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Abstract. A digital-redesigned robust tracker for sampled-data systems with bounded
nonlinear disturbances is newly proposed based on an integration of the proportional-
integral-derivative (PID) control, sliding mode control (SMC) and particle swarm op-
timization (PSO) algorithm. First, a new control method integrating the PID control,
SMC and PSO algorithm for continuous-time systems with bounded nonlinear distur-
bances is newly proposed. Then, the newly developed digital-redesigned robust tracker for
the sampled-data systems with disturbances is proposed. Except for the well-known su-
periorities of the PID controller, the integrated SMC is applied to suppress the unknown
matched nonlinear disturbances. Finally, the PSO algorithm is utilized to optimally tune
control parameters, such that the proposed approach achieves a satisfactory performance
for the robust tracking control.
Keywords: Digital redesign, PID controller, sliding mode control, PSO algorithm,
tracker design.

1. Introduction. The PID control is one of the general popular control strategies due
to its simple structure. Hence, PID control has been widely applied in many real industry
systems [1, 2] In order to deal with some problems of PID controller, the traditional
methods are proposed such as gain-phase margin, root locus, etc. [1]. In general, when
the nonlinear vector exists in the controlled system, the traditional methods become
difficult to find an optimal solution or a near-optimal solution [1, 2]. In the report [3],
the D-type controller is proposed, and the stability of the closed-loop controlled system is
discussed. The authors [4] illustrates that it is difficult to process the D-type controller by
using the traditional state-feedback approach; hence, the Frobenius canonical form and
pole-placement method are applied to the D-type controller design. Therefore, in this
paper, we aim to propose a simple D-type design algorithm for PID controller design.

While nonlinear perturbation exists in the controlled system, the design of PID con-
troller will be a challenge. To cope with this problem, we propose a new SMC-based PID
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controller design approach for the controlled system with nonlinear perturbations. SMC
is typically used for suppressing the bounded external disturbance. However, the chat-
tering phenomenon might occur, which is a negative effect on the controlled system. The
undesired chattering phenomenon should be reduced such that the sliding mode control
force can be implemented. In some literatures, the smooth functions such as saturation
function ‘ [5] and the scalar sign function [6] are utilized to overcome the chattering phe-
nomenon. The integral SMC and adaptive control are proposed in literature [7]. The
SMC-based adaptive PID controller is proposed for the chaotic system with uncertain
disturbances [8]. The literature [9] adopts the predictive sliding mode tracking control to
process the uncertain Steer-by-Wire system. The report [10] presents the discrete-time
sliding mode controller integrating with state estimator and disturbances observer for the
multiple-input/multiple-output controlled system, and the discrete-time sliding manifold
is discussed. By applying SMC to cope with the bounded nonlinear disturbances, the
system resembles a linear system such that the PSO algorithm can be applied to find the
optimal solution or near-optimal solution for the PID controller design.

In the field of control systems, there are lots of literatures which discuss continuous-time
controllers to control continuous systems; or discuss discrete-time controllers to control
discrete systems. Besides these methods, digital redesign is another control method. In
the digital redesign method, we construct an equivalent discrete controller to control the
original continuous systems system. In contrast to directly design the discrete controllers,
the digital redesign method is simpler since the complicated process is reduced. In [11],
the synthesized discrete-time SMC confirms the sliding mode reaching a specified discrete-
time sliding surface by using the linear matrix inequality approach. The literature [12]
presents that the SMC is difficult to implement in a sampled-data system because the
control force is zero-order-hold (Z.O.H.) between two sampling times. By applying Eu-
ler’s approximation method, the continuous-time model can be discretized and then the
discrete-time SMC is proposed by the discretization model [13]. Therefore, we apply
Euler’s approximation method into the digital redesign method such that the continuous-
time controller is directly transferred into the discrete-time controller in this paper. The
associated discussion about digital redesign method is quite less. In the beginning, we
can review this literature [14]. The literature [14] explained how to utilize a predictive
digital redesign method to design a linear quadratic analog tracker (LQAT). In the past,
the method of directly designing discrete-time controllers for the sampled-data systems
was proposed in the literature [15]. The literature [16] mentioned how to improve power
system dynamic stability by using digital redesign of SMC. The report [17] discussed
that the implementation of the control systems relies more on digital microprocessors
and digital computers, so a digital redesign method of sliding mode control based on the
LMI approach was proposed by them. Since the digital redesign based on SMC has not
been well developed, this paper will further discuss a digital-redesign application in PID
controller integrated with SMC-based tracker design.

In recent years, the applications of intelligent control have been widely used. Through
the algorithms, the optimization problem can be solved. Particle swarm optimization
(PSO) is one of the famous and well-developed algorithms which can find the optimal
solutions for parameter design. In this paper, we used this method to find the optimal
or near-optimal controller parameters so that the tracking performance can be improved.
The history of developing the PSO algorithm can be traced to 1995 [18], the literature in-
troduces the concept for the optimization of nonlinear functions and proposes the particle
swarm methodology. The authors of [19] mention that PSO has the advantages of being
easy in implementation and having few parameters to be adjusted but has a disadvantage
of controlling the balance between the global search and the local search. As a result,
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the variants of this original PSO have been widely developed, for example, in [20], the
researchers modify the inertia weight and proposes a linearly decreasing inertia weight
method (LPSO), which can reduce the iterations on average to find an optimal solution.
Different from LPSO, in [21], the authors propose a random inertia weight factor method
(RPSO), which can improve the performance for tracking dynamic systems. The litera-
ture [22] proposes another important variant of the standard PSO: the constriction factor
approach PSO (CPSO), which can increase the ability to find optima of some well-studied
test functions. Aside from the variants of PSO mentioned above, the report [19] proposes
a multi-swarm cooperative particle swarm optimizer (MCPSO), which contains the slave
swarms and the master swarm. Through cooperation between master and slave swarms,
the efficiency of finding optimal solutions can be enhanced.

Based on our knowledge, until now, there are still few literature reports discussing the
digital redesign of continuous-time sliding mode controllers. Since the chattering phenom-
enon affects the controlled system output directly when the controlled system contains a
direct feed-through term, the SMC-based switching function needs to be selected prop-
erly. Therefore, there are some controller parameters which need to be adjusted properly,
therefore, the MCPSO algorithm is introduced to cope with the controller parameters opti-
mization; hence, the performance could be improved. According to the above description,
we have developed the PID controller integrated with SMC-based tracker design, and
we can discretize the tracker by using the digital redesign method for the sampled-data
systems. By applying the digital redesign method, the continuous-time controller can be
transferred to the discrete-time controller without losing the performance of the original
continuous-time controller. The negative effect caused by bounded nonlinear disturbances
can be reduced effectively by applying the SMC. In addition, the application of MCPSO
algorithm can provide the optimal solution or near-optimal solution to optimize the per-
formance of the system response. Finally, we can confirm that our method is correct and
contributable through the experimental results.
Notation. wT is used to denote the transport for a matrix w . ‖•‖ denotes the Euclidean
norm of the vector. In is the identity matrix of n×n. |•| represents the absolute value. w†

denotes to the pseudo inverse for a matrix w. sgn (w) = [sgn (w1) ,sgn (w2) , · · · ,sgn (wm)]T ∈
<m and sgn (w) is the sign function of w , if w > 0 ,sgn (w) = 1 ; if w < 0 , sgn (w) = −1.

2. Digital Redesign Robust Tracker for Sampled-Data Systems with Nonlinear
Disturbances Based on PID and SMC.

2.1. Derivation of LQAT-based PID controller. Consider the controllable time-
invariant system with a direct feed-through term and bounded nonlinear disturbance
which occurs at the plant input described by

ẋc(t) = Axc(t) +B [uc(t) + d (xc(t), t)] , (1)

yc(t) = Cxc(t) +D [uc(t) + d (xc(t), t)] , (2)

where A ∈ <n×n ,B ∈ <n×m ,C ∈ <p×n and D ∈ <p×m are the system matrices, xc(t) ∈ <n
is the state vector, and d (xc(t), t) ∈ <m is the bounded nonlinear disturbance which
satisfies ‖d (xc(t), t)‖ ≤ du ‖xc(t)‖ (du denotes the upper bound coefficient), yc(t) ∈ <p is
the output vector, and uc(t) ∈ <m is the input vector. Note that uc(t) = u∗c(t) +Kdẋc(t)
, where Kd is the D-type controller gain at time t and u∗c(t) will be determined later.

The closed-loop stability of D-type controller is discussed in [3]. According to the result,
the linear transformation can be presented, and the derivative term ẋc(t) can be merged.
(1) can be rewritten as

(In −BKd) ẋc(t) = Axc(t) +B [u∗c(t) + d (xc(t), t)] , (3)
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where M = In −BKd . Thus, a new state space equation can be described by

ẋc(t) = APIDxc(t) +BPID [u∗c(t) + d (xc(t), t)] , (4)

yc(t) = CPIDxc(t) +DPID [u∗c(t) + d (xc(t), t)] , (5)

where
APID = M−1A, BPID = M−1B,

CPID = C +DKdM
−1A and DPID = D +DKdM

−1B.

Here, we neglect the bounded nonlinear disturbance d (xc(t), t) temporarily in order to
design the PID controller gains. The bounded nonlinear disturbance d (xc(t), t) will be
eliminated and discussed in the SMC later. Now, (4) and (5) can be rewritten as

ẋc(t) = APIDxc(t) +BPIDu
∗
c(t), (6)

yc(t) = CPIDxc(t) +DPIDu
∗
c(t). (7)

To avoid the D-type controller gain Kd with unreasonable value, the design algorithm
should be discussed properly. In order to make the closed-loop eigenvalues of (6) be
negative, let the matrix M satisfy M = In − BKd ≥ αIn > 0 , where the parameter α is
positive so that the transformed system can keep its property. Note that the rank of BKd

is m , which means that M = In − BKd has only m poles which can be placed. Some
methods discuss the issue and propose such as pole placement to solve this problem. For
the purpose to implement minimal parameters, one solution of Kd can be obtained by

Kd = (1− α)B†, (8)

then the matrix M can be described as

M = In − (1− α)BB† > 0, (9)

which suggests
In > (1− α)BB†.

In order to know the range of the parameter α , we take 2-norm for In > (1− α)BB† :

‖In‖ > (1− α)
∥∥BB†∥∥ . (10)

From (10), the parameter α should satisfy 1−α > 0 so that the matrix M would be posi-
tive definite matrix. Also, the parameter α should satisfy (9). Therefore, the parameter α
has the range 0 < α < 1 . If the parameter α equals to 1, the PID-type controller reduces
to the PI-type controller. Furthermore, the inverse of M must exist so that we can apply
this transformed matrix to our approach. The following conditions are necessary to be
satisfied.

Condition 1.
∥∥BB†∥∥ = 1.

Condition 2. Inverse of
(
In − (αIn − In)BB†

)
exists.

Note that we assumed that the matrix BB† is semi-positive definite. Thus, Kd would
be a rational matrix as the condition exists. For the above calculation, we can know
that the inverse of matrix M exists. With these conditions mentioned above, we can con-
firm that the transformed matrix is invertible for the linear transformation in our method.

Remark 1. If (8) and the above conditions 1 and 2 are satisfied in the D-type controller
design algorithm, the inverse of the matrix M must exist. Since the D-type controller
is sensitive to the variance of system states, the gain Kd should be selected properly. If
the gain Kd achieved high gain property, the other gains of the controller such as the
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P-type controller gain Kp and the I-type controller gain Ki (to be shown later) will be
undesirable large, and the control force is huge too. Hence, a simpler D-type controller
algorithm is proposed.

