0.55605 1.0774 1.4028 1.2675 0.81089
F10 mean 181.0785 0.18657 13.4482 1.0407 0.17588 0.093161

std 47.9272 0.034792 18.1375 0.70518 0.12459 0.044701
F11 mean 69.7613 19.9561 10.7997 30.0092 1.8615 3.2738

std 8.2238 3.5023 6.2566 14.6972 1.1979 1.1544

F12 mean 81.3502 27.4048 19.1764 37.8404 10.2385 4.8472
std 10.0944 4.6673 10.7149 18.9328 4.1836 1.4921

F13 mean 79.9942 36.8926 18.3952 45.4029 17.3558 8.7482

std 10.5017 7.1331 11.4278 12.9821 7.7278 5.4131
F14 mean 1300.2895 527.73 423.7707 975.9461 182.224 93.2127

std 167.9756 85.551 172.4106 333.3272 113.1252 85.0212

F15 mean 1492.907 849.4663 657.8551 947.6495 644.967 384.6483
std 160.5207 125.8852 360.2377 258.604 281.6923 155.2052

F16 mean 1.2231 0.90088 1.2154 0.86934 0.60906 0.77288
std 0.18941 0.18444 0.17676 0.41051 0.1719 0.20621

F17 mean 128.8709 40.9636 24.5781 36.8558 16.8563 14.7475
std 14.8429 5.5259 5.6901 15.9195 2.6489 1.9235

F18 mean 129.1563 48.4575 35.8459 32.9589 19.2734 16.5906

std 14.3909 6.0855 6.3393 10.6848 3.4259 2.4012

F19 mean 36.0978 1.4664 1.4689 1.5495 0.80716 0.57174
std 18.1006 0.30492 0.74407 0.90256 0.15777 0.16184

F20 mean 3.9117 3.4407 2.6349 3.4647 2.237 2.1458
std 0.14912 0.27995 0.45094 0.4662 0.53279 0.33868

F21 mean 517.8119 121.5315 395.4186 400.1939 400.1939 393.736

std 22.5764 24.1267 20.2956 1.2357e-10 2.607e-13 35.9559

F22 mean 1621.7517 706.0613 685.0657 1243.5796 250.3869 229.7843
std 161.3155 101.4305 366.337 323.1657 152.9049 116.1451

F23 mean 1798.7377 1144.5292 676.6309 1118.3144 641.7291 395.8764
std 185.2186 122.3121 382.6621 393.2997 332.8306 171.0717

F24 mean 221.5523 166.1381 211.0775 216.9152 210.4313 206.845
std 11.8047 19.4797 5.2553 2.908 5.9342 3.1827

F25 mean 218.9777 201.2101 209.9019 217.7796 206.6059 206.0171
std 12.8599 23.3701 5.8695 2.8067 5.2027 3.5391

F26 mean 195.5733 138.3252 168.5333 193.1263 186.4499 140.1601
std 8.8689 11.4681 56.4514 58.8979 50.5581 45.2069

F27 mean 634.8766 413.3155 409.9323 481.6753 420.0838 433.2265
std 23.7851 4.615 91.7292 32.3206 105.9459 92.1518

F28 mean 695.9679 217.1792 343.8405 531.5128 336.3058 293.5484
std 119.3343 125.5884 117.6071 250.085 107.5282 35.9211

UniNum mean 0 0 0 2 2 1

std 0 1 0 1 2 1

MulNum mean 1 1 0 0 2 11
std 1 4 1 0 2 7

ComNum mean 0 5 1 0 0 2
std 1 3 0 2 1 1

Total mean 1 6 1 2 4 14

std 2 8 1 3 5 9

Friedman’s 5.8214 3.25 3.6071 4.1607 2.4107 1.75
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Table 4. Experiment result of AEO with the dimension of 30

Fun Item DE FPA GWO PSO EO AEO

F1 mean 32563.9821 0.0094711 804.8836 235.4749 4.6208e-13 1.52e-10
std 3075.7389 0.0029417 756.5982 184.0929 1.4949e-13 1.016e-10

F2 mean 377065283.9 15875.1214 21339739.97 4772494.948 1915013.893 4925931.254

std 63979623.53 6361.6219 12676214.09 3738862.559 880287.6005 1921969.759
F3 mean 877720000000 417862667.7 3541730492 24929823028 40304887.13 18655426.73

std 1085890000000 179854669.6 2288887231 13707652850 47884029.03 17007251.65
F4 mean 75814.3883 442.5998 26455.0132 22970.2798 1572.3373 10910.36

std 9383.4269 156.2499 7898.0456 7497.6967 1091.0111 3174.3236

F5 mean 4312.8668 0.12523 786.8169 230.4296 5.0242e-13 4.3217e-06
std 572.3914 0.034537 620.2571 89.5173 1.0491e-13 2.9006e-06

F6 mean 3427.7226 15.6802 117.478 107.2949 27.8708 20.8729

std 512.0018 4.4741 34.3224 39.3188 23.975 5.456
F7 mean 756.7825 118.5728 50.1119 215.5989 19.0665 12.7963

std 505.419 18.3299 14.169 158.1802 10.969 4.1112

F8 mean 20.9384 20.9506 20.9442 20.9607 20.9519 20.9367
std 0.050271 0.04795 0.061815 0.068069 0.049151 0.055683

