Full Title of Journal of Network Intelligence
(Template Version)

Hsiang-Cheh Huang
Department of Electrical Engineering
National University of Kaohsiung
700 University Road, Kaohsiung, 811, Taiwan
hchuang@nuk.edu.tw

Wu-Chih Hu
Department of Computer Science and Information Engineering
National Penghu University of Science and Technology
300 Liu-Ho Rd., Makung, Penghu 880, Taiwan
wchu@npu.edu.tw

Jeng-Shyang Pan
Innovative Information Industrial Research Center
Shenzhen Graduate School
Harbin Institute of Technology
jengshyangpan@gmail.com

Received July 2014; revised December 2014

Abstract. Please write down the abstract of your paper here. Suggested length of Abstract is around 200 words.

Keywords: Please write down the keywords of your paper here, such as, Watermarking, Video compression,

1. Introduction. Please write down the Introduction of your paper here....

2. Problem Statement and Preliminaries. Please write down your section. When you cite some references, please give numbers, such as,In the work of [1, 2, 3, 5], the problem of...... For more results on this topic, we refer readers to [1, 4, 5, 7] and the references therein....

2.1. Several definitions and theorems. Please write down your subsection.

Definition 2.1. System (1) is stable if and only if....

Lemma 2.1. If system (1) is stable, then.....

Theorem 2.1. Consider system (1) with the control law....

Proof: Let....

Corollary 2.1. If there is no uncertainty in system (1), i.e., $\Delta A = 0$, then...

Remark 2.1. It should be noted that the result in Theorem 2.1.....

Example 2.1. Let us consider the following example.....
\[
\dot{x}(t) = Ax(t) + Bu(t) + B_1w(t) \quad (1)
\]
\[
y(t) = Cx(t) + Du(t) + D_1w(t) \quad (2)
\]

3. Main Results. Here are the main results in this paper.....

Definition 3.1. System (3) is stable if and only if....

Lemma 3.1. If system (3)-(4) is stable, then.....

\[
\dot{x}(t) = Ax(t) + Bu(t) + B_1w(t) \quad (3)
\]
\[
y(t) = Cx(t) + Du(t) + D_1w(t) \quad (4)
\]

Theorem 3.1. Consider system (3) with the control law....

Proof: Let....

Corollary 3.1. If there is no uncertainty in system (3), i.e., \(\Delta A = 0 \), then...

Remark 3.1. It should be noted that the result in Theorem 2.1.....

Example 3.1. Let us consider the following example....

4. Control Design. In this section, we present......

Definition 4.1. System (5) is stable if and only if....

Lemma 4.1. If system (5) is stable, then.....

Theorem 4.1. Consider system (5)-(6) with the control law....

Proof: Let....

Corollary 4.1. If there is no uncertainty in system (5)-(6), i.e., \(\Delta A = 0 \), then...

Remark 4.1. It should be noted that the result in Theorem 2.1.....

Example 4.1. Let us consider the following example....

Corollary 4.1. If there is no uncertainty in system (5)-(6), i.e., \(\Delta A = 0 \), then...

Remark 4.1. It should be noted that the result in Theorem 2.1.....

Example 4.1. Let us consider the following example....

6. Conclusions. The conclusion of your paper is here.....
Table 1. Sample data

<table>
<thead>
<tr>
<th>Channel erasure probability</th>
<th>Watermarked image quality (in dB)</th>
<th>Extracted BCR (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>p_2</td>
<td>32.53</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>30.69</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>28.90</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>24.59</td>
</tr>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>23.14</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>21.52</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>19.98</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>19.98</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>26.18</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>26.09</td>
</tr>
</tbody>
</table>

Acknowledgment. This work is partially supported by The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES