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Abstract. Image matching is the base of many computer vision problems, such as
object recognition, image or motion tracking. Most of current methods rely on costly
descriptors for detection and matching. This paper presents a method for extracting dis-
tinctive invariant features from images, coined SCFD (Scale-invariant Center surround
Filter Detection). We demonstrate through experiments how SCFD can be used to per-
form reliable and high-precision matching between different views of an object or scene,
yet can be computed much faster.
Keywords: Feature point matching, Scale-invariance, Feature point detection, Sym-
metric matching, ORB.

1. Introduction. Image matching is the task of establishing correspondence between
images of the same scene. This is a fundamental aspect of many problems in computer
vision applications, such as target detection [1], image index [2], visual positioning [3],
and visual navigation [4], etc. However, most of applications are constrained by real-time
and stability (persistence across viewpoint change). Particularly, in Vehicle dynamics and
outdoor scenery can make the problem of matching images very challenging. Such as visual
odometry system, images are collected from different time, thus perspectives of images
are also different. At the same time, affected by illumination and noise in environment,
the edge profile of images will have a large difference, even if images are extremely vague
and noise disturbance is large. As a result, it has the important significance to design
a feature point with rapid and stable extraction, enhance image matching accuracy and
anti-disturbance ability to capacity.

Broadly speaking, we can divide image matching classes into two types. The match-
ing algorithm based on grey information conducts matching through two-dimensional
space sliding form. The operation process is simple and matching has the high precision.
However, the algorithm has the large operand and it is relatively sensitive to noise. The
matching algorithm based on features which include corner features, line features and edge
features. The extraction process of image feature points is less affected by noise. At the

977



978 Z. Y. Sun, Y. S. Duan, X. Fang, and D. N. Yang

same time, it has the strong anti-disturbance ability to grey changes, image deformation
and shield.

A wide variety of feature detection methods have been proposed, such as Moravec [5]
and Harris [6], their feature point detection process is only conducted on the single scale.
And they are easy to be affected by noise. Lowe [7] proposed SIFT (Scale-Invariant Feature
Transform) algorithm and used Gaussian function to construct scale space to maintain
invariance on image scaling, rotation and affine transformation. However, due to the
application of 128-dimension operation operator and large calculated amount, it is not
suitable to be applied in image matching with the real-time requirements. Sukthankar [8]
used the Principal Component Analysis to replace the histogram in SIFT algorithm, so as
to achieve the goal of reduce dimensions for SIFT descriptor, however, it affects distinctive
of features while increases the formative time of descriptor.

We strike a balance between the real-time and accuracy by taking a simple center-
surround filters approach. Following are the major stages of computation used to generate
the set of image features:

1. Scale-space point detection: The first stage is compute all features at all scales, and
select the extrema across scale and location.

2. Subpixel interpolation: The detector is used to obtain higher precision feature point
positioning by subpixel interpolation.

3. Keypoint localization: At each candidate location, the keypoints are selected accord-
ing to their stability measurements.

4. Keypoint descriptor: A simple and efficient descriptor base on ORB is proposed.

To validate SCFD, we compare the performance of SCFD against several other feature
detectors.

2. Related Work. Harris corners was introduced by Harris and Stephen [6], it is based
on eigenvalues of second moment matrix. FAST is probably the most widely used detec-
tor [9, 10], proposed back in 2006. It is based on the gray difference between the pixel
and its neighborhood. While these feature detectors are usually called corner detector,
they are not scale-invariant, so it does not provide a good basis for matching images of
different sizes. The concept of automatic scale selection was proposed by Lindeberg [11],
who studied the problem of identifying an appropriate and consistent scale for feature de-
tection. Rattarangsi proposed the multi-scale method based on Gaussian scale space [12].
However due to large number of scales used in feature detection process, resulted in a very
large amount of computation. Low proposed a Difference of Guassians (DOG) filter to
approximate the Laplacian of Guassians (LOG) [7]. Similarly, Bay and Ess used Hession
approximation, which drastically reduce the number of operations for simple box convolu-
tion. Neither of them computes responses at all pixels for larger scales, and consequently
do not detect extrema across all scales. Instead, they subsampled the responses at each
scale octave independently, and find extrema only at the subsampled pixels, yield poor
accuracy.

We also benefits from using an approximation to the Laplacian. In this paper, we
seek even simpler approximations, using bi-level center-surround filters which is fast to
compute and insensitive to rotation. Various center-surround filters have been proposed.
Pei and Horng used the bi-level Laplacian-of-Guassian (BLoG) filter to approximate the
LoG filter [13]. Describes circular BLoG fileter and optimizes for the inner and outer
radius to best approximate the LoG filter, while the cost of BLoG depends on the size of
the filter. Closer to our approach is that of Crabner [14], who proposed a difference-of-
boxes (DOB) filter that approximates the SIFT descriptor, which is compute at all scales
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with integral images [15, 16]. We demonstrate that our DOB filters out perform SITF in
repeatability. This can attributed to selection and subpixel interpolation.