After the D-type controller is proposed, we can further construct an augmented matrix
associated with xc(t) and

∫
ey(t)dt. Let

ηc(t) =

[
xc(t)∫
ey(t)dt

]
be the new state variable, where ey(t) = yc(t)− rc(t) and rc(t) , respectively, denote the
tracking error and the desired reference trajectory. According to the new state variable,
the system described in (6) and (7) can be rewritten to an augmented system:

η̇c(t) = ĀPIDηc(t) + B̄PIDu
∗
c(t)− rPID(t), (11)

yc(t) = C̄PIDηc(t) + D̄PIDu
∗
c(t), (12)

where

ĀPID =

[
APID 0
CPID 0

]
, B̄PID =

[
BPID

DPID

]
, B̄PID =

[
BPID

DPID

]
,

C̄PID =
[
CPID 0

]
, D̄PID = DPID, rPID(t) =

[
0

rc(t)

]
.

Lemma 1 ([23]). Let
(
ĀPID, B̄PID

)
be the controllable pair of a given open-loop system.

The Riccati equation with the matrix P being a solution can be described as follows:(
ĀPID + hIn

)T
P + P

(
ĀPID + hIn

)
− PB̄PIDRk

−1B̄T
PIDP +Qk = 0, (13)

where h ≥ 0 , and the matrix In is an identity matrix. From (13), the eigenvalues of the
closed-loop system can be placed on the left of the −h vertical line.

In order to do a tracker design, the PI-type controller gain KPI can be designed by
applying the linear quadratic method. Then the controller gain KPI is described as

KPI =
[
Kp Ki

]
= Rc

−1
(
B̄T
PIDP +NT

)
, (14)

where Rc = Rk + D̄T
PIDQkD̄PID, N = C̄T

PIDQkD̄PID Kp ∈ <m×n and Ki ∈ <m×p The
LQAT-based PI control law is applied, and it can be described by

u∗c(t) = −KPIηc(t) + Ecrc(t), (15)

where Ec denotes the forward gain (the detail will be shown later).
The purpose of designing a tracker is to minimize the output error ey(t) = yc(t)− rc(t)

. Once the error converges to zero, it means that the output vector yc(t) would track
the reference trajectory rc(t) . The way to calculate the optimal gain Kp and Kt is to
use a linear-quadratic state-feedback regulator with output weighting Qk ∈ <p×p and
Rk ∈ <m×m . The quadratic cost function with output weighting is defined as

J =
1

2

∫ tend

0

{
[yc(τ)− rc(τ)]TQk [yc(τ)− rc(τ)] + u∗c

T (τ)Rku
∗
c(τ)

}
dτ , (16)

where yc(τ) , rc(τ) and u∗c(τ) are the output vector, the reference and the control input
vector, respectively. tend denotes the final time. Qk = 10qIp is a positive definite or a
positive semidefinite real symmetric matrix, where q ≥ 0 . Rk is a positive definite real
symmetric matrix.

To calculate a lower value of the system output yc(t) in (16); hence, we assume
rc(t) = 0(rc(τ) = 0) first, and then final-value theorem can be adopted to minimize
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the performance index [6]. According to Lemma 1, the optimal gain KPI in (14) can be
obtained by solving the matrix P and KPI = Rc

−1
(
B̄T
PIDP +NT

)
. In order to solve the

matrix P , an algebraic Riccati equation is considered:(
ĀPID + hIn

)T
P + P

(
ĀPID + hIn

)
−
(
B̄T
PIDP +NT

)T
Rk
−1
(
B̄T
PIDP +NT

)
+ C̄T

PIDQkC̄PID = 0. (17)

Note that the gain Kp and Ki in the optimal gain KPI are determined based on the linear
model

(
ĀPID, B̄PID, C̄PID, D̄PID

)
. The forward gain Ec can be inferred by applying the

final-value theorem.
Form (17), we observer that the traditional LQAT cannot be directly adopted to design

the control law ū(t) due to Lemma 1; hence, the final-value theorem is applied in order
to overcome this problem. The forward gain Ec can be determined by considering the
augmented matrix in (11). In this case, the integrated term can be neglected according
to the following statements.

A linear time-invariant system with the PI-type controller containing an underdeter-
mined term ū(t) is described by

ẋc(t) = Axc(t) +B

(
ū(t)−Kpxc(t)−Ki

∫
ey(t)dt

)
,

yc(t) = Cxc(t) +D

(
ū(t)−Kpxc(t)−Ki

∫
ey(t)dt

)
.

Take the Laplace transform of the tracking error ey(t) = yc(t)−rc(t) to obtain the following
equations:

E(s) = Y (s)−Rs

=
{

(C −DKp) [sIn − (A−BKp)]
−1B +D

}(
Ūs

s
−KI

E(s)
s

)
− Rs

s
,

(18)

where Ūs and Rs are the steady-state values of ū(t) and rc(t) , respectively. The steady-
state values refer to what ū(t) and rc(t) change relatively minor than the high-gain-
property controlled system dynamics in any time period.

Use the final-value theorem to (18), one has

lim
s→0

sE(s) = lim
s→0

s
[
W
(
Ūs

s
−Ki

E(s)
s

)
− Rs

s

]
= lim

s→0

[
W
(
Ū(s)−KiE(s)

)
−Rs

]
,

(19)

where
W = (C −DKp) [sIn − (A−BKp)]

−1B +D.

After rearranging, (19) can be represented as

lim
s→0

(sIn +KiW )E(s) = lim
s→0

(
WŪs −Rs

)
. (20)

From (20), it implies that once lim
s→0

(
WŪs −Rs

)
= 0 , then lim

s→0
sE(s) = 0 . Thus, we can

infer that deriving the controller ū(t) in (20) can be completed by applying the final-value
theorem without considering the integration-term.

