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Abstract. In image processing and face recognition, the data is stored in tensor form.
In such case, the conventional vector-based approaches represented by ν-twin support vec-
tor machine (ν-TSVM) are not enough to meet the classification requirements. There-
fore, many researchers concentrate on the study of tensor-based algorithms, while most of
them are linear cases. In this paper, we propose a novel nonlinear ν-twin support tensor
machine (NLν-TSTM), which separates most samples by constructing two nonparallel
hyperplanes in tensor kernel space. We use an alternating projection method to imple-
ment it. The new algorithm can retain more data structure information efficiently for
it handles tensor data directly. Besides, it can overcome the overfitting problem which
usually exists in vector-based approaches to some extent. The efficiency and superiority
of the proposed method are demonstrated by computational experiments on different kinds
of datasets.
Keywords: Nonparallel hyperplane, Matrix kernel, Tensor learning, Classification

1. Introduction. Support vector machine (SVM) [1] has its unique properties for binary
classification. To increase its solving speed, Jayadeva et al. [2] proposed twin support
vector machine (TSVM) which seeks two nonparallel hyperplanes by solving two smaller-
scale quadratic programming problems (QPPs). The solving speed of TSVM has been
proved four times faster than SVM. In the past few decades, massive improvements based
on TSVM have been proposed, such as ν-TSVM [3], least squares TSVH [4] and rough
margin-based ν-TSVM [5, 6].

Tensor representation has been applied in numerous areas, especially in image process-
ing for it can reduce the overfitting problem to a great extent. For instance, a second
order tensor can express original gray image [7]. When dealing with tensor data, the
aforementioned vector-based algorithms inevitably need to convert tensors into vectors
before classfication. This transformation can lead to structural information lose and data
correlation damage [8]. What’s more, the converted vectors are usually high dimensional
which can easily lead to the overfitting problem and the curse of dimensionality problem.

To retain more structural information of tensors, a tensor-based algorithm, named linear
support tensor machine (STM), has been put forward [9], which deals with input tensor
data directly without vectorization. In addition, the experimental results verified that
STM has a better performance compared with conventional SVM. In recent years, many
researchers have been interested in extending the vector-based algorithms to tensor-based
classification approaches, and many have gained good performance, such as linear ν-STM
[8], proximal STM [10], higher rank STMs [11], higher order STM [12] and TSTM [13].
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Moreover, several researchers also studied nonlinear conditions on kernel methods for
tensors. Gao [14] proposed kernel support tensor regression where he applied kernel
matrix [15] to deal with tensor data directly. He et al. [16] proposed a novel dual strategy
in structure-preserving kernels and applied it to neuroimages. A nonlinear least squares
TSTM was proposed for image classification [17]. Chen et al. [18] addressed one-class
classification problem with the principle of maximal margin in tensor space.

Up to now, nonlinear classifiers based on tensor-kernel space are still rare and deserve
further study. Accordingly, we propose a new tensor-kernel algorithm, named nonlinear ν-
twin support tensor machine (NLν-TSTM). Based on the bidirectional optimal projection
algorithm, the optimal solutions of NLν-TSTM can be obtained in an iterative manner.
Similarly, the parameters ν still have their theoretical significance, i.e. they can control
the bounds on the fractions of support tensors and error margins. The direct use of tensor-
kernel representation reserves the structural information more efficiently. Compared with
vector-based algorithms, the proposed NLν-TSTM can avoid the overfitting problem to
a large extent and is more suitable for the high-dimensional small sample size (HDS3)
problem. The validity of the new algorithm is examined by numerous experiments.

The rest of paper is organized as follows. Section 2 outlines the ν-TSVM and tensor
kernel matrix. Section 3 is our NLν-TSTM algorithm. Section 4 shows the experimental
results on vector-based datasets, and Section 5 considers tensor-based datasets. Finally,
Section 6 concludes our works.

2. Related Work.

2.1. Nonlinear ν-Twin Support Vector Machine. The training dataset is T =
{(x1,+1), ..., (xp,+1), (xp+1,−1), ..., (xp+q,−1)}, where xi ∈ Rn. Matrix A ∈ Rp×n, B ∈
Rq×n stands for the positive and negative data, respectively. Nonlinear ν-TSVM [3] con-
siders two kernel-generated surfaces K(xT ,CT )µi+bi = 0, i = ±, where CT = [AT BT ] ∈
Rn×(p+q) and K is an appropriately chosen kernel function. It constructs the following
two QPPs,

min
µ+,b+,ρ+,ξ−

1

2

∥∥K(A,CT )µ+ + e+b+
∥∥2 − ν1ρ+ +

1

q
eT−ξ−

s.t. − (K(B,CT )µ+ + e−b+) ≥ ρ+e− − ξ−, ρ+ ≥ 0, ξ− ≥ 0, (1)

and

min
µ−,b−,ρ−,ξ+

1

2

∥∥K(B,CT )µ− + e−b−
∥∥2 − ν2ρ− +

1

p
eT+ξ+

s.t. K(A,CT )µ− + e+b− ≥ ρ−e+ − ξ+, ρ− ≥ 0, ξ+ ≥ 0, (2)

where ξ+, ξ− are slack vectors; e+, e− are column vectors of ones. A new testing sample
x is assigned to class i (i = +1,−1) by

class i = arg min
i=+,−

|K(xT ,CT )µi + bi|/‖µi‖. (3)

2.2. Tensor Kernel Matrix. In vector-based classification problems, most datasets are
nonlinear separable which can be solved by introducing a kernel function. Similarly, an
important issue of nonlinear tensor-based classification problems is constructing appro-
priate kernel matrix. Up to now, the kernel matrix proposed by [14] has been extensively
used for its simple calculation and preserving more structural information of tensors.

Let Xi ∈ Rn1×n2 represent a second order tensor and define k : Rn2×Rn2 → R is a kernel
function; H ∈ R∞ is the reproducing kernel Hilbert space of k and ϕ : Rn2 → R∞ is the
corresponding feature mapping. The nonlinear mapping function for matrix X ∈ Rn1×n2
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is defined as: ϕ(X) = [ϕ(xi)] ∈ Rn1×∞, where xi ∈ Rn2 is the ith row of X. Therefore,
for arbitrary matrix X, Z ∈ Rn1×n2 , the tensor kernel matrix is denoted as:

KXZ = ϕ(X)ϕ(Z)T =
[
ϕ(xi)ϕ(zj)

T
]
n1×n1

, (4)

where ϕ(xi)ϕ(zj)
T = e−‖xi−zj‖2/2r2 can be a Gaussian radial basis function (RBF). It is

clear that the value of kernel function in vector space is a scalar while it is a matrix in
tensor space. We call KXZ as the TRBF kernel matrix and define k(xi, zj) = ϕ(xi)ϕ(zj)

T

for simplification.

3. Nonlinear ν-Twin Support Tensor Machine. As mentioned above, the vector-
ization neglects the latent structural information of tensor data. The converted vector is
usually high-dimensional which can easily leads to curse of dimensionality. Till now, there
are still few researches on nonlinear classifier in tensor learning. Therefore, we propose
our NLν-TSTM in the following subsections.

3.1. NLν-TSTM and Its Algorithm. Suppose we are given the training dataset T =
{(X1,+1), ..., (Xp,+1), (Xp+1,−1), ..., (Xp+q,−1)}. The essential principal of NLν-TSTM
is to seek the two following nonparallel hyperplanes:

uTϕ (X)v + b+ = 0 and ũTϕ (X) ṽ + b− = 0, (5)

where u, ũ ∈ Rn1 , v, ṽ ∈ R∞ and b+, b− ∈ R. Let f+ (X) = uTϕ (X)v + b+, f− (X) =
ũTϕ (X) ṽ + b−. Then, a new tensor sample X is assigned by:

class i = arg min
i=+,−

|fi(X)|/
∥∥uivTi ∥∥, (6)

where u = u+, v = v+, ũ = u−, ṽ = v−.
The two QPPs of NLν-TSTM are denoted as follows:

min
u,v,b+,ρ+,ξj

1

2

p∑
i=1

(uTϕ(Xi)v + b+)
2 − ν1ρ+ +

1

q

p+q∑
j=p+1

ξj

s.t. − (uTϕ(Xj)v + b+) ≥ ρ+ − ξj, ρ+ ≥ 0, ξj ≥ 0, j = p+ 1, ..., p+ q, (7)

and

min
ũ,ṽ,b−,ρ−,ξi

1

2

p+q∑
j=p+1

(ũTϕ(Xj)ṽ + b−)
2 − ν2ρ− +

1

p

p∑
i=1

ξi

s.t. (ũTϕ(Xi)ṽ + b−) ≥ ρ− − ξi, ρ− ≥ 0, ξi ≥ 0, i = 1, ..., p, (8)

where ξi, ξj are slack variables; ν1, ν2 are new parameters; ρ+, ρ− are additional variables.
It is note that for all ξj = 0, j = p + 1, ..., p + q (or ξi = 0, i = 1, ..., p), the negative
(or positive) samples are separated by the positive (or negative) hyperplane, with the

margin ρ+/
∥∥uvT∥∥2(or ρ−/

∥∥ũṽT∥∥2). By introducing the Lagrangian multipliers ηj, rj, s
into QPP (7), we can drive its Lagrangian function:

L(u,v, b+, ρ+, ξj, ηj, rj, s) =
1

2

p∑
i=1

(uTϕ(Xi)v + b+)
2 − ν1ρ+ +

1

q

p+q∑
j=p+1

ξj − sρ+

−
p+q∑
j=p+1

ηj
[
−(uTϕ(Xj)v + b+)− ρ+ + ξj

]
−

p+q∑
j=p+1

rjξj. (9)
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Differentiating the Lagrangian function L with respect to variables u,v, b+, ρ+, ξj can
obtain the following equations,

∂L
∂u

=

p∑
i,k=1

ϕ(Xk)v(uTϕ(Xi)v + b+)
T

+

p+q∑
j=p+1

ηj(ϕ(Xj)v) = 0, (10)

∂L
∂v

=

p∑
i,k=1

(uTϕ(Xk))
T

(uTϕ(Xk)v + b+) +

p+q∑
j=p+1

ηj(u
Tϕ(Xj))

T
= 0, (11)

∂L
∂b+

=

p∑
i=1

(uTϕ(Xi)v + b+) +

p+q∑
j=p+1

ηj = 0, (12)

∂L
∂ρ+

= ηj − ν1 − s = 0, (13)

∂L
∂ξj

= 1/q − ηj − rj = 0. (14)

From Eqs. (10) and (11), we know that u,v are dependent on each other and cannot be
solved independently. Therefore, we adopt the alternating projection method to solve it.

For any given column vector u ∈ Rn1 , we firstly define a new matrix kernel function
ku : Rn1×n2 ⊗ Rn1×n2 → R with respect to u as: ku(X,Z) =

〈
uTϕ(X),uTϕ(Z)

〉
=

uTϕ(X)ϕ(Z)Tu. If we set X = {X1, . . . ,Xs} and Z = {Z1, . . . ,Zm}, where X ,Z are
third order tensor and define

Ku(X ,Z) =

 ku(X1,Z1) · · · ku(X1,Zm)
. . .

ku(Xs,Z1) · · · ku(Xs,Zm)

 ∈ Rs×m.

Then for A = {X1, . . . ,Xp}, B = {Xp+1, . . . ,Xp+q}, and C = {X1, . . . ,Xp+q}, we get
Ku(A, C) ∈ Rp×(p+q), Ku(B, C) ∈ Rq×(p+q) and Ku(C, C) ∈ R(p+q)×(p+q).

For the sake of solving QPP (7), we firstly fix u ∈ Rn1 and define:

ϕu(X ) =

 (ϕ(X1)
Tu)T

...
(ϕ(Xs)

Tu)T

 ∈ Rs×∞,

then ϕu(A) ∈ Rp×∞, ϕu(B) ∈ Rq×∞ and ϕu(C) ∈ R(p+q)×∞. Then, QPP (7) becomes

min
v,b+,ρ+,ξ−

1

2
‖ϕu(A)v + e+b+‖ − ν1ρ+ +

1

q
eT−ξ−

s.t. − (ϕu(B)v + e−b+) ≥ ρ+e− − ξ−, ρ+ ≥ 0, ξ− ≥ 0 , (15)

where ξ− = (ξp+1, . . . , ξp+q)
T . We see v in the subspace span {uTϕ(X1), . . . ,u

Tϕ(Xp+q)}
T

of R∞ and assume v = ϕu(C)Tβ+ ∈ R∞, where β+ ∈ Rp+q, then

ϕu(A)v = Ku(A, C)β+ ∈ Rp×1, ϕu(B)v = Ku(B, C)β+ ∈ Rq×1.