F9 mean 39.8245 31.0447 18.7969 33.7311 18.1277 16.2923

std 1.026 1.1927 2.4249 2.6625 4.3308 2.4301
F10 mean 4021.1802 0.10457 228.648 117.5674 0.11511 0.21405

std 683.0068 0.017269 107.2997 71.2797 0.049862 0.079384
F11 mean 583.1246 112.5291 82.9859 296.3861 40.6586 25.1634

std 32.8234 14.1916 35.5571 55.4211 12.7632 5.6003

F12 mean 639.9562 175.7456 109.6984 302.0713 71.7865 36.681
std 32.2845 31.5957 46.2664 71.8579 28.1277 8.3175

F13 mean 615.6464 226.4638 172.1684 388.2378 141.5401 82.1211

std 49.0802 27.4243 45.8747 67.461 33.6953 16.42
F14 mean 6924.5664 3151.5464 2762.9645 4712.7816 2228.8081 1862.8319

std 284.1567 169.1811 926.729 902.9294 534.5979 375.171

F15 mean 7427.7413 4479.6192 3668.5356 4785.5117 4064.148 3164.6559
std 293.9629 305.0847 1494.6789 923.7675 766.6372 412.0936

F16 mean 2.4413 2.2813 2.4945 0.07366 1.296 1.3646
std 0.31593 0.26035 0.3018 0.41012 0.41378 0.30095

F17 mean 1274.4674 204.7358 154.0033 344.8299 71.6189 63.9002
std 83.8885 27.8515 43.6883 57.1651 12.4119 6.0117

F18 mean 1249.8919 214.714 240.7173 348.6742 109.9939 87.6836

std 98.9668 27.9451 29.4319 110.4906 21.5581 11.3972

F19 mean 187421.1053 12.4639 15.5373 167.7376 3.3321 2.7356
std 88853.9347 1.4248 16.3365 232.8266 0.8596 0.40237

F20 mean 14.9234 13.2158 12.1574 14.7765 10.9656 9.7787
std 0.10435 0.36037 1.5551 0.6139 0.89456 0.64016

F21 mean 3139.1263 216.632 801.1325 626.1239 315.296 248.3876

std 171.5653 21.8241 308.3967 145.3682 53.2812 50.7999

F22 mean 7720.302 3867.665 3017.4275 5639.3211 1863.5683 1546.1169
std 321.425 203.1277 1158.2235 949.5908 467.4893 356.4039

F23 mean 7993.638 5538.9125 4121.3536 5601.7054 4123.6915 3216.2494
std 333.5268 315.3788 1556.0244 744.1271 659.1643 466.2004

F24 mean 334.9318 291.3332 249.7785 292.8641 247.2216 241.8693
std 4.7212 3.4408 9.5728 6.171 9.8251 6.4956

F25 mean 353.4453 313.6442 270.7647 292.3021 264.1333 253.2047
std 5.6637 4.3996 9.8791 6.728 7.8832 5.7517

F26 mean 243.247 200.0389 305.2241 353.849 299.4621 204.4823
std 9.6978 0.024395 68.1141 76.5148 65.4695 23.7329

F27 mean 1431.4658 877.1195 787.5614 1225.0075 768.772 689.014
std 27.061 306.1689 82.5417 54.6803 97.3533 49.6116

F28 mean 4540.1013 537.5279 1030.7035 2996.1881 293.5484 300.0005
std 289.7552 61.41 304.7872 699.8849 35.9211 0.00021478

UniNum mean 0 2 0 0 2 1

std 0 2 0 0 2 1

MulNum mean 0 2 0 1 0 12
std 3 5 0 0 0 7

ComNum mean 0 2 0 0 1 5
std 1 6 0 0 0 1

Total mean 0 6 0 1 3 18

std 4 13 0 0 2 9

Friedman’s 5.7143 3.1786 3.75 4.6071 2.2143 1.5357
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Table 5. Experiment result of AEO with the dimension of 50

Fun Item DE FPA GWO PSO EO AEO

F1 mean 79729.4314 0.0031454 3333.5201 8664.0748 1.1369e-12 3.2538e-08
std 6734.1758 0.0012883 1621.0693 2781.5674 3.1065e-13 2.8045e-08

F2 mean 1192817228 51695.2402 43373232.79 35572236.07 2108725.008 7760673.143

std 180658005.5 20791.5399 15593326.31 17624860.58 609549.8694 1669389.066
F3 mean 3564830000000 569520969.8 14124582515 52115673255 263259716 330905771.1

std 2999440000000 214951449.1 4823025376 18592892981 212200209 173871250.1
F4 mean 134914.2548 2390.0014 42413.8922 54920.001 2918.1414 17492.7879

std 9830.1222 1255.0085 7367.6774 9917.2715 1194.2922 2439.8523

F5 mean 15609.5466 0.060211 853.7383 1004.7113 1.3386e-12 0.00024817
std 2122 0.016917 328.2674 331.0594 4.6106e-13 8.9731e-05

F6 mean 8258.9788 43.224 236.7663 516.1744 59.1806 44.8244

std 712.6391 2.8653 57.8431 145.0846 27.9664 2.6846
F7 mean 945.9873 115.7857 60.3723 265.9943 43.5557 33.2521

std 509.8096 11.2735 12.3975 293.0127 10.9702 6.0935

F8 mean 21.1289 21.1342 21.1366 21.1667 21.1331 21.1177
std 0.046011 0.035913 0.029466 0.044112 0.032229 0.03622

