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Abstract. Most super-resolution direction finding methods need to know the array man-
ifold exactly, but there are usually various errors or perturbations in application, which
directly lead to the performance degradation, and even failure. The paper proposed an
array calibration method in super-resolution direction finding for wideband signals based
on spatial domain sparse optimization when mutual coupling, gain/phase uncertainty,
and sensor location errors exist simultaneously. First, the Fast Fourier Transformation
(FFT) is employed to divide the wideband signals into several sub-bands; Then corre-
sponding optimization functions are founded by the signals of every frequency; After that
the error parameters are estimated by expectation maximization(EM) iteratively; Finally,
the information of all frequencies is integrated to calibrate the array, consequently the ac-
tual directions of arrival (DOA) can be estimated.
Keywords: Super-resolution direction finding, Array calibration, Wideband signals,
Sparse optimization

1. Introduction. Super-resolution direction finding is one of the major research contents
in array signal processing, it is widely used in radio monitoring[1-5], internet of things[6,7]
and electronic countermeasure fields[8,9]. At present, most direction finding methods
are based on knowing the accurate array manifold, but there are often high frequency
oscillation, amplifiers, channels which are not consistent, and sometimes accompanied
with sensor position disturbance, lengths of channels are discordant in practical systems,
which directly lead to performance deteriorates of direction finding methods, and even
failure, so the array is often necessary to be calibrated.

Calibration methods in array signal processing can be classified into using source and
self correction. The former are implemented by using the auxiliary source whose position
is known, the latter are usually based on some optimization functions to estimate the di-
rections and perturbation parameters of the array alternately. Most existing methods only
adapt to one kind of array imperfection, for example, mutual couple among sensors[10-
12], gain/phase uncertainty [13-15] and sensor location errors[16-18], they are based on
eigenstructure and lack adaptation to the background of low signal to noise ratio(SNR)
as well as small number of snapshots. Some of them have their unique advantage: Cao
and Ye[19] proposed a calibration method for channel gain/phase uncertainty based on
fourth-order cumulant technique, it adapts to the background of non-Gaussian signals and
Gaussian noise. Mavrychev[20] studied partly calibrated array, it does not need the accu-
rate position information among each subarray, consequently the error caused by position
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perturbation is avoided. The DOA estimation in the presence of more than one kind of
array imperfection has also been studied in some literatures, Friedlander and Weiss[21]
proposed a technique which alternately iterated to estimate the source directions, mutual
coupling and gain/phase uncertainty based on subspace principle, but it needs to solve
the high dimensional nonlinear optimization problem, which has a great computational
complexity and slow convergence speed, meanwhile, perturbation parameters are fuzzy
for the uniform linear array. Song[22] and See[23] calibrated more than one kind of error
which exist in the array simultaneously, but both of the methods need many iterations;
Ng[24] also studied the same problems, but the method he proposed needs to know the
source directions in advance. All the methods above only adapt to narrowband signals,
and need many snapshots, but there are rare published literatures of array calibration for
wideband signals, especially for several errors existing simultaneously.

The paper proposed a novel array calibration method in super-resolution direction
finding for wideband signals based on spatial domain sparse optimization, when mutual
coupling, gain/phase uncertainty, and sensor location errors exist simultaneously, the
corresponding optimization functions are founded by the signal of every frequency, then
the error parameters are estimated by expectation maximization(EM) iteratively, at last,
the information of all frequencies is integrated to calibrate the array, consequently the
actual DOA can be acquired.

Notations used in this paper are shown as follows, for a given matrix X, XT and XH

denote transpose and conjugate transpose respectively, diag(X) means forming a diagonal
matrix by taking the given vector as the main diagonal, Re(X) means taking the real
part, E(X) is the expectation operator, < · > denotes solving conditional expectation,
[·] means Hadamard product,X−k donates removing the kth element from X, IM stands
for the identity matrix with dimension M×M .

2. Array signal model.

2.1. Ideal signal model. It is seen from Figure.1, suppose there areK far-field wideband
signals sk(t)(k = 1, 2, · · · , K) impinging on the uniform linear array composed of M
omnidirectional sensors, the space of them is d, it is equal to half of the wavelength of the
center frequency, DOAs of them are α = [α1, · · · , αk, · · · , αK ], the first sensor is defined
as the reference, then output of the mth sensor can be written as

xm(t) =
K∑
k=1

sk(t− τm(αk)) + nm(t)(m = 1, 2, · · · ,M) (1)

where τm(αk) = (m − 1)(d/c)sin(αk) is the propagation delay for the kth signal arriving
at the mth sensor with respect to the reference of the array, c is the propagating speed
of the signal, nm(t) is the Gaussian white noise on the mth sensor.
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Figure 1. The structure of array
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Before the processing, we divide the output vector into J nonoverlapping components,
Fast Fourier Transformation (FFT) is performed on (1) and the array outputs of J fre-
quencies can be represented as

X(fi) = A(fi,α)S(fi) +N (fi)(i = 1, 2, · · · , J) (2)

