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Abstract. Numerous and various complex networks have emerged with the development
of science and technology. Finding the critical links in complex networks is very important
for attackers and defenders. In order to evaluate the importance of links complex network
links, it is crucial to choose the criteria comprehensively, objectively and independently.
This paper presents an importance evaluation scheme to mine the critical links based
on entropy weights and grey relational analysis. Experimental results demonstrate the
superiority of our scheme in compassion with typical methods.
Keywords: Complex networks, Network Security, Entropy weights, Grey relational
analysis, Critical links mining.

1. Introduction. A complex network usually has a fragility that a relatively localized
damage in one system may lead to a failure in another [1]. Understanding the fragility
properly is one of the major challenges in the design of resilient infrastructures [2]. Small-
world [3] and scale-free [4] are two important properties existing in most natural networks.
Many previous works on the security of scale-free networks preferred attacks on nodes
rather than on links [5, 6]. However, some other studies showed that attacks on links
are as important as those on nodes [7]. Nevertheless, attacks on a few links may cause a
sharp decline of network performance [8].

To solve this problem, some evaluation criteria have been proposed. One is the decline
rate of spanning trees [9, 10]. The principle is that when an edge is deleted from the
graph, the less the number of spanning trees is, the more important the edge is. Another
criterion is the increasing rate of the average shortest path length[11, 12], although the
edge-betweenness is also vital [5]. Actually, each criterion has its insufficiencies. First,
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most of the criteria use a single index, and hence it cannot be used for evaluation directly.
Second, if multi indices are used, the correlation information between the indicators tends
to be ignored. Thus, it is necessary to find an effective way to integrate various indica-
tors. Recently, Ren and Lu[13] considered the multi-criteria based comprehensive ranking
method for evaluating Link importance for communication networks using the gray rela-
tional analysis method. They characterized link importance based on three criteria.

To further improve the performance, this paper proposes a method to integrate the
criteria effectively based on entropy weights and grey relational analysis. In Section 2,
the grey relational analysis is introduced for criteria selection. In Section 3, we use
entropy weights to solve the problem of subjectivity. In Section 4, experimental results
and comparisons are performed based on two classical networks. A brief conclusion is
given in Section 5.

2. Criteria Selection Based on Grey Relational Analysis. The grey relational
analysis has been proved that it is an effective method to find the numerical relationship
between various factors based on the trend of the differences or similarities. For mining
critical links, the procedures are given below.

Step 1. Suppose there are n links in the network, and each edge has m factors. The
following equation denotes the importance measure vector of the i -th edge.

Xi = (xi1, xi2, ..., xim), 1 ≤ i ≤ n (1)

where xik means the k -th measure factor of the i -th edge.
Step 2. Based on a comprehensive comparison of all links, the reference importance

measure vector is given as below.

Y = (y1, y2, ..., ym) (2)

where yk is the best value among the k -th measure factors of all links.
Step 3. To deal with the different magnitude of the factors, we use the average method

to make indices dimensionless. The dimensionless importance measure vector is given as
follows.

X∗i = (
xi1
ave1

,
xi2
ave2

, ...,
xim
avem

) (3)

And the dimensionless reference vector is given as follows

Y ∗ = (
y1
ave1

,
y2
ave2

, ...,
ym
avem

) (4)

where avek is the average value over the k -th factors of all links, i.e.,

avek =
n∑

j=1

xjk
n

(5)

Step 4. Compute the difference matrix as follows.

D =


|y∗1 − x∗11| |y∗2 − x∗12| |y∗3 − x∗13| ... |y∗m − x∗1m|
|y∗1 − x∗21| |y∗2 − x∗22| |y∗3 − x∗23| ... |y∗m − x∗2m|

... ... ... ... ...
|y∗1 − x∗n1| |y∗2 − x∗n2| |y∗3 − x∗n3| ... |y∗m − x∗nm|

 (6)

Step 5. Calculate the correlation coefficient between the i -th edge and the k -th factor as
follows.

rik =
Dmin + rDmax

|y∗k − x∗ik|+ rDmax

(7)

where rik means the correlation coefficient, and r is the resolution coefficient falling in the
range of [0, 1].
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Step 6. Calculate the final correlation degree as follows.

Ri =
1

m

m∑
k=1

rik (8)

where Ri means the correlation degree of the i -th edge and i=1, 2, 3,..., n.
Step7. Compare the correlation degrees of all links to output a sorted list of links

according to their correlation degrees, and a bigger correlation degree value corresponds
to a more important edge.

3. The Improved Scheme. Entropy is a physical quantity to indicate the degree of
the state may appear. In information theory, entropy is a measure of the uncertainty.
The smaller the information entropy of a target is, the greater the degree of variation of
the index is. Thus, the greater the amount of information is provided, and the greater
the weight is. On the contrary, if the information entropy of a target is larger, then
the information provided is smaller and the weight should be correspondingly smaller.
Following steps are a brief introduction to the entropy weighting method.

Step1. For a problem with n evaluation objects and m measure indices, its initial
matrix is as follows.

X =


x11 x12 x13 ... x1m
x21 x22 x23 ... x2m
... ... ... ... ...
xn1 xn2 xn3 ... xnm

 (9)

Step2. After normalizing the initial matrix, the normalized matrix is obtained as follows.

X∗ =


x∗11 x∗12 x∗13 ... x∗1m
x∗21 x∗22 x∗23 ... x∗2m
... ... ... ... ...
x∗n1 x∗n2 x∗n3 ... x∗nm

 (10)

Where the normalized equation is given as

x∗ij =
xij − xmin(j)

xmax(j)− xmin(j)
(11)

Where xmax(j) and xmin(j) represent the optimal value and the worst value of the j -th
index over all objects.