QPP (15) can be rewritten as:

min
β+,b+,ρ+,ξ−

1

2
‖Ku(A, C)β+ + e+b+‖ − ν1ρ+ +

1

q
eT−ξ−

s.t. − (Ku(B, C)β+ + e−b+) ≥ ρ+e− − ξ−, ρ+ ≥ 0, ξ− ≥ 0. (16)
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Obviously, QPP (16) is a traditional NLν-TSVM problem, and its dual problem is

min
η+

1

2
η+

TGu(HT
uHu)

−1
GT

uη+

s.t. 0 ≤ η+ ≤ 1/q · e−, eT−η+ ≥ ν1, (17)

where Hu = [Ku(A, C) e+], Gu = [Ku(B, C) e−]. The optimal solution is:

[β+
T , b+]

T
= −(HT

uHu)
−1
GT

uη+. (18)

Secondly, we calculate u. For any given v ∈ R∞, there exists β+ ∈ Rp+q such that
v = ϕu(C)Tβ+, and we define

ϕv(X ) =

 (ϕ(X1)v)T

...
(ϕ(Xs)v)T

 ∈ Rs×n1

then ϕv(A) ∈ Rp×n1 , ϕv(B) ∈ Rq×n1 and QPP (7) is converted as:

min
u,b+,ρ+,ξ−

1

2
‖ϕv(A)u + b+‖ − ν1ρ+ +

1

q
eT−ξ−

s.t. − (ϕv(B)v + e−b+) ≥ ρ+e− − ξ−, ρ+ ≥ 0, ξ− ≥ 0. (19)

Similarly, we derive its dual problem.

min
α+

1

2
α+

TGβ+(HT
β+

Hβ+)
−1
GT

β+
α+

s.t. 0 ≤ α+ ≤ 1/q · e−, eT−α+ ≥ ν1, (20)

where Hβ+ =
[
ϕβ+(A) e+

]
and Gβ+ =

[
ϕβ+(B) e−

]
,

ϕβ+(A) =

 (ϕ(X1)ϕu(C)Tβ+)
T

...

(ϕ(Xp)ϕu(C)Tβ+)
T

 , ϕβ+(B) =

 (ϕ(Xp+1)ϕu(C)Tβ+)
T

...

(ϕ(Xp+q)ϕu(C)Tβ+)
T

 ,
ϕ(Xk)ϕu(C)T = ϕ(Xk)[ϕ(X1)

Tu, . . . , ϕ(Xp+q)
Tu] = [KXkX1u, ..., KXkXp+qu] ∈ Rn1×(p+q).

Then, the optimal (u+, b+) can be obtained,

[uT , b+]
T

= −(HT
β+

Hβ+)
−1
GT

β+
α+. (21)

From ‖v‖2 = βT
+
ϕu(C)ϕu(C)Tβ+ = βT+Ku(C, C)β+ and

∥∥uvT∥∥2 = ‖u‖2‖v‖2, we can

get the value of
∥∥uvT∥∥2, and

f+(X) = [uTKXX1u, . . . ,u
TKXXp+qu]β+ + b+, (22)

ρ+ = − 1

q1

q1∑
j=1

([uTKXjX1u, . . . ,u
TKXjXp+qu]β+ + b+), (23)

where q1 denotes the number of Xj, j ∈ {p+ 1, . . . , p+ q} satisfied with 0 < αj < 1/q .
With similar steps, we can derive the value (β−, ũ, b−), then ρ− is calculated by

ρ− =
1

p1

p1∑
i=1

([ũTKXiX1ũ, . . . , ũ
TKXiXp+q ũ]β− + b−), (24)

where p1 denotes the number of Xi, i ∈ {1, . . . , p} satisfied with 0 < αi < 1/p , and

f−(X) = [ũTKXX1ũ, . . . , ũ
TKXXp+q ũ]β− + b−. (25)



172 H. R. Wang, W. S. Mu, and Z. J. Zhou

The flowchart of NLν-TSTM is described specific as follows.
Algorithm 1. NLν-TSTM
Inputs: the value ν1, ν2 , the maximum number of iteration I+, I−, the training samples

Xi ∈ Rn1×n2(i = 1, . . . , p+ q) and testing samples Xj ∈ Rn1×n2(j = 1, . . . ,m)
Outputs: the optimal (u,β+, b+, ρ+) and (ũ,β−, b−, ρ−), the labels of testing samples.

Step1: Initialization. Let ut = (1, . . . , 1)T , ũt = (1, . . . , 1)T and ε > 0 is small enough.
Step2: Calculate (β+, b+) . Solving QPP (17) with u = ut, and get ηt+, then (βt+, b

t
+)

can be obtained by solving Eq.(18) with η+ = ηt+.
Step3: Update (u, b+). After acquiring β+ = βt+ in step2 and αt

+ can be obtained by
solving QPP (20), then solving Eq. (21) with α+ = αt

+ can get (u, b+).
Step4: Compute u and β+ iteratively from Step 2 ∼ 3. If the following conditions:

‖ut − ut−1‖ ≤ ε,
∥∥βt+ − βt−1+

∥∥ ≤ ε and
∥∥bt+ − bt−1+

∥∥ ≤ ε are satisfied simultaneously, or
the iteration number exceeds the maximum number I+, the iteration will be terminated.
After acquiring the optimal (u∗,β∗+ , b∗+), we get ρ+ by solving Eq.(23).

Step5: Do the similar steps 2 ∼ 4, (ũ∗,β∗−, b
∗
−, ρ−) can be acquired.

Step6: Calculate
∥∥uvT∥∥2 and

∥∥ũṽT∥∥2.
Step7: For a new sample, calculate f+(X) by Eq.(22) and f−(X) by Eq.(25).
Step8: Output the label of the new sample by (6).

3.2. Theoretical Interpretation. For simplicity, we still use the positive hyperplane to
interpret. After solving (20) in the last iteration step, the optimal α∗ = (α∗p+1, α

∗
p+2, . . . , α

∗
p+q)

T

can be acquired, then we can get the following propositions.

Proposition 3.1. The negative samples can be divided into three conditions according to
the corresponding values of α∗j .

1). If α∗j = 0, then the corresponding negative samples satisfy uTϕ(X)ϕu(C)Tβ+ + b+ <
−ρ+. They are the negative samples which are classified absolutely right.
2). If 0 < α∗j < 1/q which implies the corresponding ξj = 0, these negative samples are

support tensors on the hyperplane uTϕ(X)ϕu(C)Tβ+ + b+ = −ρ+.

3). If α∗j = 1/q , then the corresponding negative samples satisfy uTϕ(X)ϕu(C)Tβ++b+ >
−ρ+. They are usually the outliers or noises of negative class.

Proposition 3.2. Suppose we run QPP (7) with (p+ q) samples, acquiring ρ+, then,
1). ν1 is an upper bound on the fraction of negative margin errors.
2). ν1 is a lower bound on the fraction of negative support tensors.

3.3. Convergence Analysis.

Theorem 3.1. Using Algorithm 1, one can find the optimal (u∗,β∗+, b
∗
+) and (ũ∗,β∗−, b

∗
−),

then Algorithm 1 is convergent.

Proof: Let f1(u,v, b+) be the objective function of QPP (7) and v = ϕu(C)Tβ+, then
the objective function f1 can be rewrite as:

f1(u,β+, b+) =
1

2

p∑
i=1

(uTϕ(X)ϕu(C)Tβ+ + b+)
2 − ν1ρ+ +

1

q

p+q∑
j=p+1

ξj

Similar as [13], we can obtain a monotone decreasing sequences with lower bounds, and
then prove Algorithm 1 is convergent. �

4. Experimental Results on Vector-based Datasets. As we know, a vector can be
regarded as a first order tensor. In this section, we do experiments to verify that the
NLν-TSTM has the ability to handle vector-based datasets. We firstly use Australian
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dataset as an example to do the experiment, then we make a comprehensive comparison
on six vector-based datasets 1.

4.1. Datasets Description and Experiment Setting. In all experiments, we con-
centrate on the study of small-sized training sets to confirm the effectiveness of four
algorithms. We apply grid search to select the optimal parameters. For a same parame-
ter, the experiments are repeated 5 times, where one experiment is conducted as follows:
we randomly choose 20% samples for training and the rest for testing. We set ν1 = ν2 = ν
and ν is searched in {0.1, 0.2, . . . , 0.9}. The optimal RBF and TRBF kernel parameters
are searched in r = [2−10, 2−9, . . . , 210]. All algorithms are carried out in Matlab 2014a
operated on Windows 7 personal computer with 4.0 GB of RAM.

4.2. Experiments on Australian Dataset. Australian dataset has 690 samples with
14 attributes, and its features are scaled to [-1,1]. As far as we know, a vector x ∈ Rn

can be convert to different kinds of matrix form X ∈ Rn1×n2 , where n1 × n2 ≈ n. There
will be many combinations of n1 and n2 that satisfy the conditions. As suggested by [9],
there are five possible tensor sizes in Australian dataset. It is significant to find which
conversion is the best one.

