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Abstract. Diabetic retinopathy (DR) is one of the leading causes of blindness, but the
classification of DR requires experienced ophthalmologist to distinguish the presence of
various small features, which is time-consuming and difficult. Therefore, automated DR
classification is essential for medical treatment. In this paper, a novel scheme is proposed
for automated DR classification, in which a compact bilinear pooling Convolutional Neu-
ral Network (CNN) is applied to extract DR features and a Gradient Boosted Decision
Decision Tree classifier is trained based on these extracted features to classify DR. Our
results on the EyePACS dataset demonstrate the proposed scheme which combines deep
learning and tree based approaches achieves a superior performance for automated DR
classification with a Kappa score of 0.73, a average F1-score of 0.79 and a micro-average
AUC of 0.95.
Keywords: Diabetic Retinopathy, Convolutional Neural Networks, Compact Bilinear
Pooling, Gradient Boosted Decision Tree, Deep Learning

1. Introduction. Diabetic Retinopathy (DR), a main complication caused by diabetes,
is one of the most common and severe eye diseases causing vision impairment and blindness
among adults for age 20-64 [21]. DR progresses through five stages: normal, mild non-
proliferative DR (NPDR), moderate NPDR, severe NPDR and proliferative DR (PDR) as
shown in Fig.1. Early diagnosis and treatment are crucial to slow down the DR progression
and prevent vision loss [4, 19]. Normally, diagnosing DR patients is performed manually
by ophthalmologists, which is time-consuming and prone to errors. Therefore, automated
DR classification is sorely needed.

A number of automated DR classification schemes have been proposed in the past
decade, which can be mainly divided into conventional image-analysis based schemes and
deep learning based schemes.

The conventional image-analysis schemes are based on the experiences of ophthalmol-
ogists and manually designed features. Sinthanayothin et al [7] proposed a binary DR
classification algorithm based on Neural Networks using morphological features. Their
method demonstrates a sensitivity of 80.21% and a specificity of 70.66% on a small dataset
of 767 images. Nayak et al [12] used Neural Networks based on texture and morphological
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Figure 1. fundus images with different DR stage. (a): normal; (b): mild
NPDR; (c): moderate NPDR; (d): severe NPDR; (e): PDR;

features to classify DR into normal, NPDR, PDR with an accuracy of 93%, a sensitiv-
ity of 90%, and a specificity of 100% on a 140 images dataset. Acharya et al. [22] used
support vector machine (SVM) with Higher Order Spectra (HOS) features to classify
image into five class with an accuracy of 82%, a sensitivity of 82% and a specificity of
88% on a dataset of 300 images. These hand-craft features are low-level and conducted
on small datasets and thus the results of these schemes tend to overfit. Therefore, the
generalization abilities of these models are poor in actual scenes.

Deep learning based schemes have achieved remarkable success and outperform image-
analysis based schemes in common computer vision tasks [1, 15, 18, 13]. Although common
images and medical images differ significantly, deep learning based schemes still can obtain
higher level features with stronger representation abilities and thus achieve superior per-
formances in terms of generalization for medical applications than image-analysis based
schemes [23, 8, 14]. Actually, there are already some attempts utilizing CNNs for DR
classification. Marco Alban [16] classified image to five classes using convnets, which were
trained with off-the-shelf CNN features. It achieves an micro-average the area under curve
(AUC) of 0.79. Harry Pratt [9] proposed a CNN structure with ten convolutional layers
and three fully-connected layers to extract features and classify images. It achieves an
accuracy of 75% and a average F1-score of 0.68. These deep learning based schemes [16, 9]
show better generalization abilities than image-analysis based schemes. However, all of
them use fully connected layers for pooling whereas ignore the local pairwise feature inter-
actions, which needs further improvements. Furthermore, they use the softmax classifier,
which can not represent complex features well and will decrease the performance of DR
classification.

To address the above two problems, a scheme which combines compact bilinear pooling
CNNs and tree based approaches is proposed in this paper to provide an effective solution
for automatic DR classification. First, a compact bilinear pooling CNN is trained to
extract DR features. The compact bilinear pooling [25] can gather second-order statistics
of local features to improve the performance of automatic DR classification because it
consists of two feature extractors, of which the outputs are multiplied using approximate
outer product at each location of the image and pooled to obtain an image descriptor.
Second, the Gradient Boosted Decision Tree (GBDT) classifier is trained on these features
to classify DR. The GBDT combines the output of many weak classifiers into a powerful
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Figure 2. Schema of the proposed pipeline

ensemble classifiers, which enhances the performance for automatic DR classification. Our
experiment results indicate that the proposed scheme achieves a superior performance in
terms of the Kappa score, F1-score and AUC.

