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Abstract. The idea of ”Matrix encoding” was introduced in steganography by Cran-
dall in 1998 [6]. The implementation was then proposed by Westfeld with steganography
algorithm F5 [1]. The objective is to transmit a message within an image via the modi-
fied image, but with the constraint of minimizing the number of coefficients of the image
changed. In this paper, new construction of protocol steganography is considered, it is
an extension of the error correcting code and steganography construction. The proposed
method consists of use the Majority logic decoding introduced in [5], for embedding the
message in the cover image, the extraction function is always based on syndrome coding.
An asymptoticly tight bound on the performance of embedding schemes is given.
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1. Introduction. The goal of digital steganography is to modify a digital object (cover)
to encode and conceal a sequence of bits (message) to facilitate covert communica-
tion [12, 13, 14]. The goal of steganalysis is to detect (and possibly prevent) such com-
munication. Often, the cover media correspond to graphics files. Graphics files are the
typical choice because of their ubiquitous presence in digital society, but any medium that
contains a substantial amount of perceptually insignificant data can be used.
An interesting steganographic method is known as matrix encoding, introduced by Cran-
dall [6]. Matrix encoding requires the sender and the recipient to agree in advance on a
parity check matrix H, and the secret message is then extracted by the recipient as the
syndrome (with respect to H) of the received cover object. This method was made popu-
lar by Westfeld [1], who incorporated a specific implementation using Hamming codes in
his F5 algorithm, which can embed t bits of message in 2t− 1 cover symbols by changing,
at most, one of them.

There are two parameters which help to evaluate the performance of a steganographic
method over a cover message of N symbols : the average distortion D = Ra

N
, where Ra is

the expected number of changes over uniformly distributed messages; and the embedding
rate E = t

N
, which is the amount of bits that can be hidden in a cover message [4]. In

general, for the same embedding rate a method is better when the average distortion is
smaller.
Furthermore, we will also assume that a discrete source produces a sequence x = (x1, ..., xN),
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where, N is the block length, each xi ∈ F2. The message s = (s1, ..., sM), where M is
the message length, we want to hide into a host sequence x produces a composite se-
quence y = f(x, s), where y = (y1, ..., yN), and each yi ∈ F2. The composite sequence y
is obtained from distorting x, and the distortion will be assumed to be a squared-error
distortion. In these conditions, if information is only carried by the least significant bit
(LSB) of each xi, the appropriate solution comes from using binary Hamming codes [1].

In this work we propose a steganography method based on a [n, k, t] codes BCH. While
the size of each cover block is n = 2m − 1, m = 3, 4, 5...,, and the rate of capacity is
M = m× t. Our method uses t = 2. Because with t = 2 BCH is semi perfect. for this pa-
per is find embedding efficiency=(rate of capacity/number of changes), better than code
Hamming used in [1].

The rest of this paper is organized as follows. Section 2 introduces the relations between
error-correcting codes and steganography systems. We construct our approach in section3.
Section 4 introduces the bound on the performance of embedding schemes. Conclusions
and future work are presented in section 5.

2. Steganography and Error Correcting Code. R. Crandall [6] introduced the ma-
trix encoding idea to improve the embedding efficiency for steganography. F5 proposed by
Westfeld [1] is the first implementation of the matrix encoding concept to reduce modifi-
cation of the quantized DCT coefficients. Since F5, steganographers take the reduction of
embedding capacity sincerely and coding theory into consideration. Basically the matrix
encoding technique in F5 modifies at most 1 coefficient among n nonzero coefficients to
hide k bits. For example, the matrix encoding method modifies at most one coefficients
among seven coefficients to hide three bits like a [7, 3] Hamming code. Thus, distortion
of image is reduced at the cost of sacrificing the embedding capacity. Now, not all co-
efficients have to be modified by using [n, k, 1] code where n = 2k − 1. Modified matrix
encoding (MME) [7] uses [n, k, 2] code where one more coefficients may be changed in
each group compared with the matrix encoding. Main concept of the matrix encoding
technique is ”the less number of modification to the DCT coefficients, the less amount of
distortion in the image” [8].

Matrix encoding using linear codes (syndrome coding) is a general approach to im-
proving embedding efficiency of steganographic schemes. The covering radius of the code
corresponds to the maximal number of embedding changes needed to embed any mes-
sage. Steganographers, however, are more interested in the average number of embedding
changes rather than the worst case. In fact, the concept of embedding efficiency-the
average number of bits embedded per embedding change-has been frequently used in
steganography to compare and evaluate performance of steganographic schemes.

2.1. Error Correcting Code in Steganography. An important kind of steganographic
protocols can be defined from coding theory. Error-correcting codes are commonly used
for detecting and correcting errors, or erasures, in data transmission. An explicit de-
scription of the relations between error-correcting codes and steganographic systems was
presented by Zhang and Li in [9] and shows that there is a corresponding relation between
the maximum length embeddable (MLE) codes and perfect error correcting codes. The
most used codes in steganography are linear. The existence of a parity check matrix helps
on designing good steganographic protocols.



Coding Theory in Steganography 339

Let C be a linear [n, n − t] code over the finite field Fq, equivalently, a linear sub-
space of Fn

q , where the dimension is k = n − t. The covering radius ρ of code C is
defined as ρ = maxv∈Fn

q
d(v, C), where d(v, C) means the minimum Hamming distance

from vector v to the code C. The support of a vector v = (v1, v2, ..., vn) ∈ Fn
q is the set

supp(v) = {i|vi ̸= 0}.

Let Fn
q and H be a parity check matrix of C. The syndrome of any v ∈ Fn

q is the vector

r(v) = H × vT , where vT means the vector v as a column vector. Coset C + v is the
set of all vectors in Fn

q with the same syndrome. A vector lr(v) of the minimum weight
in C + v will be called leader of the coset, although it is not necessarily unique. The
above syndrome map r : Fn

q → Ft
q , such that r(v) = H × vT , is called the retrieval map

of a [n, t, ρ] steganographic protocol, which will be called linear to emphasize that the
retrieval map r is a linear map. The embedding algorithm to compute e(s, v) for a linear
steganographic protocol works in the following way [10]:

Coset algorithm.

• Compute u := r(v)− s,
• define e(s, v) := v − lu, where lu is a leader of the coset C + u of all the vectors in
Fn
q with the same syndrome u. So, r(lu) = u.

Single-Error Correcting Codes. We now give an example of a protocol steganogra-
phy constructed from a linear single-error-correcting code. This was also discussed, for
example, in [1]. Start from the matrix

H =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


whose entries are elements of F2. Extracting Scheme is defined

F : F7
2 → F4

2.

F (x1, x2, x3, x4, x5, x6, x7) = (y1, y2, y3), where

y1 = x1 + x4 + x5 + x7, y2 = x2 + x4 + x6 + x7

and

y3 = x3 + x5 + x6 + x7.

This function can be described in terms of matrix H.In fact, yi, is the dot product of x
and the i-th row of H. We claim that F is a extracting function of protocol steganography
(7, 3, 1).

Embedding Scheme for example, F (0, 0, 1, 1, 0, 1, 0) = (1, 0, 0). Assume y = (1, 1, 1).
We claim that it is possible to replace x = (0, 0, 1, 1, 0, 1, 0) by x′ such that F (x′) = (1, 1, 1)
and d(x, x′) = 1. In fact, we claim more: the coordinate where x has to be changed is
uniquely determined. In our case, this is coordinate number 6, so x′ = (0, 0, 1, 1, 0, 0, 0),
Here is the general embedding rule: form F (x) + y, (in the example this is 011). Find
the column of H which has these entries (in our example, this is the sixth column). This
marks the coordinate where x needs to be changed to embed payload y. This procedure
indicates how H and F were constructed and how this can be generalized: the columns
of H are simply all nonzero 3-tuples in some order. In general, we start from our choice
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of n and write a matrix H whose columns consist of all nonzero n-tuples. Then H has
N = 2n − 1 columns. The extracting function,

F : FN
2 → Fn

2

is defined by way of the dot products with the rows of H. Finally it is clear that embed-
ding efficiency= 3.