Step3. Determine the entropy of the j -th index as follows

Sj = − 1

lnn

n∑
i=1

Pij lnPij (12)

Where Pij is defined as follows.

Pij =
1 + x∗ij∑m

j=1(1 + x∗ij)
(13)

Step4. Determine the entropy weight of the j -th index.

ωj =
1− Sj

m−
∑m

i=1 Si

(14)

Based on the above grey relational analysis, entropy weights for all indices can be obtained.
Using these entropy weights, we can modify Eq. (8) to obtain the final overall index for
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the i -th object as follows:

Ri =
m∑
k=1

ωkrik (15)

where Ri means the overall index for the i -th edge, ωk means the k -th entropy weight,
rik is the correlation coefficient between the i -th edge and the k -th index. The bigger
the Ri value is, the more important the edge is. In our method, we choose three classical
evaluation criteria as our measure indices, i.e., the decreasing rate of the number of
spanning trees, the increasing rate of the average shortest path length, and the edge-
betweenness. For a network G=(V, E), where V denotes the set of nodes and E denotes
the set of links, their definitions can be given as follows.

3.1. Edge Betweenness. Edge betweenness is a measure to quantify the ability of an
edge in controlling the communication between nodes in a complex network. Let pkl denote
the number of shortest paths between Node vk and Node vl, pkl(eij) be the number of
shortest paths between Node vk and Node vl which must pass through the edge eij, and
Bij denote the edge betweenness of eij. Then we have

Bij =
∑
k 6=l

pkl(eij)

pkl
vk, vl ∈ V, eij ∈ E (16)

The larger the value Bij is, the more important the edge eij is.

3.2. The Decreasing Rate of the Number of Spanning Trees. First we calculate
the number of spanning trees of a network, according to the Matrix-Tree theorem, i.e., for
an undirected network, let bij denote the associated number between Node vi and Edge
ej, if Node vi and Edge ej are connected, bij = 1; otherwise, bij = 0. Thus, the matrix
B denotes the incidence matrix, and the number of spanning trees can be calculated as
follows:

τ(G) = |det(Cr)| (17)

Here, τ(G) is the number of spanning trees, Cr is the (n-1)th order principal minor of
Kirchhoff matrix, and Kirchhoff matrix can be calculated as BBT . When we delete Edge
ei, recalculate the number of spanning trees of the new network τi(G). Then we use T (ei)
to denote the decreasing rate of the number of spanning trees when Edge ei is deleted,
and T (ei) can be calculated as follows

T (ei) = 1− τi(G)

τ(G)
(18)

The larger the decreasing rate is, the more important the edge is.

3.3. The Increasing Rate of the Average Shortest Path Length. To obtain the
increasing rate of the average shortest path length, we first calculate the average shortest
path length of the original network, denoted as L(G). For an undirected graph, the average
shortest path length is defined as the average value over all the distances between every
two nodes. When an edge ei is deleted, we recalculate the average distance of the new
network, denoted as Li(G). Thus, the increase rate of the average distance D(ei) can be
calculated as follows:

D(ei) =
Li(G)− L(G)

L(G)
(19)

L(G) =
1

N(N − 1)

∑
j 6=i

dij (20)
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Figure 1. The karate club network.

Table 1. Critical links ranking of the Karate club network.

Critical links Method 1 Method 2 Method 3 Our
1 1-12 1-12 1-32 2-20
2 7-17 1-32 1-7 1-32
3 6-17 1-11 14-34 3-33
4 27-30 1-5 1-6 14-34
5 27-34 1-6 1-9 1-9

Here, dij denotes the length of the shortest paths between Node vi and Node vj ,and N
is the number of nodes. The larger the increase rate is, the more important the node is.

4. Simulations. Two classical networks are chosen to test our methods, i.e., the karate
club network and the sex relationship network. Specifically, there are 34 nodes and 78
links in the karate club network as shown in Fig. 1. We chose each single evaluation
criteria to determine the critical links. The results are listed in Table 1, where Method
1, Method 2 and Method 3 are based on the decreasing rate of the number of spanning
trees, the increasing rate of the average shortest path length, and the edge-betweenness,
respectively. In contrast, our method is based on combining entropy weights with grey
relational analysis. From Table 1, it is easy to find that using each single method, the
results may be correct in the local network, but are not comprehensive. Instead, using
our scheme, we can get more reasonable results.

As shown in Fig. 2, the sex relationship network contains 40 nodes and 41 links. The
same procedure is used to compare different methods, and the results are shown in Table
2. According to Method 1, almost 32 links have the same results, i.e., the decline rate of
the number of spanning trees is 1.0. Using Method 2, for 32 links, the increasing rate of
the average shortest path length is infinity. Thus, for this classical network, Method 1 and
Method 2 do not work. According to the comparison between Method 3 and out method,
we can see that the edge 11-16 is more important than the edge 16-22, because the edge
11-16 can cut the network into two independent networks while the edge 16-22 cannot.
According to above experimental results, we can see that our method outperforms the
previous works in mining the critical links.
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Figure 2. The karate club network.

Table 2. Critical links ranking of the sex relationship network.

Critical links Method 1 Method 2 Method 3 Our
1 1-2 1-2 16-22 11-16
2 2-5 2-5 11-16 26-31
3 3-5 3-5 22-26 5-11
4 4-5 4-5 26-31 16-22
5 5-6 5-6 5-11 8-11

5. Conclusions. In this paper, we propose a new method to mine the critical links in
complex networks. That is, the entropy weights and grey relational analysis are combined
to integrate three criteria into one index. Two classical networks are used to test our
method. According to the experimental results, we can conclude that our improved
method in mining the critical links has two following advantages. First, our method
can be used in different networks which may be not appropriate to other single available
method. Second, the results of our method are comprehensive which cannot be achieved
in each single method.
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