Z snapshots are collected at every frequency, then we have

X(fi) = [X1(fi), · · · ,Xm(fi), · · · ,XM(fi)]
T (3)

where

Xm(fi) = [Xm(fi, 1), · · · , Xm(fi, z), · · · , Xm(fi, Z)] (4)

and A(fi,α) is a M×K dimensional steering vector

A(fi,α) = [a(fi, α1), · · · ,a(fi, αk), · · · ,a(fi, αK)] (5)

a(fi, αk) = [1, exp(−j2πfid/csinαk), · · · , exp(−j(M − 1)2πfid/csinαk)]
T (6)

and

S(fi) = [S1(fi), · · · ,Sk(fi), · · · ,SK(fi)]
T (7)

is the signal vector matrix after FFT to sk(t)(k = 1, 2, · · · , K), where

Sk(fi) = [Sk(fi, 1), · · · , Sk(fi, z), · · · , Sk(fi, Z)] (8)

here, Sk(fi, z) is the zth snapshots of the kth signal at fi,

N (fi) = [N1(fi), · · · ,Nm(fi), · · · ,NM(fi)]
T (9)

Nm(fi) = [Nm(fi, 1), · · · , Nm(fi, z), · · · , Nm(fi, Z)] (10)

is the noise vector after performing FFT on nm(t)(m = 1, 2, · · · ,M), with mean 0 and
variance µ2(fi).

2.2. Array error model. For convenience, we only discuss the information at frequency
fi for the moment.

(1) Mutual Coupling: The degree of mutual coupling is closely related to signal fre-
quency, when there is only mutual coupling among sensors, perturbation matrix can be
expressed by W(1)(fi), we define Q as the freedom degree of the array, according to the
property of uniform linear array, W(1)(fi) can be expressed as:

W(1)(fi) =



1 c1(fi) · · · cQ(fi)

c1(fi) 1 c1(fi)
. . .

c1(fi) cQ(fi)
...

. . . . . . . . .
cQ(fi)

. . . 1 c1(fi)
cQ(fi) c1(fi) 1


(11)

where cq(fi)(q = 1, 2, · · · , Q) is the mutual coupling coefficient, when the distance between
two sensor is q, signal frequency is fi, the steering vector of the array can be revised to

a(1)
′(fi, αk) = W(1)(fi)a(fi, αk), (k = 1, 2, · · · , K) (12)

corresponding array manifold is

A(1)
′(fi,α) = [a(1)

′(fi, α1), · · · ,a(1)
′(fi, αk), · · · ,a(1)

′(fi, αK)] = W(1)(fi)A(fi,α) (13)

for the sake of simplicity, we define the mutual coupling perturbation vector between
sensors as w(1)(fi) = [c1(fi), · · · , cQ(fi)]

T.
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(2) Gain/Phase Uncertainty: When there is only gain/phase uncertainty among array
channels, W(2)(fi) is defined as perturbation matrix, it is

W(2)(fi) = diag([1,W2(fi), · · · ,Wm(fi), · · · ,WM(fi)]
T) (14)

where

Wm(fi) = ρm(fi)exp(jϕm(fi)), (m = 1, 2, · · · ,M) (15)

is the gain and phase perturbation of the mth sensor, ρm(fi), ϕm(fi) are respectively the
gain and phase of the mth sensor with respect to the reference sensor, so the perturbed
steering vector is

a(2)
′(fi, αk) = [1,W2(fi)e

j2πfiτ2(αk), · · · ,Wm(fi)e
j2πfiτm(αk), · · · ,WM(fi)e

j2πfiτM (αk)]T

= diag([1,W2(fi), · · · ,Wm(fi), · · · ,WM(fi)]
T)a(fi, αk)

= W(2)(fi)a(fi, αk) (16)

so the corresponding array manifold matrix is

A(2)
′(fi,α) = [a(2)

′(fi, α1), · · · ,a(2)
′(fi, αk), · · · ,a(2)

′(fi, αK)] = W(2)(fi)A(fi,α) (17)

for the sake of simplicity, we also define the gain/phase uncertainty vector among sensors
as w(2)(fi) = [ρ2(fi)e

jϕ2(fi), · · · , ρm(fi)e
jϕm(fi), · · · , ρM(fi)e

jϕM (fi)]T.
(3) Sensor Location Error: When there is only sensor location error, it can be equivalent

to introduce to an orientation dependent phase perturbation, that is

a(3)
′(fi, αk) = [1, ej2πfi∆τ2(αk), · · · , ej2πfi∆τm(αk), · · · , ej2πfi∆τM (αk)]T·a(fi, αk) (18)

here

∆τm(αk) =
∆dm
c

sinαk (19)

is the propagation delay error introduced by sensor location error when the kth signal
arriving at the mth sensor, ∆dm is the error between actual and measured positions of
the mth sensor, suppose the reference of them are coincide, we can define

D(fi, αk) = [1, ej2πfi∆τ2(αk), · · · , ej2πfi∆τm(αk), · · · , ej2πfi∆τM (αk)]T (20)

so the corresponding array manifold matrix is

A(3)
′(fi,α) = [a(3)

′(fi, α1), · · · ,a(3)
′(fi, αk), · · · ,a(3)

′(fi, αK)]

= [D(fi, α1)·a(fi, α1), · · · ,D(fi, αk)·a(fi, αk), · · · ,D(fi, αK)·a(fi, αK)]

= W(3)(fi,α)·A(fi,α) (21)

where the perturbation matrix is

W(3)(fi,α) = [D(fi, α1), · · · ,D(fi, αk), · · · ,D(fi, αK)] (22)

for the sake of simplicity, we also define the sensor position error perturbation vector as
w(3) = [∆d2, · · · ,∆dM ]T, it has no relation with the frequency, so we omit symbol fi.

(4) Multiple Errors: When the three errors above exist simultaneously, the output of
the array at frequency fi can be expressed as

X ′′′(fi) = A′′′(fi,α)S(fi) +N (fi)

= W(1)(fi)W(2)(fi)W(3)(fi,α)·A(fi,α)S(fi) +N (fi) (23)
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we can establish the following equation so as to make clearer the relation between X ′′′(fi)
and the three errors

X ′′′(fi) = A′′′(fi,α)S(fi) +N (fi)

= W(1)(fi)W(2)(fi)W(3)(fi,α)·A(fi,α)S(fi) +N (fi)

= W(1)(fi)W(2)(fi)A(fi,α)S(fi) + Λ(3)(fi)w(3) +N (fi)

= W(1)(fi)W(3)(fi)A(fi,α)S(fi) + Λ(2)(fi)w(2)(fi) +N (fi)

= W(2)(fi)W(3)(fi)A(fi,α)S(fi) + Λ(1)(fi)w(1)(fi) +N (fi) (24)

where A′′′(fi,α) is the array manifold matrix along with the three errors simultaneously,
Λ(1)(fi), Λ(2)(fi) and Λ(3)(fi) are respectively the coefficient vectors related to the mutual
coupling, gain/phase uncertainty and sensor location errors, they are determined by

[Λ(1)(fi)]:,u =
∂

∂w(1)(fi, u)
[(W(1)(fi)− IM)W(2)(fi)W(3)(fi,α)·A(fi,α)S(fi)] (25)

[Λ(2)(fi)]:,u =
∂

∂w(2)(fi, u)
[W(1)(fi)(W(2)(fi)− IM)W(3)(fi,α)·A(fi,α)S(fi)] (26)

[Λ(3)(fi)]:,u =
∂

∂w(3)(u)
[W(1)(fi)W(2)(fi)(W(3)(fi,α)·A(fi,α)−A(fi,α))S(fi)] (27)

where w(1)(fi, u), w(2)(fi, u) and w(3)(u) is respectively the uth element of w(1)(fi),
w(2)(fi) and w(3).

3. Estimation theory. The searching space can be divided into several discrete angle
grids Ω = [α1, · · · , αl, · · · , αL] , and K�L, take Ω into (23), we have

X
′′′

(fi) = A′′′(fi,Ω)S(fi) +N (fi), (i = 1, 2, · · · , J) (28)

then corresponding covariance matrix is

R
′′′

(fi) = E[X
′′′

(fi)(X
′′′

(fi))
H] (29)

in (28), S(fi) = [S(fi, 1), · · · ,S(fi, z), · · · ,S(fi, Z)], where S(fi, z) = [S1(fi, z), · · · , Sl(fi,
z), · · · , SL(fi, z)]

T is a sparse matrix, it only contains K non-zero elements, they are non-
zero if and only if αl = αk(l = 1, 2, · · · , L; k = 1, 2, · · · , K), and Sl(fi, z) = Sk(fi, z)(l =
1, 2, · · · , L; k = 1, 2, · · · , K), so S(fi) can be regarded as S(fi) jointed many zero ele-
ments.

Define δ(fi) = [δ1(fi), · · · , δl(fi), · · · , δL(fi)]
T as the vector formed by variances of the

elements in S(fi), it reflects the energy of the signal, that is

S(fi)∼N(0,Σ(fi)) (30)

where Σ(fi) = diag(δ(fi)), as S(fi) is S(fi) jointed many zero elements, δ(fi) contains
K non-zero elements too. It can be seen from (24) and (28), probability density of the
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output signal at fi along with the three errors simultaneously is

P1 = P (X
′′′

(fi)|S(fi);w(1)(fi),w(2)(fi),w(3), µ
2(fi))

= P ((X
′′′

(fi, z))
Z
z=1|(S(fi, z))

Z
z=1;w(1)(fi),w(2)(fi),w(3), µ

2(fi))

= |πµ2(fi)IM |−Zexp(−µ2(fi)
Z∑
z=1

‖X ′′′(fi, z)−A
′′′

(fi,Ω)S(fi, z)‖2
2)

= |πµ2(fi)IM |−Zexp(−µ2(fi)
Z∑
z=1

‖X ′′′(fi, z)−W(1)(fi)W(2)(fi)×

W(3)(fi,Ω)·A(fi,Ω)S(fi, z)‖2
2) (31)

where W(3)(fi,Ω) = [D(fi, α1), · · · ,D(fi, αl), · · · ,D(fi, αL)], combining (28), (30) and