The remaining of this paper is organized as follows. Section 2 presents the detailed
description of the proposed scheme. The dataset and data preparation are described in
section 3. Section 4 evaluates and discusses the results of the experiments. Section 5
concludes the paper.

2. Proposed Scheme. In this section,the details of our proposed scheme for DR classifi-
cation are presented. The scheme consists of two main components, which are a compact
bilinear pooling CNN for feature extraction and a GBDT for classification. The schema
of the proposed scheme is shown in Fig.2.

2.1. Compact Bilinear Pooling CNN. In this paper, we train a CNN model via com-
pact bilinear pooling and then extract the feature from L2 normalization layer. Instead of
using fully connected layers for pooling and encoding as conventional CNN models, which
loses local features, compact bilinear pooling is used to gather second-order statistics of
local features from the whole image for more discriminative representation. This archi-
tecture can train end-to-end and learn highly discriminative feature with low dimension.

2.1.1. Compact Bilinear Pooling. The bilinear pooling calculates the outer product of
the vector x ∈ Rc as w = x ⊗ x, where x represents the output from the CNN stream
in our paper, ⊗ denotes the outer product (xxT ) and w is a c × c matrix. However,
the representation is very high-dimensional, which makes it is impractical. As suggested
by [25], a compact bilinear pooling scheme with Count Sketch [17] projection function is
used to reduce the feature dimensionality with little-to-no loss. The detailed procedures
of compact bilinear pooling with Count Sketch are as follows. First, Count Sketch is
used to project the vector x ∈ Rc to y ∈ Rd through Ψ(x, h, s), where s ∈ {−1, 1}n
and h ∈ {1, ..., d}n. This step allows us to compute outer product in a lower dimensional
space and reduces the number of parameters. Then, the outer product of these two Count
Sketch vectors is expressed as the convolution to reduce computation cost.

Ψ(x⊗ x, h, s) = Ψ(x, h, s) ∗Ψ(x, h, s) (1)

where ∗ is the convolution operator. Finally, the convolution in the time domain is
expressed by the multiplication in the frequency domain as the output of compact bilinear
pooling.

Ψ(x, h, s) ∗Ψ(x, h, s) = FFT−1(FFT(Ψ(x, h, s)) ◦ FFT(Ψ(x, h, s))) (2)
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Figure 3. Compact bilinear pooling

where ◦ refers to element-wise multiplication and FFT refers to the Fast Fourier Transform
Algorithm. These ideas are summarized in Fig.3.

2.1.2. Network Architecture. We adopt the VGG-16 [15] architecture as the basis of our
compact bilinear pooling CNN. To construct the compact bilinear pooling CNN, the layers
of FC6 and FC7 in VGG-16 are discarded. And a compact bilinear layer, a signed square
root layer and a L2 normalization layer are appended. The network architecture is shown
in Table 1.

2.2. Gradient Boosted Decision Tree. The conventional CNNs use softmax as the
classifier, but the softmax is a linear classifier, which can hardly represent complex features
well. In this paper, we use the Gradient Boosted Decision Tree [11] to train a classifier
based on the features extracted from L2 normalization layer. The GBDT combines many
weak classifiers into a powerful ensemble classifier in an iterative fashion. In each iteration,
a weak classifier (decision tree) is added to minimize the loss of ensemble models using
the gradient descent. We implement GBDT with XGBoost [20], which uses a better
regularized model formalization for over-fitting controlling to ensures better performance.

The objective function of XGBoost is a sum of a specific loss function evaluated over
all predictions and a sum of regularization term for all predictors (K trees).

obj =
n∑
i

l(yi − ŷi) +
K∑
k=1

Ω(fk) (3)

where obj denotes the objective function, l presents the loss between the prediction ŷi and
target yi, n is the number of samples, Ω denotes the regularization term, which is used
to avoid over fitting. And fk presents the prediction coming from the k-th tree. The loss
function depends on the task (classification, regression, etc.) and the regularization term
is described by the equation below:

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j (4)

where T denotes the number of leaves in a tree, w2
j is the square of the weight in j-th leaf.