The rest of the paper is organized as follows. We describe the strategy applied for fast
and robust feature point detection in section 3. We then discuss our modified upright ORB
in section 4. To validate SCFD, we perform experiments that test the properties of SCFD
and several other feature detectors, and performance in image-matching applications in
section 5. The article is concluded in section 6.

3. Center Surround Filter Detection (SCFD). Our approach for feature point de-
tection uses simplified bi-level kernels as center-surround filters which is easy to compute.
The first stage of feature point detection is construct the scale space and calculate center
surround Haar wavelet response value of each pixel point in original images [17, 18]. In
addition, integral image speed-up operation process is applied [12]. Then, non-maximum
suppression method is applied to detect extreme values. At last, Harris and sub-pixel
interpolation are applied to acquire the more stable feature points.

3.1. Bi-level filters. Low approximated the Laplacian with the DoG, in this paper we
uses the simpler bi-level filter of center surround approximate Gauss-Laplace operator [12],
so as to achieve the goal of simplifying calculation. The general center surround wavelet
of block size n is shown in Figure 1. The inner box is (2n + 1)× (2n + 1) and the outer
box is of size (4n + 1) × (4n + 1). If In is the inner weight and On is the weight of the
outer box, then in order for the DC response of this filter to be zero, we must have:

On (4n+ 1)2 = In (2n+ 1)2 (1)

The scale space is conducted the normalization processing:

In (2n+ 1)2 = In+1 (2 (n+ 1) + 1)2 (2)

2
n
+
1

4
n
+
1

Figure 1. Center-Surround bi-level filters

We used a set of five scales for the center-surround Harr wavelet, with block size n =
[1, 2, 3, 4, 5]. While the block size 1 and 5 are the boundary, the lowest scale at which a
feature is detected corresponds to a block size of 2.
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3.2. Construction of Scale Space. We use of center-surround filters and integral im-
ages, therefore, we do not have to iteratively apply the same on the output of a previously
filtered layer, but instead can apply box filters of any size at exactly the same speed di-
rectly on the original image.

The scale space is divided into octaves. Each octave is composed of five layers. In
order to improve extraction precision of feature points, the incremental center surround
filter and original images in each group are used as convolution to get a series of response
figures, differing from SIFT of which the next group conducts down-sampling on the
previous group. We use subpixel interpolation to locate the feature points accurately,
and further enhance the stability and matching accuracy of feature points. We compute
the five filter response at each pixel in the image. The filter with the core size of 3 × 3
is considered as the initial layer of the scale space. For two successive levels, we must
increase this size by a minimum of 2 pixels in order to keep the size uneven and thus
ensure the presence of the central pixel. This results in a total increase of the filter size
by 2 pixels (see figure 2).

35 5
9

Figure 2. Filter inner and outer boxes sizes for two successive scale levels
(3× 3 and 5× 5). The length of the block size can only be increased by an
even number of pixels in order to guarantee the presence of a central pixel.

The construction of the scale space starts with the 3 × 3, which calculates the filter
response of the image for the smallest scale. Then filter size and step are gradually
increased. For example, the filter size in the first group is 3, 5, 7 and 9, the core of
the filter in each layer of the second group is successively increased by 4, then the core
size is 5 × 5, 9 × 9, 13 × 13, and 17 × 17. In order to confirm the extreme point in
3D neighborhood, more two layers are required. In other words, the initial layer and
top layer only can be used for comparison, while can’t contain extreme point. Similar
considerations hold for the other octaves. For each new octave, the filter size increase in
double (going from 2 to 4 to 8 to 16). The filter sizes for the second octave are 5 × 5, 9 ×
9, 13 × 13, and 17 × 17. A third octave is computed with the filter sizes 9 × 9, 17 × 17,
25 × 25, 33 × 33.And the fourth octave using filter sizes 17 × 17, 33 × 33, 49 × 49, 55
× 55. Figure 2 gives an overview of the filter size of the filter for the first three octaves.

3.3. Feature point detection. We compute the five filter response at each pixel in the
image. Then a non-maximum suppression in a 3 × 3 × 3 neighborhood is applied. The
filter’s response amplitude gives the indication of feature strength. The stronger response
is, the better repetition of feature points will be. Feature points that lie along an edge
or line are poorly localized along it and therefore are not very stable. Therefore, we can
apply Hessian matrix used by SIFT to filter out line responses [11, 15].