(31), probability density of X
′′′

(fi) is

P2 = P (X
′′′

(fi); δ(fi),w(1)(fi),w(2)(fi),w(3), µ
2(fi))

= P ((X
′′′

(fi, z))
Z
z=1; δ(fi),w(1)(fi),w(2)(fi),w(3), µ

2(fi))

=

∫
· · ·

∫
P ((X

′′′
(fi, z))

Z
z=1|(S(fi, z))

Z
z=1;w(1)(fi),w(2)(fi),w(3), µ

2(fi))×

P ((S(fi, z))
Z
z=1; δ(fi))dS(fi, 1)· · ·dS(fi, Z)

=
Z∏
z=1

∫
P ((S(fi, z)|S(fi, z);w(1)(fi),w(2)(fi),w(3), µ

2(fi))×((S(fi, z)
Z
z=1;

δ(fi))dS(fi, z)

= |π(µ2(fi)IM +A′′′(fi,Ω)Σ(fi)(A
′′′(fi,Ω))H)|−Zexp(−Z×tr((µ2(fi)IM +

A′′′(fi,Ω)Σ(fi)(A
′′′(fi,Ω))H))−1R

′′′
(fi))) (32)

then we can employ Expectation Maximization(EM) method [25-28] to iteratively esti-

mate these unknown parameters, compute distribution function of P (X
′′′

(fi); δ(fi),w(1)(fi),
w(2)(fi),w(3), µ

2(fi)), in the E-step:

F1 = F (X
′′′

(fi),S(fi); δ(fi),w(1)(fi),w(2)(fi),w(3), µ
2(fi))

= F ((X
′′′

(fi, z))
Z
z=1, (S(fi, z))

Z
z=1; δ(fi),w(1)(fi),w(2)(fi),w(3), µ

2(fi))

= < InP ((X
′′′

(fi, z))
Z
z=1, (S(fi, z))

Z
z=1; δ(fi),w(1)(fi),w(2)(fi),w(3), µ

2(fi)) >

= < InP ((X
′′′

(fi, z))
Z
z=1|(S(fi, z))

Z
z=1;w(1)(fi),w(2)(fi),w(3), µ

2(fi)) +

InP ((S(fi, z))
Z
z=1; δ(fi)) >

= < (−MZInµ2(fi)− µ−2(fi)
Z∑
z=1

‖X ′′′(fi, z)−A′′′(fi,Ω)S(fi, z)‖2
2 −

L∑
l=1

(ZInδl(fi) +

∑Z
z=1 |Sl(fi, z)|2

δl(fi)
)) >

= < (−MZInµ2(fi)− µ−2(fi)
Z∑
z=1

‖X ′′′(fi, z)−W(1)(fi)W(2)(fi)(W(3)(fi,Ω)·

A(fi,Ω)S(fi, z)‖2
2 −

L∑
l=1

(ZInδl(fi) +

∑Z
z=1 |Sl(fi, z)|2

δl(fi)
)) > (33)
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In the M-step, solve derivatives of F (X
′′′

(fi),S(fi); δ(fi),w(1)(fi),w(2)(fi),w(3), µ
2(fi))

for each parameter, that is

F2 =
∂F (X

′′′
(fi),S(fi); δ(fi),w(1)(fi),w(2)(fi),w(3), µ

2(fi))

∂w(1)(fi)

= −2µ−2(fi)[< Λ(1)
H(fi)Λ(1)(fi) > w(1)(fi)− < Λ(1)

H(fi)(X
′′′

(fi)−W(2)(fi)×
W(3)(fi,Ω)·A(fi,Ω)S(fi)) >] (34)

F3 =
∂F (X

′′′
(fi),S(fi); δ(fi),w(1)(fi),w(2)(fi),w(3), µ

2(fi))

∂w(2)(fi)

= −2µ−2(fi)[< Λ(2)
H(fi)Λ(2)(fi) > w(2)(fi)− < Λ(2)

H(fi)(X
′′′

(fi)−W(1)(fi)×
W(3)(fi,Ω)·A(fi,Ω)S(fi)) >] (35)

F4 =
∂F (X

′′′
(fi),S(fi); δ(fi),w(1)(fi),w(2)(fi),w(3), µ

2(fi))

∂w(3)

= −2µ−2(fi)[< Λ(3)
H(fi)Λ(3)(fi) > w(3)− < Λ(3)

H(fi)(X
′′′

(fi)−W(1)(fi)×
W(2)(fi,Ω)A(fi,Ω)S(fi)) >] (36)

F5 =
∂F (X

′′′
(fi),S(fi); δ(fi),w(1)(fi),w(2)(fi),w(3), µ

2(fi))

∂µ2(fi)

=
∂((X

′′′
(fi, z))

Z
z=1, (S(fi, z))

Z
z=1; δ(fi),w(1)(fi),w(2)(fi),w(3), µ

2(fi))

∂µ2(fi)