γ and λ are hyperparameters which control the degree of regularization. The first part of
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Table 1. Network structure

ID
Layer Activation Window Stride Pading
type maps size size size

1 Input ∅
2 Conv 64 3 x 3 1 1
3 Conv 64 3 x 3 1 1
4 MaxPool ∅ 3 x 3 2 0
5 Conv 128 3 x 3 1 1
6 Conv 128 3 x 3 1 1
7 MaxPool ∅ 3 x 3 2 0
8 Conv 256 3 x 3 1 1
9 Conv 256 3 x 3 1 1

10 Conv 256 3 x 3 1 1
11 MaxPool ∅ 3 x 3 2 0
12 Conv 512 3 x 3 1 1
13 Conv 512 3 x 3 1 1
14 Conv 512 3 x 3 1 1
15 MaxPool ∅ 3 x 3 2 0
16 Conv 512 3 x 3 1 1
17 Conv 512 3 x 3 1 1
18 Conv 512 3 x 3 1 1
19 MaxPool ∅ 3 x 3 2 0
20 Compact Bilinear Pooling 8192

∅21 Signed Square Root 8192
22 L2 normalization 8192
23 Inner Product 5

this equation (γT ) is responsible for controlling the overall number of created leaves, and

the second part (1
2
λ
∑T

j=1w
2
j ) watches over their scores.

3. Dataset and Data Preparation.

3.1. Dataset. The dataset used in this paper is provided by EyePACS [10] and contains
35126 color fundus images. In this dataset, each image is graded by a human reader ac-
cording to the presence of DR: 0 (normal), 1 (mild NPDR), 2 (moderate NPDR), 3 (severe
NPDR) and 4 (PDR). The images are highly heterogeneous because they are captured
with various type of digital fundus cameras from different fields of views. Some images
in the dataset are in poor quality which are out of focus, underexposed or overexposed
or contain artifacts. In addition, both the images and labels involve noises. Furthermore,
the distribution of the class in the dataset is extremely imbalanced as shown in Table 2.
In our paper, the dataset is split into three part: 80% for training, 10% for validation and
10% for testing.

3.2. Data Preparation.

3.2.1. Image Preprocessing. The resolution of these fundus images ranges from 2592×1944
to 4752×3168. To reduce the computational complexity, these images are resized into
448 × 448. And then, color enhancement is performed on fundus image to make the
details of the images more clearly inspired by [2].

Ic(x, y) = αI(x, y) + βG(x, y, ρ) ∗ I(x, y) + γ (5)
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Table 2. The proportion of classes

Label Class Number Percentage
0 Normal 20653 73.46%
1 Mild NPDR 1657 6.69%
2 Moderate NPDR 4234 15.06%
3 Severe NPDR 701 2.50%
4 PDR 569 2.02%

Table 3. Comparison of the Kappa scores for DR classification

Scheme Harry’s [9] Fully connect CNN Compact bilinear CNN Proposed scheme

Kappa score 0.44 0.55 0.70 0.73

where ∗ denotes the convolution operator, G(x, y, ρ) represents the Gaussian filter with a
standard deviation of ρ, I(x, y) represents the pixel of the raw image and Ic(x, y) denotes
the pixel of the image after preprocessing. The values of α, β, ρ, γ are designed empirically
as 4, -4, 10, 128 respectively.

3.2.2. Data Augmentation. As shown in Table 2, the training dataset exhibits imbalance
in the class distribution. However, the CNNs schemes tend to be biased on majority class
and thus get poor performance on the minority class [5]. To balance the samples across
different classes, re-sampling is performed in the training set. For the overrepresented
classes, random sub-sampling is applied. For underrepresented classes, spatial translation
rotation and crop are employed to increase their numbers artificially. After re-sampling,
the number of samples for each class is 7000 in the training set.

4. Experiments and Results.

4.1. Experiment Settings. First, an compact bilinear CNN model is trained with Caffe
framework [26] on a NVidia GeForce GTX TITAN X GPU. Suggested by [25], Stochastic
Gradient Descent is used as optimization method with a learning rate of 0.001. The
learning rate decreases by a factor of 2 every 45 epochs with a mini-batch of 64. The weight
decay of 0.0005 is added to penalize large weight parameters during back-propagation of
the gradient optimization routine. The momentum is fixed as 0.9. Then, we extract the
features of L2 normalization layer from the trained compact bilinear CNN model and
feed them into a GBDT classifier implemented with XGBoost. The hyperparameters of
XGBoost are fine tuned using grid search and 5-fold cross validation.