F9 mean 72.5489 58.1718 37.7561 66.9179 37.1987 36.5144

std 1.5792 2.0497 4.4157 3.1959 5.8323 3.4712
F10 mean 10198.6574 0.068209 604.2603 916.645 0.14511 1.5266

std 1049.437 0.015023 238.5814 245.1201 0.05225 0.25813
F11 mean 1329.9465 215.3029 224.3729 634.0813 115.044 55.9352

std 91.2043 18.9105 50.1113 93.7348 25.8969 6.9541

F12 mean 1330.8731 412.7545 261.8701 654.663 160.8458 83.5633
std 63.5163 66.1175 93.5276 91.1372 36.5232 13.0495

F13 mean 1310.1615 513.2646 354.4736 804.0346 317.2996 203.7052

std 74.723 64.0055 71.0953 91.4618 55.3551 28.8016
F14 mean 13335.6669 6626.1335 5197.3439 9806.4756 4285.1139 2972.515

std 269.1646 479.8601 710.4315 847.5408 928.7505 530.6831

F15 mean 14293.2624 9345.9239 7613.7799 10089.66 8201.2492 6453.5818
std 309.9198 613.1464 2857.3241 1097.1414 1320.1759 838.7575

F16 mean 3.3469 3.212 3.445 0 1.811 1.6822
std 0.24458 0.28395 0.25472 0 0.49323 0.33206

F17 mean 3042.7459 379.3733 323.7474 869.9457 172.4191 129.2341
std 123.9245 45.6791 68.4213 111.0418 25.5675 13.5553

F18 mean 3015.7312 440.7257 515.5844 841.8673 238.6768 183.635

std 142.866 50.043 34.4932 111.9293 44.9085 17.5186

F19 mean 1375860.703 28.7993 354.7359 2574.7959 7.4643 5.9017
std 406389.5449 4.7488 444.6428 2032.329 2.4352 0.9328

F20 mean 24.8776 23.3029 20.5598 24.4263 19.9474 19.1664
std 0.10544 0.60384 1.024 0.6829 0.96862 0.65382

F21 mean 7283.9379 223.8297 2140.5178 2664.6482 937.8353 640.358

std 196.9782 113.7101 619.774 393.822 138.9779 313.0621

F22 mean 14760.385 8363.9356 6510.3866 11755.8907 4486.755 3232.9546
std 317.7507 529.0527 1051.9067 1191.5432 951.5458 491.395

F23 mean 15409.0552 11080.6606 7524.3972 11679.9972 8616.2493 6523.1508
std 350.6766 703.1053 1576.0872 1159.7351 1219.9567 760.2409

F24 mean 464.7022 372.0814 299.3641 375.5314 297.4069 286.6768
std 10.5763 5.2302 12.6835 7.6889 11.2327 7.6262

F25 mean 501.7526 416.3819 339.7569 375.2746 325.13 306.6817
std 7.0569 7.8648 11.4522 7.9766 14.6881 8.415

F26 mean 377.803 200.1497 392.1362 454.7906 382.5149 357.4958
std 23.2689 0.12048 12.8295 67.6374 39.5379 70.3449

F27 mean 2454.857 1751.1033 1275.3574 2046.2024 1291.51 1148.4634
std 38.0069 480.7604 90.9351 72.0559 146.9477 77.732

F28 mean 8869.793 401.5093 1597.8946 6030.7752 498.645 400.0019
std 510.7043 0.46578 1280.6178 994.7851 549.2319 0.00090197

UniNum mean 0 2 0 0 3 0

std 0 1 0 0 3 1

MulNum mean 0 2 0 1 0 12
std 4 1 1 1 0 8

ComNum mean 0 2 0 0 0 6
std 4 3 0 0 0 1

Total mean 0 6 0 1 3 18

std 8 5 1 1 3 10

Friedman’s 5.7143 3.1071 3.6071 4.8571 2.25 1.4643
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Figure 6. The convergence curve of AEO with the dimension of 50.

difficult and challenging problems than other compared algorithms. Moreover, from each
table’s Friedman’s mean rank, AEO has pretty good results. Therefore, the convergence
accuracy of AEO is better. In std item of Total, AEO also has a better performance than
GWO, EO, PSO, DE, and FPA. Therefore, the convergence of AEO is quite stable.

From the figure 4 to 6, the convergence curves of AEO are basically at the bottom,
which proves that the convergence accuracy is good. From the trend of the curve, AEO
has a certain degree of decline with the iteration, that is, it can jump out of local optimal,
which shows that AEO has a better global exploration ability.

5.3. Performance test of two operators. We also test the performance of the two
operators. The fixed iterations are 2000, the algorithm is executed 31 times, and the
dimension range is 10, 30, 50. Other settings are the same as above. In table 6 and 7,
UN, MN, CN and To correspond to UniNum, MulNum, ComNum and Total.

As shown in table 6, whether in mean item or std item, QEO is better than EO,
especially for multimodal and composed functions, proving that novel quantum operator
effectively improves the EO performance, mainly exploration ability. The mean and std
results reflect that the convergence accuracy and stability of QEO is better.

As can be seen from table 7, the global exploration ability of FEO is obviously stronger
than that of EO, which shows that FPA-inspired pollination operator can also effectively
improve the exploration ability, convergence accuracy and stability of EO.

5.4. Performance test of multi-population method. We also test the performance
of multi-population method. The fixed iterations are 2000, the algorithm is executed 31
times, and the dimension range is 5, 10, 20. Other settings are the same as above. In
table 8, UN, MN, CN and To correspond to UniNum, MulNum, ComNum and Total.

From table 8, in mean item and std item, MEO is better, especially in multimodal and
composed functions, showing that multi-population method effectively improves the EO
performance, mainly exploration ability. The results reflect that the convergence accuracy
and stability of MEO is well.