2.2. Majority Logic Decoder. Majority logic decoding algorithm is briefly explained
below. LetH be the parity check matrix of a [n, k] linear error correcting code C. Majority
logic decoding implements a voting scheme among a set of check sums orthogonal on a
bit or subset of error bits. The majority logic decoding rule is defined for a set of, J check
sums orthogonal on error bit ej as follows [5]:
Let the estimate êj of error bit ej be the value assumed by the majority of the J check
sums. In the case of a tie, let êj = 0. The majority logic decoding rule guarantees a
correct estimate of ej as long as there are no more than ⌊J

2
⌋ errors among the error bits

being checked. It is clear that for a block code with minimum distance dmin, majority
logic decoding will be optimal when J = dmin − 1. In such a case, the code is said
to be completely orthogonalizable [5]. The J orthogonal check sums provide reliability
information. In general, the greater the number of check sums which agree, the higher
the reliability of the estimate. The lack of an extensive majority among the J orthogonal
check sums can be used to generate a retransmission request.

3. New Protocol Steganography. In this section we discuss the proposed approach
for hiding information within the spatial domain of the gray scale image. The proposed
approach works by dividing the cover into blocks of equal sizes. A block of binary data,
e.g., LSB values of cover data, {v0, v1, ..., vn−1} over F2 can be represented by a polynomial
of X over Fm

2 such as v(X) = v0 + v1X + ...+ vn−1X
n−1. Embedding message m into the

cover data v produces the stego data r which is represented as r(X) = r0 + r1X + ... +
rn−1X

n−1. The relation between m and r can be expressed as a matrix form as follows:

m = r ×H t (1)

Decoder also use Equation (1) to extract message from the stego data. By hiding message,
some of the cover data bits are flipped from 0 to 1 and vice versa. Let e(X) be the flip
pattern that represents which bit positions are flipped [8]. As a result, stego data is
modified according to the flip pattern as follows:

r(X) = v(X) + e(X) (2)

From Equations (1) and (2), we have

m− v ×H t = e×H t (3)

The left-hand side of Equation (3) is called syndrome S. In other words, the syndrome is
expressed as follows:

S = m− v ×H t (4)

or, equivalently
S = e×H t (5)

From the steganographic point of view, our objective is to find a minimal number of
flips of e(X) satisfying Equation (5) in order to decrease distortion. This is the syndrome
coding. Data hiding by error-correcting code solves Equation (5) based on the vector e.
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The solution shows the proper positions of the elements in vector v(X) to be modified in
order to hide message m to vector v(X). The stego vector r(X) is calculated according
to Equation (2). The hidden message can be recovered from stego vector r(X) using
Equation (1).

Proposed Embedding Scheme.

• Input : message m, block of image C, distortion maximum allowed t.
• Output : stgo-image

• Step(1) : calculate S by equation 4.
• Step(2) : if S = 0 ; supp(e) = ∅, e(X) = 0, then the message is already hiding

else go to Step(3).
• Step(3) : S = (S0, S1, ..., Sn−k−1) ; It seeks to construct a set P systems of equations
parity , Such that each system L ∈ P , there is a i ∈ supp(e) ; L is orthogonal to ei.

• Step(4) : solve all the systems belonging to P ; and Removal ei = 0 or 1 ; for all
i ∈ supp(e(X))

• Step(5) if w(e(X)) ≤ t ; go to step(6), else go to step (3).
• Step(6) : It calculates the stgo-support r(X) by equation 2, you spin the algorithm
for every image blocks

Extracting Scheme. The message is retrieved from the stego-support, with the function
of syndrome. The relation between m and r can be expressed as a matrix form as follows:

m = r ×H t

Proposed Method. Consider the [7, 4] cyclic code generated by g(x) = 1+x+x3. This
is a Hamming code. The parity-check matrix (in systematic form) is found as follows:

H =

 h0

h1

h2

 =

 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


We see that the vectors, h0 and h2 are orthogonal on digit position 5 and 6(or X5 and

X6). We also see that the vectors, h0+h1 and h2, are orthogonal on digit positions 4 and
6. Let E1

1 = {e5, e6} and E1
2 = {e4, e6} be two selected sets. Let r = (r0, r1, ..., r6) be the

received vector. then the parity-check sums formed from h0 and h2 are:

A1 = r × h0 = e0 + e3 + e5 + e6

A2 = r × h2 = e2 + e4 + e5 + e6

and the parity-check sums formed from h0 + h1 and h2 are:

B1 = r × (h0 + h1) = e0 + e1 + e4 + e6

B2 = r × h2 = e2 + e4 + e5 + e6

the parity-check sums, A1 and A2, are orthogonal on the set E1
1 = {e5, e6} and the parity-

check sums, B1 and B2, are orthogonal on the set E1
2 = {e4, e6}. Therefore, the sum

S(E1
1) = e5 + e6 can be estimated from A1 and A2, and the sum S(E1

2) = e4 + e6 can
be estimated from B1 and B2. the sums S(E1

1) and S(E1
2) would be correctly estimated

provided that there is no more than on error in the error vector e. Now let E2
1 = {e6}.

We see that S(E1
1) and S(E1

2) are orthogonal on e6. Hence, e6 can be estimated from
S(E1

1) and S(E1
2). The value of e6 will estimated correctly provided that there are no

more than on error in e. Therefore, the [7, 4] Hamming code can be decoded with two
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steps of orthogonalization and it is two-step majority-logic decodable. Since its minimum
distance is 3 and J = 2, it is two-step completely orthogonalizable.

3.1. Experimental Results. A generalization of perfect codes is the following: a t-
error-correcting code is said to be quasi-perfect if covring raduis=t+1(or equivalently, if
the spheres of radius t+1 around the codewords contains all vectors of Fn

q ). For example,
all double-error-correcting BCH codes are quasi-perfect (see [11], Chapter 9, Section 8).
We can use these codes to construct steganographic protocols. Remark that example
of single-error correcting Codes also provides the parameter a for quasi-perfect codes.
For every integer m > 2, the binary two-errorcorrecting BCH code Cm has parameters
[2m−1, 2m−2m−1, 5] [11]. Its covering radius is ρ = 3. Let Sm be the protocol obtained
from Cm, by taking a parity check matrix as described above. It is a [2m − 1, 2m, 3]
protocol. The following tables collects the parameters of Sm and the corresponding version
of F5 [1] (obtained from the Hamming code)

Sm

m n k ρ k
n

k
ρ

3 7 6 3 0, 857 2
4 15 8 3 0, 533 2, 66
5 31 10 3 0, 322 3, 33
6 63 12 3 0, 190 4
7 127 14 3 0, 110 4, 66

F5
m n k ρ k

n
k
ρ

3 7 3 1 0, 428 3
4 15 4 1 0, 266 4
5 31 5 1 0, 161 5
6 63 6 1 0, 095 6
7 127 7 1 0, 055 7

k
n
, k

ρ
measure, respectively, the embeding rate and embeding efficient.

4. Bound on the Performance of Embedding Schemes. Since for any given cover-
word v only

∑t
i=0C

i
n different stego-words can be obtained by changing at most t coor-

dinates of v, then we have the following proposition [3]

proposition. For any embedding scheme of distorting t, using binary words of length
n as cover words, the number of different messages M(n, t) that can be embedded is
bounded by

M(n, t) ≤
t∑

i=0

C i
n (6)

Recall that h(n, t) = logM(n, t). The right hand side of (6) is upper bounded by

2nH2(
t
n
)

for 2t < n, whereH2(x) = −xlogx−(1−x)log(1−x) is the entropy function [3]. Therefore,
we have

h(n, t) = nH2(
t

n
)
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Note this is a good approximation of (6) when t grows linearly with n. For other important
case t fixed and n growing to infinity it follows from

h(n, t) = t× logn− log(t!), tfixed. (7)

Fortunately there are known constructions of steganography method very close to the
Hamming bound. In the precedent section we give constructions showing the upper
bounds are asymptoticly tight.

5. Conclusions. In this paper, we have presented a new method for steganography,
based on error correcting code. This method use a class of decoding for error correcting
code ”majority logic decoding”. This technique has representation that makes them
efficient to work with. Future work will consider doing the following modifications to the
proposed method:

• Investigating the proposed method on color images.
• modifying the proposed approach to embed image inside another image.
• Preserve the secret message even if we do some transformations on the image like
rotation, scaling compression.

• Relate the encryption process with steganography in which we encrypt the message
before embedding it inside the image in order to increase the security of the proposed
method.
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