According to above discussion, the process of calculating KPI and Ec can be simplified
by neglecting the integration-term in the controlled system. In other words, it is available
to consider the system described in (6) and (7) instead of (11) and (12). By replacing
u∗c(t) = −Kpxc(t) + Ecrc(t) into (6) and (7), these two equations can be rewritten as

ẋc(t) = Acxc(t) +BPIDEcrc(t), (21)

yc(t) = Ccxc(t) +DPIDEcrc(t), (22)
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where Ac = APID−BPIDKp and Cc = CPID−DPIDKp . To complete the tracker design,
the forward gain can be inferred by applying final-value theorem. Taking the Laplace
transform is needed, so (21) and (22) can be described by

X(s) = (sI − Ac)−1

(
BPIDEc

R(s)

s

)
,

Y (s) = CcX(s) +DPIDEc
R(s)
s

= Cc(sI − Ac)−1
(
BPIDEc

R(s)
s

)
+DPIDEc

R(s)
s
.

Since the tracker would be applied into the system, the final-value of the output should
match that of the desired reference trajectory.

According to the Laplace transform of yc(t), the following tracking error can be implied:

yc(∞)− rc(∞) = lim
s→0

sY (s)− lim
s→0

sR(s) = 0, (23)

where
yc(∞) = lim

s→0
sY (s)

= Cc(−Ac)−1BPIDEcR(s) +DPIDEcR(s) |s→0

=
[
Cc(−Ac)−1BPID +DPID

]
EcR(s) |s→0

and

rc(∞) = lim
s→0

s
R(s)

s
= R(s) |s→0 .

By comparing yc(∞) and rc(∞) , we have the following condition to satisfy (23):

Ec =
[
Cc(−Ac)−1BPID +DPID

]†
. (24)

Thus, the proposed PID controller in (15) can improve the output performance by tracking
the reference trajectory. Notice that the proposed approach still works for the special case
where yc(t) = Cxc(t) .

2.2. Derivation of LQAT integrated with PID control and SMC. Here, we take
the disturbance into consideration and apply SMC to suppress the bounded nonlinear
disturbance. The system with bounded nonlinear disturbance can be described as

ẋc(t) = Axc(t) +B [uc(t) + d (xc(t), t)] , (25)

yc(t) = Cxc(t) +D [uc(t) + d (xc(t), t)] . (26)

The sliding manifold sc(t) is given as

sc(t) = Csxc(t)−
∫ tend

0

(CsAxc(t) + uTc(t))dt, (27)

where

Cs = B†, (28)

and uTc(t) is the control law. From Section 2.1, we obtain

uTc(t) = −Kpxc(t)−Ki

∫
ey(t) +Kdẋc(t) + Ecrc(t). (29)

After differentiating sc(t) , we obtain

ṡc(t) = CsB [uc(t) + d (xc(t), t)]− uTc(t). (30)

According to (28), (30) can be rewritten as

ṡc(t) = uc(t) + d (xc(t), t)− uTc(t). (31)
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The equivalent control u∗eq(t) in the sliding manifold (ṡc(t) = 0) is obtained by

u∗eq(t) = uTc(t)− d (xc(t), t) . (32)

Since the bounded nonlinear disturbance is unknown, a general form of the sliding mode
controller is denoted as u± = −γc ‖xc(t)‖ sgn(sc(t))− σsc(t) , and the control law in (31)
can be rewritten as

uc(t) = uTc(t) + u± = uTc(t)− γc ‖xc(t)‖ sgn (sc(t))− σsc(t), (33)

where σ is a positive constant which can accelerate the convergence rate of the sliding
function (to be shown later) and γc is an arbitrary positive value. Thus, (31) can be
rewritten as

ṡc(t) = d (xc(t), t)− γc ‖xc(t)‖ sgn (sc(t))− σsc(t), (34)

where γc is selected to satisfy γc ≥ du such that sc(t) = 0 is reached.

Theorem 1. Once the sliding surface is reached, the unknown bounded nonlinear dis-
turbance can be suppressed.
Proof. Consider a candidate Lyapunov function,

V (sc(t)) =
1

2
sc
T (t)sc(t), (35)

and then take the derivative of V (sc(t)) in (35), which gives

V̇ (sc(t)) = sc
T (t)ṡc(t) = sc

T (t) (d (xc(t), t)− γc ‖xc(t)‖ sgn (sc(t))− σsc(t))
≤ ‖d (xc(t), t)‖ ‖sc(t)‖ − γc ‖xc(t)‖ ‖sc(t)‖ − σ‖sc(t)‖2

≤ −σ‖sc(t)‖2 ≤ 0,

(36)

where ‖d (xc(t), t)‖ ≤ du ‖xc(t)‖ and σ ≥ 0 . A well-selected parameter σ can accelerate
V̇ (sc(t)) to converge. By choosing a proper value of γc such that γc ≥ du ≥ 0 , then
V̇ (sc(t)) ≤ 0 is satisfied. Thus, the sliding mode function in (35) converges to zero and
uc(t) = u∗eq(t) = uTc(t) − d (xc(t), t) in the sliding manifold, which means that the un-
known disturbance can be suppressed.

Remark 3 ([5, 15]). To avoid the undesired chattering phenomenon, a smooth and
continuous saturation function [5] can be used to replace the sign function:

sat (sc(t)) =
[

sc1(t)
|sc1(t)|+ε1 · · ·

scm(t)
|scm(t)|+εm

]T
, (37)

where εi is an arbitrary and small positive constant. If εi equals to zero, the saturation
function sat (sc(t)) is equivalent to the sign function sgn (sc(t)) . When the controlled
system contains the direct feed-through term, the undesired chattering phenomenon will
affect the controlled system output directly. Therefore, the saturation function should be
smooth enough, i.e. the parameter εi should be determined properly such that the chat-
tering phenomenon can be minimized. Through the PSO algorithm (will be introduced
later in Section 3), the appropriate value of the parameter εi can be found.

2.3. Digital redesign of LQAT integrated with PID control and SMC. The
literature [17] mentions that implementation of the control systems relies more on digital
microprocessors and computers. Thus, digital redesign is essential to be applied in our
method. Since the bounded nonlinear disturbance d (xc(t), t) is unknown, the sliding
mode controller in (33) should be considered in order to suppress the disturbance. To
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begin with the digital redesign, Euler’s approximation is applied, and then (34) can be
rewritten as

sd(kTs+Ts) = (1− Tsσ) sd(kTs)+Ts [d (xd(kTs), kTs)− γd ‖xd(kTs)‖ sgn (sd(kTs))] , (38)

where sd(kTs + Ts) , γd and d (xd(kTs), kTs) denote the discrete-time values of sc(t) , γc
and d (xc(t), t) . The parameter σ satisfies (1− Tsσ) > 0 in the discrete-time SMC.

Lemma 2 ( [11]). In the discrete-time SMC, once the parameter σ satisfies (1− Tsσ) > 0
, the convergence of the sliding mode function can be proved according to the following
conditions:
If sd(kTs) > 0,∆sd(kTs) = −Tsσsd(kTs) + Ts [d (xd(kTs), kTs)− γd ‖xd(kTs)‖ sgn (sd(kTs))] ≤ 0.
If sd(kTs) < 0,∆sd(kTs) = −Tsσsd(kTs) + Ts [d (xd(kTs), kTs)− γd ‖xd(kTs)‖ sgn (sd(kTs))] ≥ 0.
As a result, sd(kTs) would move toward to zero whether sd(kTs) is a positive or negative
value. In other words, the sliding surface sd(kTs) = 0 is reached. d ((xd, kTs), kTs) is the
discrete-time bounded nonlinear disturbance, so the upper bound of d ((xd, kTs), kTs) is
the same as that of the continuous-time bounded nonlinear disturbance d (xc(t), t) . Thus,
γd should satisfy the condition γd ≥ du ≥ 0 , which is equivalent to the condition of γc ,
i.e. γd = γc .

From Lemma 2, the sliding surface sd(k) = 0 is reached. According to Euler’s approxi-
mation, let

sI(t) = −
∫ tend

0

(CsAxc(t) + uTc(t))dt, (39)

and then the derivative of sI(t) is

ṡI(t) = − (CsAxc(t) + uTc(t)) . (40)

Thus, the sliding mode function can be discretized to

sd(kTs) = Csxd(kTs) + sI(kTs), (41)

where sI(kTs) = sI(kTs−Ts) +Ts (−CsAxd(kTs − Ts)− uTc(kTs − Ts)) . Since the sliding
surface sd(kTs) = 0 is reached, the control law can be obtained by uc(t) = u∗eq(t) . Then
the unknown disturbance can be suppressed such that the system can be rewritten as

ẋc(t) = Axc(t) +BuTc(t), (42)

yc(t) = Cxc(t) +DuTc(t). (43)

The control law uTc(t) can be approximated to

uTd(t) = uTd(kTs) ∼= uTd(kTs + Ts), for kTs ≤ t < kTs + Ts, (44)

where uTd(kTs) denotes the discrete-time control law.
In order to obtain uTd(kTs) , consider the augmented system state described as

η̇c(t) = Āηc(t) + B̄uc(t), (45)

where Ā =

[
A 0
C 0

]
and B̄ =

[
B
D

]
.

The augmented system in (45) can be discretized to

ηd(kTs + Ts) = Ḡηd(kTs) + H̄uTd(kTs), (46)

where Ḡ = eĀTs and H̄ =
(
Ḡ− In

)
Ā−1B̄ denote the discrete-time system matrices, and

Ts is the sampling time.

Lemma 3. There are two cases to obtain u∗d(kTs) depending on whether the direct
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feed-through term exists in the sampled-data system.
Case 1: without direct feed-through term

The discrete-time system state and output can be obtained by

xd(kTs + Ts) = Gcxd(kTs) +HEdisrd(kTs + Ts), (47)

yd(kTs + Ts) = Cxd(kTs + Ts) = C (Gcxd(kTs) +HEdisrd(kTs + Ts)) . (48)

Take the Z-transform of (47) and (48),

ZX(z) = GcX(z) +HEdisR(z),

X(z) = (ZI −Gc)
−1HEdisR(z),

Y (z) = C (GcX(z) +HEdisR(z)) .

(49)

By using an LQAT, the final-value of yd(kTs + Ts) should match that of rd(kTs + Ts) :

lim
k→∞

yd(kTs + Ts) = lim
k→∞

rd(kTs + Ts). (50)

The Z-transform of (50) is

lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)R(z). (51)

According to (48),

lim
k→∞

yd(kTs + Ts) = lim
k→∞

C (Gcxd(kTs) +HEdisrd(kTs + Ts)) ,

which has a Z-transform described as

lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)C (GcX(z) +HEdisR(z)) . (52)

Then substitute (49) into (52),

lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)C
(
Gc(ZI −Gc)

−1HEdisR(z) +HEdisR(z)
)

= C
(
Gc(I −Gc)

−1 + I
)
HEdis · lim

z→1
(z − 1)R(z)

= C(I −Gc)
−1HEdis · lim

z→1
(z − 1)R(z).

To satisfy (50), C(I −Gc)
−1HEdis = I is needed. Thus, lim

k→∞
yd(kTs+Ts) = lim

k→∞
rd(kTs+

Ts).

Case 2: with direct feed-through term
The discrete-time system state and output can be obtained by

xd(kTs + Ts) = Gcxd(kTs) +HEdisrd(kTs + Ts), (53)

yd(kTs) = Ccxd(kTs) +DEdisrd(kTs + Ts), (54)

Take the Z-transform of (53) and (54),

ZX(z) = GcX(z) +HEdisR(z),

X(z) = (ZI −Gc)
−1HEdisR(z),

Y (z) = CcX(z) +DEdisR(z).