232 J. S. Pan, J. Zhuang, L. Liao, and S. C. Chu

Table 6. Experiment result of EO with novel quantum operator

D=10 D=30 D=50
Fun EO QEO EO QEO EO QEO

mean std mean std mean std mean std mean std mean std

F1 7.3e-15 4.e-14 0.0e+0 0.0e+0 5.6e-13 1.6e-13 6.5e-13 2.1e-13 3.0e-12 2.4e-12 1.7e-9 4.3e-9

F2 5.61e+4 4.31e+4 7.48e+4 4.79e+4 2.26e+6 8.95e+5 2.98e+6 1.13e+6 4.47e+6 1.5e+6 9.7e+6 3.29e+6
F3 3.31e+5 8.21e+5 1.25e+5 2.28e+5 4.37e+7 5.78e+7 3.24e+7 3.97e+7 5.18e+8 5.12e+8 6.72e+8 3.46e+8

F4 5.35e+1 4.82e+1 8.29e+1 1.37e+2 3.75e+3 1.8e+3 3.59e+3 1.62e+3 1.31e+4 3.42e+3 1.47e+4 4.15e+3

F5 7.3e-14 6.3e-14 3.7e-14 5.4e-14 7.2e-13 2.4e-13 1.6e-12 2.1e-12 1.5e-10 3.5e-10 5.2e-06 7.1e-6
F6 7.01e+0 4.45e+0 8.32e+0 3.46e+0 3.41e+1 2.65e+1 2.41e+1 1.3e+1 7.02e+1 2.6e+1 5.31e+1 1.63e+1

F7 3.9e-1 6.98e-1 6.14e-1 1.9e+0 2.19e+1 1.27e+1 1.33e+1 7.27e+0 5.28e+1 1.42e+1 3.63e+1 1.02e+1
F8 2.03e+1 6.8e-2 2.03e+1 6.16e-2 2.1e+1 4.99e-2 2.1e+1 5.03e-2 2.12e+1 3.36e-2 2.12e+1 3.44e-2

F9 2.76e+0 1.08e+0 2.26e+0 1.43e+0 1.91e+1 4.51e+0 1.8e+1 4.03e+0 3.85e+1 8.77e+0 4.05e+1 5.88e+0

F10 1.33e-1 6.34e-2 1.38e-1 4.65e-2 1.38e-1 5.86e-2 9.29e-2 6.2e-2 5.66e-1 3.63e-1 1.7e+0 4.1e-1
F11 1.12e+0 1.11e+0 2.6e+0 1.49e+0 4.27e+1 1.32e+1 3.01e+1 9.61e+0 1.32e+2 2.86e+1 7.07e+1 1.38e+1

F12 1.1e+1 6.39e+0 6.52e+0 3.01e+0 6.82e+1 2.13e+1 4.47e+1 1.24e+1 1.5e+2 3.46e+1 1.06e+2 2.76e+1

F13 1.68e+1 6.93e+0 1.19e+1 7.88e+0 1.45e+2 2.84e+1 9.9e+1 2.56e+1 3.09e+2 5.56e+1 2.36e+2 3.49e+1
F14 1.83e+2 1.37e+2 8.6e+1 9.45e+1 2.0e+3 5.59e+2 2.11e+3 6.58e+2 4.35e+3 7.82e+2 3.65e+3 9.5e+2

F15 6.12e+2 2.49e+2 5.01e+2 2.2e+2 4.3e+3 6.92e+2 3.44e+3 7.19e+2 9.02e+3 1.26e+3 8.25e+3 9.93e+2

F16 5.2e-1 1.78e-1 4.49e-1 2.3e-1 1.29e+0 4.26e-1 1.37e+0 3.1e-1 2.18e+0 5.59e-1 2.35e+0 5.87e-1
F17 1.5e+1 2.63e+0 1.48e+1 2.23e+0 7.57e+1 1.44e+1 6.98e+1 1.34e+1 1.8e+2 3.49e+1 1.42e+2 2.17e+1

F18 1.93e+1 5.01e+0 1.57e+1 2.92e+0 1.24e+2 2.88e+1 9.52e+1 1.96e+1 2.77e+2 3.81e+1 2.21e+2 3.42e+1
F19 6.72e-1 1.76e-1 7.21e-1 2.03e-1 3.78e+0 1.1e+0 3.14e+0 6.03e-1 8.54e+0 1.92e+0 6.78e+0 1.43e+0
F20 2.3e+0 6.04e-1 2.26e+0 7.53e-1 1.1e+1 8.45e-1 1.05e+1 7.29e-1 1.98e+1 8.56e-1 1.97e+1 7.78e-1

F21 4.0e+2 2.8e-13 4.0e+2 2.9e-13 3.21e+2 7.06e+1 3.04e+2 7.36e+1 9.47e+2 1.41e+02 8.83e+2 3.00e+2
F22 2.57e+2 1.43e+2 2.33e+2 1.11e+2 1.79e+3 6.45e+2 1.93e+3 4.31e+2 4.51e+3 9.14e+2 4.30e+3 1.18e+3
F23 6.40e+2 2.20e+2 4.84e+2 1.85e+2 4.53e+3 5.58e+2 3.42e+3 6.49e+2 9.12e+3 1.17e+3 8.09e+3 1.02e+3