Robust Features Matching Using Scale-invariant Center Surround Filter 981

3 5 7 9

5 9 13 17

9 17 25 33

...

2
0

2
1

2
2

2
3

Scale

Octaves

Figure 3. The filter sizes for three different octaves. The logarithmic
horizontal axis represents the scales.

3.4. Accurate Feature point localization. We found an feature point candidate by
comparing a pixel to its neighbors, the next step is to perform a detailed fit to the nearby
data for location and scale which allows points to be rejected that are sensitive to noise or
are poorly localized along edge. We use the same method as Brown to fit the 3D quadratic
function to a local sampling point to determine the maximum interpolated position, and
the experiments show that this provides a substantial improvement in matching and
stability. We used the Taylor expansion of the scale-space function, D(x, y, δ), shifted so
that the origin is at the sample point:

D(X) = D +
∂DT

∂X
X +

1

2
XT ∂

2D

∂X2
X (3)

Where D and its derivatives are evaluated at the sample point and X = (x, y, δ)T is
the offset from this point. The location of the extremum, X, is determined by taking the
derivative of this function with respect to x and setting it to zero.

X̂ = −∂
2D−1

∂X2

∂D

∂X
(4)

The function value at the extremum, D(X̂), can be obtained by substituting equation
(4) into (3), giving:

D(X̂) = D +
1

2

∂DT

∂X
X̂ (5)

If the offset X̂ is larger than 0.5 in any dimension (x, y, or δ), then it means that the
extremum lies closer to a different sample point. In this case, the sample point is changed
and the interpolation performed instead about that point. The final offset x̂ is added to
the location of its sample point to get the interpolated estimate for the location of the
extremum. In addition, |D(X)| is too small to be susceptible to noise interference and
becomes unstable, so it will be smaller than an empirical value (0.03, Used in the Lowe
paper). At the same time, in this process to obtain the exact location of the feature points
and scales.

4. Symmetric Matching rBRIEF (SM-rBRIEF) descriptor. In section 3, we have
introduced a method for extracting invariant feature point from images that can be used
to perform reliable matching between different views of an object or scene. In this section,
we first introduce an ORB descriptor, Rublee has shown its performance and efficiency
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relative to other popular features [19]. However, it is not addressed is scale invariance and
relatively to rotations and inaccuracies in feature point matching. Due to the existence
of error match, bilateral matching is used to improve the match accuracy by eliminating
the false match.

τ (p;x, y) :=

{
1 : p (x) < p (y)

0 : p (x) ≥ p (y)
(6)

Where, p(x) is the intensity of P at point x. The feature is defined as a vector of n
binary tests:

fn (p) =
∑

1≤i≤n

2i−1τ (p;xi, yi) (7)

Where n can take 128, 256 and other values, different values will affect the speed,
recognition rate. We also choose a vector length n = 256.

However, the feature points described by BRIEF do not have the rotation invariance,
and the stability of the matching is improved by using Intensity Centroid method [18].
Define the 2× n matrix:

S =

(
x1, x2, . . . , x2n
y1, y2, . . . , y2n

)
(8)

Where (xi, yi) represents a test point pair. For each feature point, the corrected matrix
Sθ = RθS can be obtained by using the rotation matrix Rθ constructed by its main
direction θ. This gives a description of the rotation invariance.

gn(p, θ) = fn(p)|(xi, yi) ∈ sθ (9)

Since the random point pairs that generate the Brief descriptor do not necessarily have
low correlation and high variance properties, the variance and correlation over steered
BRIEF may be decreased. To recover from the loss of variance in steered BRIEF, and to
reduce correlation among the binary tests, we use a learning method for choosing a good
subset of binary tests.

4.1. Symmetric matching. The generated descriptor is a binary code string, it is sim-
ple to use the Hamming distance to match the feature points, and the matching can
be achieved by setting the threshold. However, is likely to cause matching errors and
instability under the outdoor environment noise. Therefore, we proposed a symmetric
matching method, which has the advantages of high matching precision, high reliability
and strong robustness. Assuming that image I1 and image I2, for each new image, we
perform the following process.

1. Distinctive features are extracted from the left image I1 and right image I2. European
distance methods are used to find the corresponding point in the right image.

2. Take one of the point i in the feature point set in the image I1, and then search for
the two points with the shortest European distance in the feature point set in the
target image I2. By comparing the distance of the closest neighbor to that of the
second-closest neighbor, if the ratio is less than a given threshold, it is shown that
the feature point i and the feature point j are a pair of matching points.

3. Based on the above-mentioned first matching result, search the closest point of the
image I2 feature point set has been matched in the image I1 feature point set.