4.2. The Evaluation of DR Classification Performance. To evaluate the DR clas-
sification performance of proposed scheme, a fully connect CNN and a compact bilinear
pooling CNN are also trained using the same settings and compared with the proposed
scheme. In addition, Harry’s scheme [9] is also compared. All these schemes are eval-
uated at the test set and the proportion of each class in the test set is as same as the
proportion in the dataset via EyePACS. In our paper, the Cohens Kappa score [3] and the
F1-score are used to evaluate the performance. Besides, the receiver operating character-
istics (ROC) curve and the area under curve (AUC) metric for each class are conducted
to show the performance of the proposed scheme more concretely.

First, we calculate the Kappa scores of the Harry’s scheme, the fully connect CNN,
the compact bilinear CNN and the proposed scheme for DR classification. The evaluated
results are listed in Table 3. As shown in Table 3, the Harry’s scheme plays the worst
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Table 4. Comparison of the F1-scores for DR classification

Scheme Harry’s [9] Fully connect CNN Compact bilinear CNN Proposed scheme
Normal 0.86 0.75 0.91 0.91

Mild NPDR 0.00 0.18 0.29 0.27
Moderate NPDR 0.30 0.48 0.46 0.54

PDRSevere NPDR 0.14 0.28 0.41 0.41
PDR 0.37 0.53 0.51 0.59

Average 0.68 0.66 0.78 0.79
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Figure 4. Multiclass ROC-Curves of the proposed scheme

performance with a Kappa score of 0.44, and the proposed scheme achieves the hightest
Kappa score of 0.73. Compact bilinear pooling is consistently beneficial for automated
DR classification, as evidenced by the comparison of the Kappa scores of the fully connect
CNN and the compact bilinear CNN, which are 0.55 and 0.70, respectively. GBDT is also
beneficial for automated DR classification, as evidenced by the comparison of the Kappa
scores of the compact bilinear CNN and our proposed scheme, which are 0.70 and 0.73,
respectively.

Second, we calculate the F1-scores of these four schemes to evaluate the performance
for DR classification in another perspective. We classify DR into five classes: normal,
mild NPDR, moderate NPDR, severe NPDR and PDR. The F1-scores are reported in
each class and average, as illustrated in Table 4. The reported average is a prevalence-
weighted average across classes. The proposed scheme yields notably higher F1-scores
than other three schemes in all classes except for mild NPDR. The average F1-score of
our proposed scheme is 0.79 and higher than those of the other three schemes, which
are 0.68, 0.66 and 0.78, respectively. The results demonstrate that our proposed scheme
achieves remarkable performance for automated DR classification. However, all the F1-
scores of mild DR are especially poor because the representation of mild DR in fundus
image is microaneurysm, which appears as a small round dot and its diameter usually
ranges from 10 µm to 100 µm[6]. When resizing the image from high resolution such
as 2592×1944 into 448×448, almost all microaneurysms disappear and the images are
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similar to the normal images. The model classifies most mild DR into normal with the
indiscriminative inputs.

Finally, we draw the ROC curves and calculate AUC metric for each class to show
the performance of proposed scheme more concretely. The ROC-Curves of the proposed
scheme with five classes are shown in Fig.4. Class 0-4 corresponds to normal, mild NPDR,
moderate NPDR, severe NPDR and PDR. The AUC is also used as a performance metric.
The test dataset exhibits imbalance in the class distribution, hence micro-average AUC is
used to measure the performance. The details of micro-average can be found in [24]. As
shown in Fig.4, the proposed scheme yields the least competitive AUC of 0.70 for class 1,
the best AUC of 0.97 for class 4 and a micro-average AUC of 0.95. These results indicate
our proposed scheme performs well for DR classification.

5. Conclusions. In this paper, a novel scheme which combines compact bilinear pooling
CNNs and tree based approaches is proposed to classify DR automatically based on the
fundus images. The compact bilinear pooling gather second-order statistics of local fea-
tures to generate more highly discriminative representation. The tree based approach can
fit complex features well and build a powerful classifier. The experiment results on the
EyePACS dataset demonstrate that the proposed scheme achieves superior performance
for automated DR classification.
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