F24 2.12e+2 5.33e+0 2.12e+2 3.15e+0 2.46e+2 1.45e+1 2.48e+2 7.83e+0 2.93e+2 1.14e+1 2.93e+2 1.22e+1
F25 2.09e+2 5.24e+0 2.10e+2 4.40e+0 2.67e+2 1.01e+1 2.57e+2 7.36e+0 3.25e+2 1.42e+1 3.13e+2 9.43e+0
F26 1.73e+2 5.70e+1 1.99e+2 4.90e+1 2.82e+2 7.14e+1 2.39e+2 6.17e+1 3.77e+2 4.89e+1 3.72e+2 5.91e+1

F27 4.32e+2 1.05e+2 4.53e+2 1.01e+2 7.16e+2 1.01e+2 7.36e+2 8.65e+1 1.30e+3 1.79e+2 1.27e+3 1.27e+2
F28 3.44e+2 9.90e+1 2.99e+2 7.35e+1 2.87e+2 4.99e+1 3.35e+2 1.96e+2 4.00e+2 8.37e-8 8.00e+2 1.06e+3
UN 2.00e+0 2.00e+0 3.00e+0 3.00e+0 3.00e+0 3.00e+0 2.00e+0 2.00e+0 5.00e+0 4.00e+0 0.00e+0 1.00e+0

MN 6.00e+0 7.00e+0 9.00e+0 8.00e+0 3.00e+0 4.00e+0 1.20e+1 1.10e+1 4.00e+0 4.00e+0 1.10e+1 1.10e+1
CN 5.00e+0 1.00e+0 4.00e+0 7.00e+0 4.00e+0 3.00e+0 4.00e+0 5.00e+0 1.00e+0 5.00e+0 7.00e+0 3.00e+0
To 1.30e+1 1.00e+1 1.60e+1 1.80e+1 1.00e+1 1.00e+1 1.80e+1 1.80e+1 1.00e+1 1.30e+1 1.80e+1 1.50e+1

5.5. Applying for EVRPTW. In this section, we apply AEO for solving EVRPTW.
We use instance from [44] to test performance of algorithm. Because there are few in-
stances, we rotate, translate, and scale data of [44]. We rotate the data counterclockwise
around the depot, 90 degrees, 180 degrees, 270 degrees. We shift the data in the direction
and distance from [0,0] to [1,1], in the direction and distance from [0,0] to [1,-1], in the
direction and distance from [0,0] to [-1,1], in the direction and distance from [0,0] to [-1,-1].
We take the depot as the center and scale the data by 0.25. 0.5, 0.75, 1.25, 1.5 times. On
the whole, we test in 13 instances. For more effectively, we run 31 times for getting more
reliable data. The particles are 100. The iteration is 500. The other parameters are the
same as above mentioned. The EVRPTW experiment is shown in table 9.

In table 9, AEO, DE, FPA, GWO, PSO and EO are tested in 13 instances. The BKV
item means the best known value of instance obtained by [44]. The best item is the
best value of 31 runs, the mean item is the mean of 31 runs. The bestTotal item and
meanTotal item are to calculate the performance of each algorithm in each instance. If
an algorithm achieves the best result in an instance, then its corresponding term (best-
Total / meanTotal) is added to 1. Whether in bestTotal item or meanTotal item, AEO
performs better than DE, FPA, GWO, PSO and EO. According to the Friedman’s score,
AEO performs best in these algorithms. On the whole, the AEO has better convergence
accuracy in EVRPTW. Figure 7 is the best route result of the origin instance solved by
AEO. It has three routes, and the its fitness is 6465.0939, is better than BKV [44]. It is
proved that AEO can effectively solve EVRPTW.
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Table 7. Experiment result of EO with FPA-inspired pollination operator

D=10 D=30 D=50
Fun EO FEO EO FEO EO FEO

mean std mean std mean std mean std mean std mean std

F1 7.3e-15 4.1e-14 2.9e-14 7.8e-14 5.6e-13 1.6e-13 7.3e-13 1.8e-13 3.0e-12 2.4e-12 4.1e-12 1.5e-12

F2 5.61e+4 4.31e+4 4.45e+4 3.35e+4 2.26e+6 8.95e+5 2.37e+6 9.08e+5 4.47e+6 1.50e+6 5.06e+6 1.84e+6
F3 3.31e+5 8.21e+5 8.29e+4 2.75e+5 4.37e+7 5.78e+7 3.49e+7 7.90e+7 5.18e+8 5.12e+8 4.39e+8 4.61e+8

F4 5.35e+1 4.82e+1 4.85e+1 5.13e+1 3.75e+3 1.80e+3 2.77e+3 1.20e+3 1.31e+4 3.42e+3 1.12e+4 3.75e+3

F5 7.3e-14 6.3e-14 1.3e-13 6.6e-14 7.2e-13 2.4e-13 2.9e-12 1.3e-12 1.5e-10 3.5e-10 3.5e-08 4.5e-08
F6 7.01e+0 4.45e+0 9.19e+0 2.42e+0 3.41e+1 2.65e+1 2.96e+1 2.44e+1 7.02e+1 2.60e+1 6.68e+1 3.03e+1

F7 3.90e-1 6.98e-1 1.36e-1 1.79e-1 2.19e+1 1.27e+1 1.77e+1 1.21e+1 5.28e+1 1.42e+1 3.86e+1 7.19e+
F8 2.03e+1 6.80e-2 2.03e+1 6.34e-2 2.10e+1 4.99e-2 2.10e+1 4.24e-2 2.12e+1 3.36e-2 2.12e+1 4.27e-2