= − MZ

µ2(fi)
+

1

(µ2(fi))2
<

Z∑
z=1

‖X ′′′(fi, z)−A′′′(fi,Ω)S(fi, z)‖2
2 > (37)

F6 =
∂F (X

′′′
(fi),S(fi); δ(fi),w(1)(fi),w(2)(fi),w(3), µ

2(fi))

∂δl(fi)

=
∂F ((X

′′′
(fi, z))

Z
z=1, (S(fi, z))

Z
z=1; δ(fi),w(1)(fi),w(2)(fi),w(3), µ

2(fi))

∂δl(fi)

= − Z

δl(fi)
+

1

(δl)2(fi)
<

Z∑
z=1

|Sl(fi, z)|2 > (38)

set them to be 0 respectively, then estimation values of every parameter of the pth iteration
can be solved

w
(p)
(1)(fi) = < Λ(1)

H(fi)Λ(1)(fi) >
−1< Λ(1)

H(fi)(X
′′′

(fi)−W(2)(fi)W(3)(fi,Ω)·A(fi,Ω)×

S(fi)) > (39)

w
(p)
(2)(fi) = < Λ(2)

H(fi)Λ(2)(fi) >
−1< Λ(2)

H(fi)(X
′′′

(fi)−W(1)(fi)W(3)(fi,Ω)·A(fi,Ω)×

S(fi)) > (40)
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w
(p)
(3) =< Λ(3)

H(fi)Λ(3)(fi) >
−1< Λ(3)

H(fi)(X
′′′

(fi)−W(1)(fi)W(2)(fi)A(fi,Ω)S(fi)) >

(41)

(µ2(fi))
(p) =

1

MZ
<

Z∑
z=1

‖X ′′′(fi, z)− (A′′′(fi,Ω))(p)S(fi, z)‖2

2
> (42)

δl
(p)(fi) =

1

Z
<

Z∑
z=1

|Sl(fi, z)|2 > (43)

where (p) denotes number of iterations, after several times, the variations ofw(1)(fi),w(2)(fi),
w(3),µ

2(fi) and δl(fi) tend to be zero, then they are deemed to be convergent, we can

acquire their final estimation results:ŵ(1)(fi),ŵ(2)(fi), ŵ(3),µ
2(fi) and δ̂l(fi), combining

δ̂(fi) = [δ̂1(fi), · · · , δ̂l(fi), · · · , δ̂L(fi)]
T and Σ̂(fi) = diag(δ̂(fi)), we can use them for

array calibration. Define X as the vector composed by sum of signal of all frequencies, as
the signal of every frequency is independent of one another, the joint probability density
of X is

P (X) =
J∏
i=1

P (X
′′′

(fi); δ̂(fi), ŵ(1)(fi), ŵ(2)(fi), ŵ(3), µ̂
2(fi))

=
J∏
i=1

P ((X
′′′

(fi, z))
Z
z=1; δ̂(fi), ŵ(1)(fi), ŵ(2)(fi), ŵ(3), µ̂

2(fi))

= |π|−JZ
∏J

i=1
|µ̂2(fi)IM +A′′′(fi,Ω)Σ̂(fi)(A

′′′(fi,Ω))H|−Z×exp(−Z×
J∑
i=1

tr((µ̂2(fi)IM +A′′′(fi,Ω)Σ̂(fi)(A
′′′(fi,Ω))H)−1R

′′′
(fi))) (44)

perform logarithm operation on both sides of the (44), we have

In(P (X)) = −JZInπ − Z(
J∑
i=1

In|µ̂2(fi)IM +A′′′(fi,Ω)Σ̂(fi)(A
′′′(fi,Ω))H|)− Z×

J∑
i=1

tr((µ̂2(fi)IM +A′′′(fi,Ω)Σ̂(fi)(A
′′′(fi,Ω))H)−1R

′′′
(fi)) (45)

maximize (45), that is

∂In(P (X))

∂α
= 0 (46)
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take (45) into (46) and we can infer

α̂k = argmaxαk
|Re(

J∑
i=1

((a′′′(fi, αk))
H((µ̂2(fi)IM +A′′′(fi,Ω)Σ̂(fi)(A

′′′(fi,Ω))H))−1)×

(
J∑
i=1

(a′′′(fi, αk)(a
′′′(fi, αk))

H×((µ̂2(fi)IM +A′′′(fi,Ω−k)Σ̂−k(fi)×

(A′′′(fi,Ω−k))
H))−1R

′′′
(fi)))−

J∑
i=1

(R
′′′

(fi)((µ̂
2(fi)IM +A′′′(fi,Ω−k)Σ̂−k(fi)×

(A′′′(fi,Ω−k))
H))−1(a′′′(fi, αk)(a

′′′(fi, αk))
H×

J∑
i=1

((µ̂2(fi)IM +A′′′(fi,Ω−k)×

Σ̂−k(fi)(A
′′′(fi,Ω−k))

H))−1∂a
′′′(fi, αk)

∂αk
))|−1 (47)

then final result of DOA can be estimated. We can get c1(fi), · · · , cQ(fi) according to
ŵ(1)(fi), then W(1)(fi) can be acquired by (11); and ρ2(fi)e

jϕ2(fi), · · · , ρM(fi)e
jϕM (fi) can

be estimated by ŵ(2)(fi), thus we can calculate W(2)(fi) based on (14) and (15); we
can also solve ∆d2, · · · ,∆dM according to ŵ(3),then a′′′(fi, αk) and A′′′(fi,Ω−k) can be
acquired. Thus, we will get DOA estimation based on (47) and the parameters above.