The results with respect to different tensor sizes are shown in Table 1 and the bold
one is the best, where ‘Num’ represents the size of training samples. The results of
1 × 14 indicate tensor-based algorithm can handle vector-based datasets directly, while
the testing accuracies are a little bit lower compared with the results under other five
types of matrix sizes. When tensor size is 4× 4, both Lν-TSTM and NLν-TSTM obtain
pleasurable performance. The experimental results indicate that the closer of n1 and n2 is,
the better classification performance for tensor-based algorithms obtain. In addition, we
find that the testing accuracies of Lν-TSTM and NLν-TSTM improve as the the number
of training samples increase under the same tensor size.

Table 1. Averaged testing accuracy in different tensor sizes using ν-TSTM.

Num Algorithm 1×14 2×7 3×5 4×4 5×3 7×2
10 Lν-TSTM - 84.36±2.33 86.98±3.92 86.41±2.73 83.94±2.71 84.78±0.90

NLν-TSTM 85.64±1.92 88.45±2.95 89.16±1.50 93.37±0.38 91.22±1.63 85.58±3.18
20 Lν-TSTM 86.49±4.64 85.57±1.36 84.98±0.88 85.35±0.39 85.23±0.54 85.08±0.47

NLν-TSTM 88.80±1.29 91.26±1.47 90.83±1.18 94.15±0.21 92.67±0.62 86.62±1.61
30 Lν-TSTM 86.25±1.80 86.32±2.71 85.26±0.54 86.51±2.33 85.71±1.22 85.11±0.76

NLν-TSTM 89.75±1.40 93.07±0.85 92.53±1.09 94.69±0.81 93.84±0.34 90.86±1.19
40 Lν-TSTM 86.95±1.87 86.09±1.45 86.09±0.86 87.01±0.82 85.67±0.82 85.51±0.47

NLν-TSTM 91.77±1.39 94.29±0.78 93.86±1.09 94.72±0.37 94.49±0.96 91.08±0.64

Table 2. Averaged testing accuracy and Gmeans on Australian dataset.

Num Lν-TSVM Lν-TSTM NLν-TSVM NLν-TSTM
Accuracy Gmeans Accuracy Gmeans Accuracy Gmeans Accuracy Gmeans

10 82.51±4.93 83.76 86.41±2.73 87.25 85.67±3.08 85.91 93.37±0.38 93.31

20 84.21±1.60 84.32 85.35±0.39 85.41 88.31±2.16 88.40 94.15±0.21 94.18

30 86.38±1.07 86.41 86.51±2.33 86.43 90.31±1.88 90.26 94.69±0.81 94.56

40 86.52±1.36 86.44 87.01±0.82 87.03 90.06±0.57 89.94 94.72±0.37 94.60

The classification results of NLν-TSTM, NLν-TSVM, Lν-TSVM and Lν-TSTM with
different training sample sizes are shown in Table 2. The results indicate that our NLν-
TSTM is outstanding from the point of testing accuracy. As the training number in-
creases, the testing accuracies mostly arise, and NLν-TSTM performs the best, followed

1http://www.cs.nyu.edu/ roweis/data.html
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by NLν-TSVM, Lν-TSTM and Lν-TSVM. When the number of training samples is 10,
the accuracy of our NLν-TSTM is 93.37%, which is much higher than NLν-TSVM. Be-
sides, when the tensor size is 1 × 14 and the size of training samples is 40, the accuracy
of NLν-TSTM is much higher than the other three algorithms. In general, when vector
is regarded as first order tensor, our NLν-TSTM has a comparable performance with
NLν-TSVM.

Gmeans is a commonly used index to evaluate the performance of algorithms on pre-
venting the overfitting problem, especially in HDS3 problem [19]. Accordingly, the results
of Gmeans show that NLν-TSTM performs the best, which indicates that tensor-based
algorithm ν-TSTM has promising superiorities on avoiding the overfitting problem.

Table 3. The results of six vector-based datasets.

Datasets Lν-TSVM Lν-TSTM NLν-TSVM NLν-TSTM

Accuracy Gmeans Accuracy Gmeans Accuracy Gmeans Accuracy Gmeans
ν Time(s) ν Time(s) (ν, r) Time(s) (ν, r) Time(s)