F9 2.76e+0 1.08e+0 2.75e+0 1.15e+0 1.91e+1 4.51e+0 1.70e+1 3.18e+0 3.85e+1 8.77e+0 3.33e+1 5.62e+0

F10 1.33e-1 6.34e-2 1.09e-1 5.25e-2 1.38e-1 5.86e-2 1.36e-1 5.90e-2 5.66e-1 3.63e-1 4.97e-1 3.73e-1
F11 1.12e+0 1.11e+0 9.31e-1 9.93e-1 4.27e+1 1.32e+1 2.90e+1 9.41e+0 1.32e+2 2.86e+1 9.61e+1 2.08e+1

F12 1.10e+1 6.39e+0 1.22e+1 5.08e+0 6.82e+1 2.13e+1 6.73e+1 2.07e+1 1.50e+2 3.46e+1 1.58e+2 3.13e+1

F13 1.68e+1 6.93e+0 1.88e+1 7.37e+0 1.45e+2 2.84e+1 1.41e+2 3.18e+1 3.09e+2 5.56e+1 2.81e+2 4.98e+1
F14 1.83e+2 1.37e+2 1.15e+2 1.24e+2 2.00e+3 5.59e+2 1.67e+3 4.32e+2 4.35e+3 7.82e+2 2.95e+3 6.72e+2

F15 6.12e+2 2.49e+2 5.22e+2 2.66e+2 4.30e+3 6.92e+2 3.51e+3 6.63e+2 9.02e+3 1.26e+3 7.19e+3 1.24e+3

F16 5.20e-1 1.78e-1 4.09e-1 1.44e-1 1.29e+0 4.26e-1 1.24e+0 3.90e-1 2.18e+0 5.59e-1 1.87e+0 4.87e-1
F17 1.50e+1 2.63e+0 1.57e+1 2.23e+0 7.57e+1 1.44e+1 8.12e+1 1.02e+1 1.80e+2 3.49e+1 1.65e+2 2.51e+1

F18 1.93e+1 5.01e+0 1.69e+1 3.27e+0 1.24e+2 2.88e+1 7.84e+1 1.33e+1 2.77e+2 3.81e+1 1.79e+2 2.95e+1
F19 6.72e-1 1.76e-1 6.64e-1 1.90e-1 3.78e+0 1.10e+0 3.34e+0 7.56e-1 8.54e+0 1.92e+0 8.48e+0 2.02e+0
F20 2.30e+0 6.04e-1 2.16e+0 5.13e-1 1.10e+1 8.45e-1 1.01e+1 8.11e-1 1.98e+1 8.56e-1 1.89e+1 8.76e-1

F21 4.00e+2 2.8e-13 4.00e+2 2.7e-13 3.21e+2 7.06e+1 3.28e+2 5.76e+1 9.47e+2 1.41e+2 9.66e+2 1.45e+2
F22 2.57e+2 1.43e+2 1.81e+2 1.20e+2 1.79e+3 6.45e+2 1.35e+3 4.91e+2 4.51e+3 9.14e+2 3.61e+3 9.87e+2
F23 6.40e+2 2.20e+2 6.61e+2 2.24e+2 4.53e+3 5.58e+2 3.52e+3 7.60e+2 9.12e+3 1.17e+3 7.45e+3 1.06e+3

F24 2.12e+2 5.33e+0 2.10e+2 4.77e+0 2.46e+2 1.45e+1 2.45e+2 1.34e+1 2.93e+2 1.14e+1 2.87e+2 1.34e+1
F25 2.09e+2 5.24e+0 2.08e+2 5.89e+0 2.67e+2 1.01e+1 2.62e+2 8.12e+0 3.25e+2 1.42e+1 3.20e+2 1.03e+1
F26 1.73e+2 5.70e+1 1.86e+2 5.78e+1 2.82e+2 7.14e+1 2.74e+2 6.84e+1 3.77e+2 4.89e+1 3.84e+2 1.07e+1

F27 4.32e+2 1.05e+2 4.23e+2 1.08e+2 7.16e+2 1.01e+2 6.96e+2 9.75e+1 1.30e+3 1.79e+2 1.20e+3 1.23e+2
F28 3.44e+2 9.90e+1 3.06e+2 2.50e+1 2.87e+2 4.99e+1 2.94e+2 3.59e+1 4.00e+2 8.37e-8 6.98e+2 9.27e+2
UN 2.00e+0 3.00e+0 3.00e+0 2.00e+0 3.00e+0 4.00e+0 2.00e+0 1.00e+0 3.00e+0 3.00e+0 2.00e+0 2.00e+0

MN 5.00e+0 4.00e+0 1.00e+1 1.10e+1 1.00e+0 2.00e+0 1.40e+1 1.30e+1 1.00e+0 5.00e+0 1.40e+1 1.00e+1
CN 3.00e+0 4.00e+0 6.00e+0 4.00e+0 2.00e+0 1.00e+0 6.00e+0 7.00e+0 3.00e+0 4.00e+0 5.00e+0 4.00e+0
To 1.00e+1 1.10e+1 1.90e+1 1.70e+1 6.00e+0 7.00e+0 2.20e+1 2.10e+1 7.00e+0 1.20e+1 2.10e+1 1.60e+1

Figure 7. The best route result of the Origin Instance by AEO.
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Table 8. Experiment result of EO with multi-population method

D=5 D=10 D=20
Fun EO MEO EO MEO EO MEO

mean std mean std mean std mean std mean std mean std

F1 0 0 0 0 7.3e-15 4.1e-14 0.00e+00 0.00e+0 2.2e-13 1.1e-13 4.4e-13 1.7e-13

F2 2.20e+3 2.79e+3 4.27e+3 4.13e+3 5.61e+4 4.31e+4 6.67e+4 4.07e+4 5.68e+5 2.59e+5 9.42e+5 3.70e+5
F3 6.48e+0 3.15e+0 1.89e+0 2.02e+0 3.31e+5 8.21e+5 4.41e+4 1.25e+5 3.68e+6 1.35e+7 1.86e+6 2.62e+6

F4 1.14e-2 1.64e-2 1.24e+0 1.11e+0 5.35e+1 4.82e+1 8.92e+2 6.16e+2 7.77e+2 3.14e+2 6.92e+3 2.33e+3

F5 0 0 0 0 7.3e-14 6.3e-14 9.2e-14 4.6e-14 2.5e-13 9.9e-14 9.7e-13 2.8e-13
F6 1.32e-2 8.50e-3 3.25e-2 2.47e-2 7.01e+0 4.45e+0 3.85e+0 4.82e+0 3.35e+0 1.21e+1 4.02e-1 6.69e-1

F7 2.84e-2 6.61e-2 1.30e-2 3.27e-2 3.9e-01 6.98e-1 9.62e-1 1.30e+0 3.90e+0 3.44e+0 5.85e+0 3.79e+0
F8 1.08e+1 9.76e+0 3.75e+0 6.97e+0 2.03e+1 6.8e-02 2.03e+1 7.15e-2 2.08e+1 5.23e-2 2.08e+1 5.76e-2

F9 5.36e-1 6.22e-1 2.40e-1 3.35e-1 2.76e+0 1.08e+0 2.39e+0 7.85e-1 9.46e+0 3.00e+0 9.01e+0 1.67e+0

F10 6.54e-2 4.75e-2 5.07e-2 2.10e-2 1.33e-1 6.34e-2 1.42e-1 6.88e-2 1.14e-1 5.85e-2 1.88e-1 7.24e-2
F11 3.21e-2 1.79e-1 0.00e+0 0.00e+0 1.12e+0 1.11e+0 2.18e+0 1.13e+0 1.66e+1 6.80e+0 1.98e+1 5.42e+0

F12 1.60e+0 9.84e-1 1.83e+0 7.75e-1 1.10e+1 6.39e+0 7.89e+0 3.34e+0 2.77e+1 8.57e+0 2.65e+1 7.87e+0

F13 3.19e+0 2.34e+0 2.10e+0 1.25e+0 1.68e+1 6.93e+0 1.39e+1 5.17e+0 6.13e+1 2.32e+1 5.99e+1 1.57e+1
F14 1.80e+1 2.38e+1 4.85e+0 7.36e+0 1.83e+2 1.37e+2 1.08e+2 8.00e+1 1.12e+3 3.19e+2 9.20e+2 2.44e+2

F15 6.88e+1 7.39e+1 2.28e+1 1.71e+1 6.12e+2 2.49e+2 4.09e+2 2.05e+2 2.14e+3 4.42e+2 1.86e+3 4.75e+2

F16 2.33e-1 1.45e-1 1.66e-1 7.37e-2 5.20e-1 1.78e-1 4.03e-1 1.21e-1 9.08e-1 2.95e-1 8.67e-1 2.26e-1
F17 5.36e+0 2.69e-1 5.24e+0 7.92e-1 1.50e+1 2.63e+0 1.52e+1 2.25e+0 4.28e+1 7.71e+0 4.15e+1 5.03e+0

F18 6.03e+0 1.39e+0 5.68e+0 1.23e+0 1.93e+1 5.00e+0 1.96e+1 2.40e+0 5.70e+1 1.10e+1 6.74e+1 8.40e+0
F19 1.42e-1 7.38e-2 1.28e-1 7.37e-2 6.72e-1 1.76e-1 6.32e-1 1.39e-1 2.05e+0 8.27e-1 1.85e+0 3.23e-1
F20 4.85e-1 4.43e-1 9.61e-2 6.91e-2 2.30e+0 6.04e-1 1.88e+0 2.94e-1 5.77e+0 9.45e-1 5.99e+0 7.88e-1

F21 2.55e+2 8.50e+1 2.10e+2 1.04e+2 4.00e+2 2.8e-13 4.00e+2 2.9e-13 3.65e+2 7.09e+1 2.65e+2 8.39e+1
F22 1.69e+2 1.24e+2 8.32e+1 6.49e+1 2.57e+2 1.43e+2 1.50e+2 1.01e+2 1.20e+3 4.07e+2 1.05e+3 2.12e+2
F23 2.34e+2 9.68e+1 1.42e+2 6.61e+1 6.40e+2 2.20e+2 5.51e+2 2.00e+2 2.39e+3 5.20e+2 2.06e+3 4.74e+2

F24 1.12e+2 3.04e+1 4.00e+1 3.24e+1 2.12e+2 5.33e+0 2.04e+2 1.42e+1 2.32e+2 5.30e+0 2.31e+2 4.61e+0
F25 1.02e+2 2.72e+0 1.01e+2 8.77e+0 2.09e+2 5.24e+0 2.05e+2 4.39e+0 2.40e+2 7.49e+0 2.38e+2 4.00e+0
F26 1.02e+2 1.32e+0 5.27e+1 4.63e+1 1.73e+2 5.70e+1 1.32e+2 3.80e+1 2.08e+2 3.13e+1 2.00e+2 4.98e-2