It can be seen from the deduction above, there is a large amount of calculation for the
proposed algorithm, which will limit its application in actual system, so it is necessary to
improve the computation speed. The signal of J frequencies can be divided into W groups,
each group contains J/W bins, then corresponding J/W groups of errors can be solved
by (39)∼(43), that is to say the errors of every group can be estimated simultaneously.
In actual application, W processors can be used to dispose the W groups of observed
data simultaneously, the calculation speed can almost increase W times. The method is
used for wideband signal, and has employed spatial domain sparse optimization, so we
can call it WSDSO for short, and the method is also suitable for the circumstances of the
calibration of any two or only one kind of error.

4. Simulations. In order to verify the effective of the method, some simulations are
presented with matlab below, consider some wideband chirp signals impinge on a uniform
linear array with 6 omnidirectional sensors from directions (25◦, 45◦, 65◦), the center fre-
quency of the signals is 3GHz, width of the band is 15% of the center frequency, the band
is divided into 9 frequency bins, and spacing d between adjacent sensors is equal to half of
the wavelength of the center frequency. The array errors are very complex, it is difficult to
establish accurate function, so we will simplify the process in the simulations. When there
are mutual coupling, gain/phase uncertainty, and sensor location errors in the array, sup-
pose the freedom degree of sensors Q=2, mutual coupling perturbation vector w(1)(fi) =
[c1(fi), c2(fi)]

T = [a1(fi) + b1(fi)j, a2(fi) + b2(fi)j]
T, a1(fi) and b1(fi) is selected between

(−0.5∼0.5) randomly, a2(fi) and b2(fi) is selected between (−0.25∼0.25) randomly; The
gain relatively to the first channel of the other five ones are selected between (0∼2) ran-
domly, and that of the phase are selected between (−30◦∼30◦) randomly; Sensor location
error is selected between (−0.25d∼0.25d) randomly, the searching space is (0◦∼90◦), num-
ber of grid L is 181, then the set Ω = [0◦, 0.5◦, · · · , 90◦], the EM method is finished when
the update ratio is smaller than 0.001, i.e. ‖δ(p+1)(fi)− δ(p)(fi)‖2/‖δ(p)(fi)‖2 < 0.001,
and we have known the number of the signal, estimation error of DOA is defined as
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k=1 |αk − α̂k|, and the normalized spectrum is the ratio of the spatial spectrum to the

absolute of the maximum one.
In the first simulation, suppose SNR is 12dB, the number of snapshots at every fre-

quency is 30, WSDSO method is employed for estimating the three errors above, 300
Monte-Carlo simulations are repeated, their average values are deemed as the final re-
sults, FIGURE 2 and FIGURE 3 show the mutual couple estimation of c1(fi) and c2(fi)
at every frequency bin, where fi-A means actual value at the ith (i = 1, · · · , 9) fre-
quency bin, and fi-E means the corresponding estimated value; FIGURE 4 and FIGURE
5 show gain and phase uncertainty estimation of different channels at every frequency
bin, the first channel is defined as the reference, where chi-A means actual value of the
ith (i = 2, · · · , 6) channel relative to the first one, and chi-E means the corresponding
estimated value; FIGURE 6 shows the relative error (a ratio of the error and the spacing
d) estimation of sensor location at every frequency bin, the first sensor is defined as the
reference, where sensori-A means the relative error between the actual position and the
measured one of the ith sensor, and sensori-E means the corresponding estimated value.
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Figure 2. Mutual couple error estimation of c1

It can be seen from FIGURE 2∼6, the method can effectively estimate the three error
perturbations existing in the array simultaneously, especially when the frequency is near
to the center bin, we can use these results to calibrate the array and acquire the actual
DOA of the wideband signals.

In the second simulation, traditional two-sided correlation transformation (TCT)[33]
and WSDSO methods are employed for estimating DOA of wideband signals along with
the three errors above. Here, TCT is performed without calibration(TCTWC), it is used
for observing the improvement of the array by the proposed method, other conditions are
the same with the first simulation, their normalized spectrums are shown in FIGURE 7,
it can be seen that WSDSO method can relatively accurately estimate the DOA of the
signals.

In the third simulation, the conditions are the same with the first simulation, FIGURE
8 presents the DOA estimation error as a function of SNR when number of snapshots is
30; while FIGURE 9 shows that of number of snapshots when SNR is 12dB.
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Figure 3. Mutual couple error estimation of c2
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Figure 4. Gain uncertainty estimation

It can be seen from FIGURE 8 and 9, WSDSO method can effectively estimate the DOA
of wideband signals along with the three errors existing in the array simultaneously, when
the SNR or snapshots increase to some threshold, the estimation error approximately
converges to 1.3◦.

In the fourth simulation, TCTWC, Quasi-Blind Calibration (QBC)[20] and WSDSO
are respectively employed for the DOA estimation along with gain/phase uncertainty and
sensor location error perturbations. Here, QBC method is performed at every narrowband
frequency, their average value is deemed as the wideband results, other conditions are the
same with the third simulation, FIGURE 10 presents the estimation error as a function
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Figure 5. Phase uncertainty estimation
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Figure 6. Sensor location error estimation

of SNR when number of snapshots is 40; while FIGURE 11 shows that of number of
snapshots when SNR is 12dB.

FIGURE 10 and FIGURE 11 have respectively shown the calibration accuracy of the
two methods when the gain/phase uncertainty and sensor location error perturbations
exist in the array simultaneously. Obviously, whether the estimation accuracy or conver-
gent rate, WSDSO is better than QBC method, WSDSO approximately converges to 0.8◦

, and QBC converges to 1.2◦ under the same condition at last.
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Figure 7. Normalized spectrums
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Figure 8. Calibration accuracy versus SNR with three errors

5. Conclusion. The paper proposed a novel array error calibration method in super-
resolution direction finding for wideband signals based on spatial domain sparse opti-
mization to the mutual coupling, gain/phase uncertainty, and sensor location perturbation
errors existing in the array, it can estimate and calibrate the three errors simultaneously.
The optimization functions are founded by the signal of every frequency, then the func-
tions are optimized iteratively, after that information of all frequencies is integrated to
solve the errors. Thus, the actual directions of arrival(DOA) can be acquired. In view of
the large amount of calculation of the method, we put forward the use of multiple proces-
sors for the implementation so as to improve the execution efficiency. It can be seen from
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Figure 9. Calibration accuracy versus number of snapshots with three errors
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Figure 10. Calibration accuracy versus SNR with two errors

these simulations, as the effect of these errors are very difficult to separate from the array
manifold thoroughly, the array calibration and the DOA estimation still can not reach
actual value at high SNR or large number of snapshots, our work will be committed to
optimizing the method to improve the estimation precision and broaden the bandwidth
further in future.

6. Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China (61501176, 61505050) and University Nursing Program for Young Schol-
ars with Creative Talents in Heilongjiang Province (UNPYSCT- 2016017), Heilongjiang



Array Calibration Method in Super-resolution Direction Finding for Wideband Signals 143

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Number of snapshots

E
st

im
at

io
n 

er
ro

r/
 °

 

 

TCTWC
QBC
WSDSO

Figure 11. Calibration accuracy versus number of snapshots with two errors

Province Natural Science Foundation (F2015015), Outstanding Young Scientist Foun-
dation of Heilongjiang University(JCL201504), China Postdoctoral Science Foundation
(2014M561381), Heilongjiang Province Postdoctoral Foundation (LBH-Z14178), and Spe-
cial Research Funds for the Universities of Heilongjiang Province (HDRCCX-2016Z10).

REFERENCES

[1] M. M. Khan, K. M. Iftekharuddin, E. McCracken et al, Autonomous wireless radar sensor mote for
target material classification, Digital Signal Processing, vol. 23, no. 3, pp. 722-735, 2013.

[2] P. J. Soh, B. V. D. Bergh, H. Xu et al, A smart wearable textile array system for biomedical telemetry
applications, IEEE Transactions on Microwave Theory and Techniques, vol.61, no. 5, pp. 2253-2261,
2013.

[3] W. R. Otte, A. Gokhale, D. C. Schmidt, Efficient and deterministic application deployment in
component-based enterprise distributed real-time and embedded systems,Information and Software
Technology, vol.55, no.2, pp.475-488, 2013.

[4] B. Mehmet, O. Ankan, A new technique for direction of arrival estimation for ionospheric multipath
channels, Advances in Space Research, vol.44, no.16, pp.653-662, 2009.

[5] M. Shafiq, G. A. Hussain, Partial discharge diagnostic system for smart distribution networks using
directionally calibrated induction sensors, Electric Power Systems Research, vol.119, pp.447-461,
2015.

[6] S. Luis, M. Luis, A. G. Jose, SmartSantander: IoT experimentation over a smart city testbed,
Computer Networks, vol.61, no.14, pp.217-238, 2014.

[7] C. N. Verdouw, A. J. M. Beulens, J. G. A. J. vandervorst, Virtualisation of floricultural supply
chains: A review from an Internet of things perspective, Computers and Electronics in Agriculture,
vol.99, pp.160-175, 2013.

[8] J. Li, Y. J. Zhao, D. H. Li, Accurate single-observer passive coherent location estimation based on
TDOA and DOA, Chinese Journal of Aeronautics, vol.27, no.4, pp.913-923, 2014.

[9] G. Fabrizio, A. Heitmann, A multipath-driven approach to HF geolocation, Signal Processing, vol.93,
no.12, pp.3487-3503, 2013.