4. If the point i in I1 and point j in I2 are a pair of matching points, and the point j
in I2 and point i in I1 is also a pair of matching points, then the matching point is
considered to be the correct match.
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Figure 4 shows the value of this measure for real image data. The probabilities for
correct and incorrect matches are shown in terms of the ratio of closest to second-closest
neighbors of each interest point.
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Figure 4. The percentage that a match is correct can be determined by
taking the symmetric matching and Haming distance. Using a database of
6425feature points.

Figure 4 shows the percentage of correct for the two matching strategies. In each test
image (synthetic rotation or real-world viewpoint change), the symmetric matching shows
again a better performance than the Haming distance. Symmetric matching selects only
the best match below the threshold and rejects all others; therefore, there are less false
matches and the precision is high. For our object recognition implementation, we reject
all matches in which the distance ratio is greater than 0.8. This figure was generated by
matching images following random scale and orientation change, a depth rotation of 15
degrees, and addition of 2% image noise, against a database of 6425 feature points.

5. Experimental Results. We evaluate our detector, which we call SCFD, using the
image sequences and testing software provided by Mikolajczyk [20]. The evaluation cri-
terion is the repeatability score. The test sequences comprise images of real textured and
structured scenes. There are different types of geometric and photometric transforma-
tions, like changing viewpoints, zoom and rotation, lighting changes. In all experiments
reported in this paper, the timings were measured on a standard PC Intel Core i5, running
at 2.5 GHz.

5.1. SCFD Detector. We tested the SCFD to FAST, Harris, SIFT, and SURF feature
detectors for image matching, using two datasets: images with synthetic in-plane rota-
tion (boat sequence) and an out-door images captured from different viewpoints (wall
sequence). We have used the default parameters for each of these detectors and chosen a
strength threshold such that each of these detectors results in the same number of features
in the common overlapping regions.

The repeatability scores for the walls sequence (figure 5(a)) are comparable for all
detectors. The SCFD detector shows again a better performance than SIFT or SURF,
although for large viewpoint changes, the differences become only minimal.

The boat sequence (figure 5(b)) is more challenging because of large changes in rota-
tion and zoom. On this challenging sequence, the SCFD detector shows again a better
performance than the SURF and FAST. While, it is performs slightly worse than SIFT,
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Figure 5. Repeatability score for different sequences for all detectors. (a)
wall sequence (b) boat sequence. (c) bikes sequence (d) leuven sequence.

especially for the larger zooms. This can be attributed to SCFD scale sampling, SCFD’s
filters cover only 21

2
octaves and therefore has less degree of scale-invariance for large scale

changes.
The repeatability score of the SCFD detector for the bikes and leuven sequence (figure

5(c) & (d)) outperforms the competitors. The experimental show results for image blur
and illumination changes, SCFD detector has the favorable matching stability by compar-
ing with other three algorithms, because the sub-pixel interpolation is used to confirm the
accurate position of feature points, therefore, the feature points have a strong robustness.

5.2. Benchmarks. One emphasis for SCFD is the efficiency of detection and description
on standard CPUs. Timing results for our SCFD detector and SM-rBRIEF descriptor
implementations was executed in a single thread running on an Intel i5 2.5 GHz processor.
We computed each detector and descriptor separately on five scales of the image, with a
scaling factor of

√
2. The SCFD system breaks down into the following times per typical

image of size 640× 480.
Comparing to SIFT, SURF and ORB on the same data, for averaged over 24 640× 480

images from the Mikolajczyk dataset, we get the following times: Our SCFD is also more
than Eighteen times faster than SURF. It is clear that feature detection using SCFD
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Table 1. Time in milliseconds for SCFD feature detectors

SCFD SM-rBRIEF
Time(ms) 153 45

Table 2. Time in milliseconds for different feature detectors

Detector SCFD SIFT SURF ORB
Time(ms) 198 10544 3582 39

features and matching using SM-rBRIEF descriptors can be easily can be easily achieved
in applications where the real-time requirements are relatively high.

6. Conclusions. In this paper, we have presented a scale and rotation invariant feature
point detector and descriptor, then demonstrated its performance and efficiency relative
to other popular features. The speed gain is due to the use of center-surround filters
over multiple scales, which are an approximation to the scale-space Laplacian of Gaussian
and can be computed in real time using integral images. The high repeatability and
stable in changes of viewpoint and illumination is achieved by subpixel interpolation and
construction of multi-scale space.

Our descriptor, based on the rBRIEF descriptor, we have modified it so as to handle
the real-world image matching better, and it is also stable. Experiments for real image
matching at different types of geometric and photometric transformations, like changing
viewpoints, zoom and rotation, lighting changes, highlighted SCFD’s potential in a wide
range of computer vision applications.
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