F27 3.13e+2 2.03e+1 3.04e+2 9.99e+0 4.32e+2 1.05e+2 3.17e+2 4.21e+1 5.56e+2 8.59e+1 5.43e+2 6.16e+1
F28 2.97e+2 4.07e+1 2.68e+2 7.48e+1 3.44e+2 9.90e+1 3.03e+2 1.80e+1 8.92e+2 4.47e+2 2.81e+2 6.01e+1
UN 4.00e+0 4.00e+0 3.00e+0 3.00e+0 3.00e+0 1.00e+0 2.00e+0 4.00e+0 4.00e+0 4.00e+0 1.00e+0 1.00e+0

MN 2.00e+0 2.00e+0 1.30e+1 1.30e+1 6.00e+0 5.00e+0 9.00e+0 1.00e+1 5.00e+0 4.00e+0 1.00e+1 1.10e+1
CN 0.00e+0 5.00e+0 8.00e+0 3.00e+0 1.00e+0 2.00e+0 8.00e+0 6.00e+0 0.00e+0 1.00e+0 8.00e+0 7.00e+0
To 6.00e+0 1.10e+1 2.40e+1 1.90e+1 1.00e+1 8.00e+0 1.90e+1 2.00e+1 9.00e+0 9.00e+0 1.90e+1 1.90e+1

6. Conclusions. We propose AEO, which improves EO with the multi-population method,
novel quantum operator, and FPA-inspired pollination operator, in this work. The multi-
population method is the basic framework of the AEO. The novel quantum operator
effectively enhances EO’s global exploration capability. FPA-inspired pollination oper-
ator brings the Levy flight of FPA into EO, which also effectively improves the global
exploration capability of the EO. Then we test the AEO by CEC2013. AEO has better
convergence performance than DE, FPA, GWO, PSO, and EO. We test two operators,
and the results show the operators’ good effect on global exploration. We also test multi-
population method that improvs EO’s convergence arrcuracy and stability, as is shown
in results. Finally, AEO is applied to solve EVRPTW. From the test results of instances,
AEO is more powerful to solve EVRPTW than DE, FPA, GWO, PSO, and EO.

In the future, the AEO could be further improved, such as hybrid [47], and adding
chaotic mapping [48]. AEO proposed in this paper could also be applied to other fields,
such as power system problems [49], wireless sensor networks problems [50], ontology
matching domain [51] and smart city traffic network prediction [52].
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Table 9. EVRPTW result of algorithms in Instance

Instance BKV item DE FPA GWO PSO EO AEO

Origin best 11721.7505 9010.2137 7097.3954 7744.5586 7448.2776 6465.0939
mean 13328.5274 9837.5337 8289.2483 9621.0768 8595.2492 7838.2247

Rotate-90 best 12610.6567 8796.8262 6959.2419 8295.0263 7057.2635 7132.8642

mean 13426.8159 9662.4003 8637.2758 9625.7495 8494.3244 8041.1428
Rotate-180 best 12519.9547 8978.0223 7044.3998 8695.7266 6729.9164 6670.298

mean 13528.0262 9810.7743 8346.0318 10057.749 8393.1087 7784.6456
Rotate-270 6542.7 best 11717.0043 8457.6427 7087.1 8632.441 7318.731 6694.1434

mean 13407.8851 9667.9443 8344.6336 9969.0214 8487.0366 7710.7842

Shift from [0,0] best 12516.7298 8934.3689 7116.4766 8225.2407 6905.7139 6564.8213
to [1,1] mean 13509.6714 9645.0212 8251.4028 9761.1078 8401.2048 7866.4214

Shift from [0,0] best 12174.1286 8537.256 6554.7396 8049.4606 6710.1168 6638.3542

to [1,-1] mean 13393.4058 9731.0928 8349.9094 9788.338 8517.8441 7929.9351
Shift from [0,0] best 12453.1163 8344.3826 7432.9681 7834.4922 7581.5427 6841.1297

to [-1,1] mean 13438.4318 9719.2028 8636.0574 9720.6479 8486.0977 7905.2889

Shift from [0,0] best 12508.1914 8265.1345 7059.7453 8213.9809 7253.0923 6362.046
to [-1,-1] mean 13438.391 9590.5688 8562.5893 9706.0624 8278.6911 7947.7014

Scale 0.25 times best 3098.6277 2374.2175 1885.638 2010.0587 1797.6263 1831.5206

mean 3313.9794 2479.9336 2167.2615 2703.3838 2224.9164 2049.8292
Scale 0.5 times best 6007.8215 4008.9649 3598.1882 4043.5139 3343.6505 3406.9459

mean 6348.0743 4726.671 4196.4177 4882.121 4031.1932 3950.5976

Scale 0.75 times best 8496.6926 6620.8064 5271.673 5795.863 5094.6056 4800.0002
mean 9571.8519 7078.4849 6367.9065 7274.6251 6245.7622 5670.2391

Scale 1.25 times best 16836.0697 11532.0645 9422.0926 10224.0463 9456.0459 9102.1601
mean 83305.763 12811.8145 11279.1559 12015.0672 10983.8487 10578.1064

Scale 1.75 times best 19771.4803 13800.7503 11732.3469 13231.066 11908.2651 11346.6621

mean 1895217.572 16359.2715 13854.685 854846.2115 13762.1787 13237.0302

bestTotal 0 0 2 0 2 9

meanTotal 0 0 0 0 0 13

Friedman’s 6 4.2308 2.5385 4.7692 2.4615 1
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