Iris 100±0.00 100 100±0.00 100 100±0.00 100 100±0.00 100

(150× 4) 0.1 0.007 0.3 0.549 (0.1,0.5) 0.020 (0.4,4) 0.041

Pima 71.36±2.44 71.51 72.71±0.78 69.10 66.71±0.19 65.67 69.49±1.91 65.35

(768× 8) 0.4 0.030 0.5 0.870 (0.6,1024) 0.100 (0.8,512) 0.495

Heart 79.25±3.75 79.67 80.83±3.28 80.59 81.25±2.10 80.97 82.08±1.64 81.90

(270× 13) 0.3 0.038 0.4 0.214 (0.9,128) 0.094 (0.7,0.5) 0.287

Australian 86.52±1.36 86.44 87.01±0.82 87.03 90.06±0.57 89.94 94.72±0.37 94.60

(690× 14) 0.7 0.069 0.3 0.869 (0.1,32) 0.221 (0.1,0.25) 0.878

Lung 70.58±4.8 70.14 67.64±4.15 63.25 77.64±4.92 77.09 87.06±4.92 82.81

(23× 56) 0.3 0.008 0.6 0.398 (0.9,256) 0.015 (0.1,512) 0.053

LettersAB 98.83±0.15 98.82 97.45±0.19 97.45 99.38±0.15 99.38 99.07±0.77 99.07

(1555× 16) 0.2 0.139 0.2 3.909 (0.3,8) 0.672 (0.1,16) 7.461

Table 4. Pairs taken from MNIST, ORL and YALE datasets.

Database Samples Classes Cropped Pixels Pairs Selected

MNIST 390 10 20× 16

ORL1

ORL2

400 40 32× 32

64× 64

Yale 165 15 100× 100

4.3. Experiments on Six Vector-Based Datasets. Similarly, we conduct experiments
on six vector-based datasets and the results are shown in Table 3. In general, our NLν-
TSTM takes 4 out of 6 better in the four algorithms from the aspect of testing accuracy.
From the perspective of Gmeans, the proposed NLν-TSTM takes 4 out of 6 better in the
four algorithms; 2 out of 6 slightly worse than the other three. In addition, observing the
averaged time on the six datasets, we find that our NLν-TSTM takes more time compared
with other three algorithms. The main reason is that the NLν-TSTM adopts alternating
projection method which needs more time to obtain the optimal solution during the
alternative iteration.
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Overall, the proposed NLν-TSTM can handle vector-based datasets effectively and
directly, and has comparable classification ability with NLν-TSVM.

Table 5. Pairs taken from MNIST, ORL and YALE datasets.

Dataset Metrics NLν-

TSVM

NLν-

TSTM

NLν-

TSVM

NLν-

TSTM

NLν-

TSVM

NLν-

TSTM

NLν-

TSVM

NLν-

TSTM

MNIST Num 2 4 6 8

(0,3) Acc 96.21±3.36 98.11±0.74 98.85±1.19 98.28±1.56 99.39±0.82 98.48±2.14 99.35±0.88 99.03±0.88
Gmeans 96.61 98.11 98.9 98.29 99.41 98.47 99.37 99.03

(1,7) Acc 95.40±2.04 97.29±0 95.42±3.25 97.14±0 95.75±2.71 96.97±0 96.77±3.22 97.09±0.72
Gmeans 95.63 97.26 95.88 97.1 95.88 96.97 96.88 97.08

(4,5) Acc 95.67±1.48 89.73±1.81 96.85±3.09 96.86±1.56 98.18±1.65 97.88±2.29 98.06±1.77 99.03±0.88
Gmeans 95.89 89.45 96.93 96.85 98.21 97.88 98.06 99.03

(6,9) Acc 98.92±0.60 98.38±0.60 99.43±0.78 99.43±0.78 99.09±0.83 99.39±0.82 99.03±0.88 99.68±0.72
Gmeans 98.94 98.37 99.44 99.43 99.11 99.39 99.05 99.68

(2,8) Acc 81.35±7.78 80.54±1.21 86.57±2.96 83.43±2.96 91.51±2.29 88.48±3.14 90±2.65 88.06±3.34
Gmeans 82.65 79.57 88.34 82.39 91.93 88.43 91.02 87.75

ORL1 Num 1 2 3 4

(1,3) Acc 82.22±9.93 88.89±16.2 91.25±7.12 93.75±7.65 95.71±6.38 95.71±3.91 98.33±3.72 100±0.00
Gmeans 85.35 88.78 92.93 93.54 96.52 95.62 98.56 100

(20,31) Acc 78.88±12.0 88.88±12.4 83.75±12.2 100±0.00 88.57±16.44 100±0.00 96.67±7.45 100±0.00
Gmeans 85.95 88.19 88.75 100 92.82 100 97.46 100

(5,30) Acc 94.44±5.55 90±2.48 88.75±15.6 96.25±5.59 100±0.00 100±0.00 96.66±4.56 100±0.00
Gmeans 95.35 89.66 92.54 96.24 100 100 97.1 100