[10] F. Sellone, A. Serra, A novel online mutual coupling compensation algorithm for uniform and linear
arrays, IEEE Transactions on Signal Processing, vol.55, no.2, pp.560-573, 2007.

[11] Z. Ye, C. Liu, On the resiliency of MUSIC direction finding against antenna sensor coupling, IEEE
Transactions on Antennas Propagation, vol.56, no.2, pp.371-380, 2008.



144 J. Q. Zhen and Y. C. Li

[12] Z. Liu, Z. Huang, F. Wang, et al, DOA estimation with uniform linear arrays in the presence of
mutual coupling via blind calibration, Signal Processing, vol.89, pp.1446-1456, 2009.

[13] A. J. Weiss, B. Friedlander, Eigenstructure methods for direction finding with sensor gain and phase
uncertainties, Circuits, Systems and Signal Processing, vol.9, no.3, pp.271-300, 1990.

[14] Y. Li, M. H. Er, Theoretical analyses of gain and phase error calibration with optimal implementation
for linear equispaced array, IEEE Transactions on Signal Processing, vol.54, no.2, pp.712-723, 2006.

[15] A. Liu, G. Liao, C. Zeng, et al, An eigenstructure method for estimating DOA and sensor gain-phase
errors, IEEE Transactions on Signal Processing, vol.59, no.12, pp. 5944-5956, 2011.

[16] A. J. Weiss, B. Friedlander, Array shape calibration using sources in unknown locations-A maxi-
mum likelihood approach, IEEE Transactions on Acoustic, Speech, Signal Processing, vol. 37, no.12,
pp.1958-1966, 1989.

[17] J. Z. Li, F.C. G, L.Y, et al, On the use of calibration sensors in source localization using TDOA and
FDOA measurements, Digital Signal Processing, vol.27, pp.22-43, 2014.

[18] C. See, A. B. Gershman, Direction of arrival estimation in partly calibrated subarray based sensor
array, IEEE Transactions on Signal Processing, vol.52, pp. 329-338, 2004.

[19] S. H. Cao, Z. F. Ye, N. Hu, et al, DOA estimation based on fourth-order cumulants in the presence
of sensor gain-phase errors, Signal Processing, vol.93, pp.2581-2585, 2013.

[20] E. A. Mavrychev, V. T. Ermolayev, A. G. Flaksman, Robust Capon-based direction-of-arrival esti-
mators in partly calibrated sensor array, Signal Processing, vol.93, pp.3459-3465, 2013.

[21] B. Friedlander, A. J. Weiss, Direction finding in the presence of mutual coupling, IEEE Transactions
on Antennas Propagation, vol.39, no.3, pp.273-284, 1993.

[22] Y. Song, K. T. Wong, F. J. Chen, Quasi-Blind Calibration of an Array of Acoustic Vector-Sensors
That Are Subject to Gain Errors/ Mis-Lo-Ation/ Mis-Orientation, IEEE Transactions on Signal
Processing, vol.62, no.9, pp.2330-2344, 2014.

[23] C. M. S. See, Method for array calibration in high-resolution sensor array processing, IEEE Proceed-
ings of Radar, Sonar and Navigation, vol.142, no.3, pp.90-96, 1995.

[24] B. C. Ng, C. M. S. See, Sensor-array calibration using a maximum-likelihood approach, IEEE Trans-
actions on Antennas Propagations, vol.44, no.6, pp.827-835, 1996.

[25] M. E. Tipping, Sparse Bayesian learning and the relevance vector machine, Journal of March Learn-
ing Research, vol.1, pp.211-244, 2001.

[26] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM
algorithm, Journal of the Royal Statistical Society, vol.39, no.1, pp.1-38, 1977.

[27] M. A. T. Figueiredo, Adaptive sparseness for supervised learning, IEEE Transactions on Pattern
analysis and machine intelligence, vol.25, no.9, pp.1150-1159, 2003.

[28] D. G. Tzikas, A. C. Likas, N. P. Galatsanos, The variational approximation for Bayesian inference,
IEEE Signal Processing Magazine, vol.25, no.6, pp.131-146, 2008.

[29] Z. M. Liu, Y. Y. Zhou, A Unified Framework and Sparse Bayesian Perspective for Direction-of Arrival
Estimation in the Presence of Array Imperfections, IEEE Transactions on Signal Processing, vol.61,
no.15, pp.3786-3798, 2013.

[30] C. F. J. Wu, On the convergence properties of the EM algorithm, Journal of the Royal Statistical
Society, vol.11, no.1, pp.95-103, 1983.

[31] R. A. Boyles, On the convergence of the EM algorithm, Journal of the Royal Statistical Society,
vol.45, no.1, pp.47-50, 1983.

[32] D. P. Wipf, B. D. Rao, Sparse Bayesian learning for basis selection, IEEE Transactions on Signal
Processing, vol.52, no.8, pp.2153-2164, 2004.

[33] S.Valaee, P. Kabal, Wideband array processing using a two-sided correlation transformation, IEEE
Transactions on Signal Processing, vol.43, no.1, pp.160-172, 1995.