(55)

By using an LQAT, the final-value of yd(kTs) should match that of rd(kTs) :

lim
k→∞

yd(kTs) = lim
k→∞

rd(kTs). (56)
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The Z-transform of (56) is

lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)R(z). (57)

According to (54),

lim
k→∞

yd(kTs) = lim
k→∞

Ccxd(kTs) +DEdisrd(kTs + Ts).

which has a Z-transform described as

lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1) (CcX(z) +DEdisR(z)) . (58)

Then substitute (55) into (58),

lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)
(
Cc(ZI −Gc)

−1HEdisR(z) +DEdisR(z)
)

= lim
z→1

(z − 1)
(
Cc(ZI −Gc)

−1H +D
)
EdisR(z)

=
(
Cc(I −Gc)

−1H +D
)
· lim
z→1

(z − 1)EdisR(z).

To satisfy (56),
(
Cc(I −Gc)

−1H +D
)

= I is needed. Thus, lim
k→∞

yd(kTs) = lim
k→∞

rd(kTs).

From Case 1, the control law in a sampled-data system which contains no direct feed-
through term is u∗d(kTs) = −Kcxd(kTs + Ts) + Ecrd(kTs + Ts) ; from Case 2, the con-
trol law in a sampled-data system which contains direct feed-through term is u∗d(kTs) =
−Kcxd(kTs + Ts) + Ecrd(kTs).

According to Lemma 3, (29) can be approximated to

uTd(kTs) = −KPIηd(kTs + Ts) +KD
ηd(kTs+Ts)−ηd(kTs)

Ts
+ Ecrd(kTs)

= −KPI

{
Ḡηd(kTs) + H̄uTd(kTs)

}
+ KD

Ts

{
Ḡηd(kTs) + H̄uTd(kTs)

}
− KD

Ts
ηd(kTs) + Ecrd(kTs)

= −
(
KPIH̄ + KD

Ts
H̄
)
uTd(kTs)−

(
KPIḠ− KD

Ts
Ḡ+ KD

Ts

)
ηd(kTs) + Ecrd(kTs),

(59)

where KD =
[
Kd 0

]
. After rearranging,

uTd(kTs) =
[
I −

(
KPIH̄ + KD

Ts
H̄
)]−1 [

−
(
KPIḠ− KD

Ts
Ḡ+ KD

Ts

)
ηd(kTs) + Ecrd(kTs)

]
. (60)

Therefore, the controller gain Kdis and the forward gain Edis in the discrete-time system
are denoted to

Kdis =

[
I −

(
KPIH̄ +

KD

Ts
H̄

)]−1(
KPIḠ−

KD

Ts
Ḡ+

KD

Ts

)
, (61)

Edis =

[
I −

(
KPIH̄ +

KD

Ts
H̄

)]−1

Ec. (62)

It is essential to have a smooth control law so that the chattering phenomenon can be
avoided. In our approach, there are two factors which influence the control law to be
smooth or not. Firstly, the switching control law contains the sign function such that
the chattering phenomenon might occur, which is not desirable for our design. Secondly,
the PID controller is sensitive to the derivative term of the system. These factors can be
solved in the following discussion. In (33), the control law contains a sign function which
is not a smooth function. Therefore, a saturation function is introduced in (37). So, (33)
can be replaced by

uc(t) = uTc(t)− γc ‖xc(t)‖ sat(sc(t))− σsc(t). (63)
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From the above discussion, the digital redesign control law can be obtained by

ud(kTs) = uTd(kTs)− γd ‖xd(kTs)‖ sat(sd(kTs))− σsd(kTs). (64)

Note that the saturation function in the switching control law contains the parameter
εi , which needs to be selected properly. If εi is selected improperly, the chattering
phenomenon might still occur, which is not desirable for our design. For the second
factor mentioned above, digital redesign can reduce the sensitivity of the system variation
caused by the derivative term. In (60), uTd(kTs) contains no derivative term after digital
redesign, and therefore it is a smooth control law. According to the above discussion, the
control force would be smooth and make the system track the trajectory.

3. Digital-Redesigned Robust Tracker for Sampled-Data Systems with Nonlin-
ear Disturbances Based on PID Control, SMC and PSO Algorithm. In section
2, there are some specific parameters which need to be adjusted properly. To find out the
near-optimal solution of these parameters, the multi-swarm cooperative particle swarm
optimizer (MCPSO) algorithm is applied in our approach. A brief introduction of MCPSO
will be shown in this section.

3.1. A brief introduction of a standard PSO (SPSO). A typical PSO algorithm
originates from a flock of birds flying through a D-dimensional space. A bird is called
a particle in the PSO algorithm. The idea is that the bird would adjust its route while
searching space according to both its own experience and its neighbors’ experience. zi =
(zi1, zi2, ..., ziD) denotes the ith particle in the D-dimensional space, where zid ∈ [ld, ud]
, d ∈ [1, D] , and ld, ud are the lower bound and the upper bound of the dth dimension,
respectively. The velocity of the ith particle can be denoted as vi = (vi1, vi2, ..., viD) . The
SPSO algorithm can be described as

vi(t+ 1) = vi(t) + r1c1 (pi − zi(t)) + r2c2 (pg − zi(t)) , (65)

zi(t+ 1) = zi(t) + vi(t), (66)

where r1 and r2 are random values between 0 and 1, c1 and c2 are the acceleration
constants, p1 is the best previous position of the ith particle, and pg is the global best
position among all the particles in the swarm.

3.2. Modified PSO algorithms.

3.2.1. Linearly decreasing inertia weight method of PSO (LPSO). The literature [18] mod-
ifies (65) by adding an inertia term w :

vi(t+ 1) = w × vi(t) + r1c1 (pi − zi(t)) + r2c2 (pg − zi(t)) , (67)

zi(t+ 1) = zi(t) + vi(t). (68)

The inertia term can balance the global and local explorations if selected properly. Usu-
ally, w decreases linearly from 0.9 to 0.4 during a whole process. The inertia term w is
commonly chosen according to the following equation:

w = wmax −
wmax − wmin

itermax

× iter, (69)

where wmax is the initial weight, and wmin is the final weight. itermax is the maximum
time of iterations and is the current number of iterations. In [19], this version of SPSO is
referred to as LPSO.