(13,14) Acc 91.11±8.42 95.56±4.64 91.25±10.5 97.5±3.42 98.57±3.19 97.14±3.91 98.33±3.72 100±0.00
Gmeans 93.16 95.45 93.33 97.5 98.74 97.1 98.56 100

ORL2 Num 1 2 3 4

(1,3) Acc 81.11±9.29 87.78±16.9 91.25±7.12 90.0±5.59 97.14±3.91 100±0.00 98.33±3.72 100±0.00
Gmeans 84.61 87.43 92.93 89.96 97.5 100 98.56 100

(20,31) Acc 80±11.52 88.88±12.4 82.50±12.0 100±0.00 87.14±15.48 100±0.00 95±11.18 100±0.00
Gmeans 86.48 88.19 87.99 100 91.58 100 96.61 100

(5,30) Acc 95.56±4.64 87.77±2.48 88.75±15.6 95±6.84 98.57±3.19 100±0.00 96.66±4.56 100±0.00
Gmeans 96.1 87.21 92.54 94.86 98.74 100 97.1 100

(13,14) Acc 93.33±7.24 95.55±4.64 91.25±10.5 96.25±5.59 97.14±6.38 97.14±3.91 98.33±3.72 100±0.00
Gmeans 94.62 95.52 93.33 96.17 97.75 97.1 98.56 100

Yale Num 1 2 3 4

(1,11) Acc 96.0±2.23 100±0.00 92.22±7.45 100±0.00 87.5±7.65 100±0.00 94.28±3.19 100±0.00
Gmeans 96.29 100 93.83 100 90.38 100 95 100

(2,9) Acc 87.0±6.71 80.0±5.0 86.66±10.8 90±2.48 88.75±6.84 91.25±5.6 83.07±6.43 92.86±5.05
Gmeans 87.92 79.89 87.68 89.99 91.15 91.03 87.17 92.76

(4,6) Acc 85±14.57 84.0±17.81 88.89±5.56 97.78±4.97 87.5±0 100±0.00 87.14±3.19 98.57±3.19
Gmeans 89.12 82.46 91.17 97.75 89.44 100 89.28 98.56

(8,13) Acc 97.0±2.73 87.0±5.70 93.33±4.65 100±0.00 92.5±2.79 100±0.00 90±8.14 100±0.00
Gmeans 97.26 86.95 94.29 100 93.33 100 91.95 100

5. Experiments on Tensor-based Datasets. In order to evaluate the ability of NLν-
TSTM, we choose two tensor-based databases, i.e. MNIST2 and Face3. We choose ORL
and Yale datasets from Face database. All features of each picture are scaled to [0,1]. We
choose 5 pairs from MNIST dataset referring to their characters, we choose pairs from
each dataset. In each pair, we choose 2, 4, 6 or 8 images from each category as training
samples and the rest for prediction. Similarly, we choose 4 pairs for ORL1, ORL2 and
Yale dataset, respectively. The detailed information is shown in Table 4. The results of
NLν-TSTM and NLν-TSVM are summarized in Table 5.

The results show that the testing accuracies and Gmeans of NLν-TSVM and NLν-
STSTM arise as the increase of training number. The classification accuracy of NLν-
TSTM is higher than NLν-TSVM in most cases. The possible reason is that the vector-
ization in NLν-TSVM destroyed the structural information and caused data correlation

2http://www.cs.nyu.edu/ roweis/data.html
3http://www.uk.research.att.com/facedatabase.html
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damage, thus leading to poor classification ability on tensor-based datasets. While our
proposed NLν-TSTM can retain more structural information and performs better on
HDS3 problem. That also verified the effectiveness and rationality of our algorithm. Be-
sides, the averaged Gmeans of NLν-TSTM is higher than NLν-TSVM in most cases. That
indicates our NLν-TSTM can overcome the overfitting problem to a large extent.

6. Conclusions. We propose a new tensor-kernel based algorithm named the NLν-
TSTM. Compared with ν-TSVM, it deals with tensor data directly and utilizes more
data structural information. Besides, it solves two smaller-sized QPPs to reduce its com-
putational complexity in each iteration. Moreover, it can avoid the overfitting problem
to some extent. As respected, the computational experiments testified its superiorities.
However, the iteration process of obtaining optimal solutions is time consuming. In the
future, the possible research direction is to design a fast-solving method for NLν-TSTM.
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