680 J.J. Yan, J.S Fang, J.S.H. Tsai, C.H. Huang, S.M. Guo

3.2.2. Random weight method of PSO (RPSO). Different from LPSO, [21] proposes a
random inertia weight factor to modify the velocity of the particles. In the method, the
inertia weight factor would change randomly as the following equation:

w = 0.5− rand( • )

2
, (70)

where rand( • ) is a uniformly distributed random number between 0 and 1. In [19], this
method is referred to as RPSO.

3.2.3. Constriction factor approach PSO (CPSO). The third modified PSO algorithm is
the constriction factor approach PSO (CPSO), which is proposed by [22]. This modified
SPSO can be described by the following equations

vi(t+ 1) = κ (vi(t) + r1c1 (pi − zi(t)) + r2c2 (pg − zi(t))) , (71)

zi(t+ 1) = zi(t) + vi(t), (72)

κ =
2∣∣∣2− ϕ+
√
ϕ2 − 4ϕ

∣∣∣ , where ϕ = c1 + c2, ϕ > 4. (73)

Note that the constriction factor κ is a function of c1 and c2 .

3.3. COM-MCPSO algorithm. After the brief reviews about LPSO, RPSO and CPSO,
COM-MCPSO can be introduced in the following section. [19] presents a new optimiza-
tion algorithm: MCPSO. Inspired by the phenomenon of symbiosis in natural ecosystems,
they found that a master-slave model is advisable to be incorporated into the SPSO, so
the MCPSO is developed. In this method, one master swarm and some slave swarms are
included in a population. The symbiotic relationship between the master swarm and slave
swarms can help balance the exploration and exploitation, which is a critical key to the
success of an optimization task.

In MCPSO algorithm, each slave indicates a kind of PSO, for example, we use three
slaves, LPSO, RPSO, and CPSO, in our approach. The master swarm can choose the
best of all received individuals after the slave swarms share their best positions with the
master swarm. Then, the master swarm can evolve according to the following equations:

vMi (t+ 1) = w × vMi (t) + r1c1

(
pMi − zMi (t)

)
+ Φr2c2

(
pMg − zMi (t)

)
+ (1− Φ) r3c3

(
pSg − zMi (t)

)
, (74)

zMi (t+ 1) = zMi (t) + vMi (t), (75)

where M and S denote the master swarm and slave swarm, respectively. r3 is a random
number between 0 and 1, and c3 is the acceleration constant. According to [19], is a
migration factor used for migration problem, which is given by

Φ =

 0
0.5
1

GS
best < GM

best,
GS
best = GM

best,
GS
best > GM

best,
(76)

where pMg and pSg are the best previous particles in master swarm and in slave swarms,

respectively. GM
best denotes the cost value determined by pMg ;GS

best denotes the cost value

determined by pSg .
The MCPSO algorithm we have discussed above is called as competitive version MCPSO,

or COM-MCPSO. In the method, the master swarm improves its particles according to
the direct competition with the slave swarms. Thus, the chance of finding the most fitted
particle in all the swarms (master swarm or slave swarms) is raised such that the master
swarm can be guided to the best direction among all the swarms.
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3.4. Digital redesign robust tracker for sampled-data systems with nonlinear
disturbances based on PID control, SMC and PSO algorithm. Now, we integrate
the MCPSO algorithm with the PID control, SMC and the digital redesign robust tracker
for sampled-data systems with bounded nonlinear disturbances, such that some design
parameters of the controller can be optimally tuned. Our goal is to minimize the output
error, chattering phenomenon and improve the transient response. As a result, a cost
function used to evaluate the performance is designed as

Jcost =

∫ tend

0

p∑
i=1

|ey,i(t)|+
p∑
i=1

|∆ey,i(t)|dt, (77)

where ey(t) = yc(t)− rc(t) , ∆ey(t) = ey(t)− ey(t− 1) .
In our approach, there are three parameters can be determined by applying MCPSO

algorithm: α for the D-type controller design in (8),ε for the SMC design in (37) and Qk

for the tracker design in (16). After the parameters are decided by MCPSO algorithm,
the system output error and chattering phenomenon can be minimized, and the transient
response can be improved too. The detailed experiment process will be discussed in the
following section.

3.5. Experimental setting. There are several parameters which should be determined
by the users. The report [19] mentions that the parameters used for LPSO, RPSO, CPSO
are recommended in [24–26], which are shown in the following descriptions:
1. LPSO: c1 = c2 = 2.0 , wmin = 0.4 and wmax = 0.9
2. CPSO: c1 = c2 = 2.0 and κ = 0.729
3. RPSO: c1 = c2 = 1.494
4. MCPSO: c1 = c2 = 2.05, c3 = 2.0 , wmin = 0.4 and wmax = 0.9

The selection of the inertia weight is important for conducting a PSO algorithm. If
the inertia weight is selected properly, it can provide a balance between the local search
and the global search. Hence, the optimal or near optimal solution can be reached more
accurately and efficiently. In [19], the inertia weight for LPSO and MCPSO are set to
decaying numbers started at 0.9 and ended at 0.4 (see [20]); for CPSO, the constriction
factor κ was set at 0.729.

Refer to [19], the number of slave swarms is set as 3. The three slave swarms, LPSO,
RPSO, and CPSO, are the improved versions of the SPSO. In our experiments, the param-
eters of these slave swarms are set as those mentioned above. The population size of each
swarm was set to 50, and the maximum number of iterations was set to 100 generations.

Our target is to find out the proper values of α in D-type controller design, ε in SMC
saturation function and in the tracker design. In order to enhance the opportunity of
finding the near-optimal value, ε can be presented as ε = 10δ . The upper bounds and
the lower bounds are set as α = [0.1, 1] , δ = [−5,−1] and Qk = [103, 107] .

4. An Illustrative example. Consider the controllable time-invariant system with bounded
nonlinear disturbance described by

ẋc(t) = Axc(t) +B [uc(t) + d (xc(t), t)] ,

yc(t) = Cxc(t) +D [uc(t) + d (xc(t), t)] ,

where A =

 −35 35 0
−7 28 0
0 0 −3

 , B =

 0
1
0

0
0
1

 , C =

[
−0.5

0
5
0

0
0.5

]
,

D =

[
0.1 0
0 0.2

]
,and the initial condition is selected as xc(0) =

[
0.1 0.1 0.1

]T
. The
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bounded nonlinear disturbance and reference rc(t) are respectively given by

d (xc(t), t) = sin (xc1(t)xc2(t))

[
xc1(t)
−xc1(t)

]
and rc(t) =

[
rc1(t)
rc2(t)

]
=

[
sin(5t)
− cos(5t)

]
.

After the near-optimal solution search of the MCPSO algorithm, the matrix pair
{Qk, Rk} =

{
107I2, I2

}
are selected for the controller design. The parameter α is set

as α = 0.9922 , which yields Kd =

[
0 0.0078 0
0 0 0.0078

]
and M = I3 − BKd = 1 0 0

0 0.9922 0
0 0 0.9922

.And the parameter in saturation function is selected as δ = −1 ,

which means ε = 10−1 = 0.1 .
The PI-type controller gain matrix can be obtained by

KPI =
[
Kp Ki

]
=

[
−5.0157 49.8276 0 1.9843 0

0 0 2.4569 0 0.9922

]
,

where Kp ∈ <2×3 and Kp ∈ <2×2 . The forward gain in continuous time is Ec =[
9.9216 0

0 4.9608

]
. The controller gain and the forward gain in discrete time are Kdis =[

−4.9262 48.7676 0 1.9031 0
0 0 2.4864 0 0.9973

]
, Edis =

[
9.5153 0

0 4.9866

]
for the se-

lected sampling time Ts = 10−3sec. The sliding manifold and the control law are given in
(41) and (60), respectively, where

ĀPID =


−35 35 0 0 0
−7.0553 28.2212 0 0 0

0 0 −3.0237 0 0
−0.5055 5.0221 0 0 0

0 0 0.4953 0 0

 , B̄PID =


0 0

1.0079 0
0 1.0079

0.1008 0
0 0.2016

 ,

C̄PID =

[
−0.5055 5.0221 0 0 0

0 0 0.4953 0 0

]
, D̄PID =

[
0.1008 0

0 0.2016

]
,

Cs =

[
0 1 0
0 0 1

]
, and γc is given as

√
2.

In order to analysis the difference between applying PSO algorithm and without applying
PSO algorithm, the following experiments are set as the same initial values, where α = 0.5
, δ = −5 and Qk = 103 .

Figs. 1-4 represent the performance without applying PSO algorithm; Figs. 5-9 repre-
sents the improved performance with applying PSO algorithm. Fig. 1 and Fig. 5 show
the tracking performance between the controlled system outputs yd(kTs) and the reference
trajectory rd(kTs) . Fig. 2 and Fig. 6 display the system states of the controlled system.
Fig. 3 and Fig. 7 demonstrate the control laws ud(kTs) of the controlled system. Fig. 4
and Fig. 8 illustrate the sliding surface. Fig. 9 demonstrates the decaying cost values in
MCPSO algorithm.

Note that Figs. 1-4 can be compared with the Figs. 5-8. Figs.5-8 indicate a satisfied
performance base on the proposed tracker for the system with unknown disturbances. By
comparing Fig. 1 with Fig. 5, the transient response improves significantly after applying
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PSO algorithm. Compared with Fig. 3 and Fig. 7, the negative effect of chattering
phenomenon is suppressed apparently.

Figure 1. The system outputs (a) y1 (b) y2 of the controllable time-
invariant sampled-data system with bounded nonlinear disturbance (with-
out MCPSO algorithm).

Figure 2. The system states of the controllable time-invariant sampled-
data system with bounded nonlinear disturbance (without MCPSO algo-
rithm).
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Figure 3. The control law (a) u1 (b) u2 of the controllable time-
invariant sampled-data system with bounded nonlinear disturbance (with-
out MCPSO algorithm).

Figure 4. The sliding manifold for the controllable time-invariant
sampled-data system with bounded nonlinear disturbance (without
MCPSO algorithm).

Figure 5. The system outputs (a) y1 (b) y2 of the controllable time-
invariant sampled-data system with bounded nonlinear disturbance (with
MCPSO algorithm).
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Figure 6. The system states of the controllable time-invariant sampled-
data system with bounded nonlinear disturbance (with MCPSO algorithm).

Figure 7. The control law (a) u1 (b) u2 of the controllable time-invariant
sampled-data system with bounded nonlinear disturbance (with MCPSO
algorithm).

Figure 8. The sliding manifold for the controllable time-invariant
sampled-data system with bounded nonlinear disturbance (with MCPSO
algorithm).
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Figure 9. Cost values described in (65) during the total 100 iterations.

5. Conclusion. Given the sampled-data systems with bounded nonlinear disturbances,
this paper mainly focuses on the new method for the digital-redesign robust tracker based
on an integration of the PID control, SMC and PSO algorithm in order to discretize
the original continuous-controller for the sampled-data systems. The discussion about
discrete-time sliding mode controller is more complicated than that about continuous-
time sliding mode controller. Thus, this paper proposes a new digital redesign approach
integrated with PID control, SMC and PSO algorithm to transfer the continuous-time
controller to the discrete-time controller and preserve the performance of the original
continuous-time controller. The application of SMC can suppress the negative effect
induced by the bounded nonlinear disturbances such that the system resembles a linear
system; consequently, the digital redesign method can be applied. Then, the MCPSO
algorithm is applied to find the optimal solution or near-optimal solution for the integrated
LQAT, PID controller and sliding mode controller design. After the MCPSO optimization,
the chattering phenomenon in SMC is reduced and the transient response is improved
too. The proposed new method in the paper is verified to be effective from the simulation
results.
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