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Abstract. A large quantity of spatiotemporal trajectory data is generated through the
application of GPS technology and LBS. Faced with massive quantities of trajectory data,
it is of great significance to effectively mine patterns and rules from that data. Statistical
model-based methods, such as MM and HMM models, are widely used for this purpose.
Substantial research has been conducted based on MM and related improved methods.
Compared with the MM model, the HMM model can more fully statistically characterize
data sets. Considering the problems that come with a large data application environment,
and the impact on prediction accuracy, we propose a second-order HMM distributed tra-
jectory prediction method (HMM2) based on the Spark platform. The HMM2 clusters
the historical trajectories and then extracts the clusters, which are the hidden states of
the model, and divides the road network space into a grid in which the grid cells are the
observation states of the model. The HMM2 extracts the hidden sequences and observa-
tion sequences of historical trajectory in time and then uses the BW learning algorithm
to train observation sequences to estimate the parameters of the model. For a given pre-
diction sequence, the next observation state with the largest probability value is calculated
by using a forward or backward probability algorithm, which is the result of prediction.
Experimental results show that the proposed method has a good prediction effect and has
a higher speedup ratio in a distributed environment than in stand-alone mode. Experi-
ments on different datasets show that the proposed method is robust.
Keywords: Hidden Markov Model, Trajectory Prediction, Distributed, Spark

1. Introduction. Due to the rapid popularization and widespread application of global
positioning technology, equipment embedded with GPS sensors, including cars, smart-
phones, smart wristbands and shared bikes, is increasingly common. In that process, large
quantities of trajectory data, such as vehicle driving paths, pedestrian traveling records
and animal migration tracks, are constantly generated. Therefore, it is very important
to effectively mine patterns and rules from trajectory data [1, 2]. Location prediction is
the basis for providing active information services [3, 4]. For humanized and intelligent
location service demands, we predict the movement trends of moving objects by mining
the patterns and rules of movement trajectory [5]. There are many methods and strategies
for location prediction, such as the discovery method based on frequent patterns [6, 7],
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the trajectory similarity strategy [8, 9] and the statistical method based on the Markov
model [10], hidden Markov model [11], etc.

Mao et al. [12] used a fixed-order Markov model for trajectory prediction. Nagata et
al. [13] proposed a variable-order Markov model (VLMM) prediction method to solve
the limitation of fixed-order Markov model prediction and the high complexity of high
model order. For insufficient data sets, the low coverage problem of the models was
considered, and a kernel smoothing variable-order Markov model (KVLMM) was proposed
in the literature [14], which constructed the model in linear time and complex space and
predicted the next location adaptively with appropriate order length. Compared with
the Markov model, the HMM model is more effective in characterizing the statistical
characteristics of sample data and is widely used in statistical modeling [15]. For example,
the position prediction framework proposed in the literature [16] can realize a personalized
destination prediction system. The method based on the k-nearest neighbor (kNN) and
the decision tree combination method are used for location recognition, and the HMM
model is used to train and predict the user destinations. Wu et al. [17] used the hidden
Markov model to analyze the driving patterns of vehicles to predict the driving possibilities
of vehicles and to change directions in a timely manner. Qiao et al. [18] conducted
trajectory prediction based on the hidden Markov model. Their model used the clustering
algorithm to partition and segment original trajectory data to reduce the quantity of HMM
states. An adaptive parameter selection algorithm was proposed in the literature [19] to
capture the dynamic changes of objects in real scenarios. In addition, the algorithm also
preprocesses the trajectory segmentation to improve the prediction efficiency. However,
relevant studies fail to consider trajectory prediction problems under large-scale data sets.
How to address massive quantities of trajectory data quickly is also an important question.

Herein, we design a second-order HMM model trajectory prediction method (HMM2)
for large-scale data sets based on a Spark platform to meet the demands of trajectory
prediction.

First, we define and explain the principle of the second-order hidden Markov model
and then design the trajectory prediction framework based on the Spark platform, intro-
ducing the three main processes of the prediction framework: data preprocessing method,
model learning and training, and model prediction. Finally, we performed comparative
experiments.

2. Related definitions and principles. The second-order HMM model is used to carry
out trajectory training and prediction. It includes probability calculation of observation
sequences and learning estimation of model parameters. Relevant definitions and algo-
rithms are as follows:

Definition 1 HMM2 uses λ = (π,A1,A2, B1, B2) to describe the model. Suppose X(n)
represents the trajectory hidden state sequence, O(n) represents the observation state
sequence as follows:

π = {πi}: Probability distribution of trajectory initial state; πi = P (X1 = Si) refers to
the probability of selecting a state during the initialization.

A1 = {Aij}: First-order hidden state transition probability matrix, Aij = P (Xt+1 =
Sj |Xt = Si ) means that the probability under the hidden state Si at time t o’clock and
the probability under the hidden state Sj at time t+ 1.

A2 = {Aijk}: Second-order hidden state transition probability matrix; Aijk = P (Xt+1 =
Sk|Xt = Sj, Xt−1 = Si) means that the probability under the hidden state Si at time
t− 1 and the probability under the hidden state Sk at time t+ 1.

B1 = {Bkl}: First-order lower trajectory observation state and hidden transition prob-
ability matrix, also known as the confusion matrix, where Bkl = P (Ot = Ol|Xt = Sk)
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describes the probability of obtaining the observation state Ol from the hidden state Sk

at time t.
B2 = {Bjkl}: The second-order observation state and hidden transition probability

matrix, where Bjkl = P (Ot = Ol|Xt = Sk, Xt−1 = Sj) describes the probability of the
observation state Ol obtained from the hidden state Sk at a certain time t and hidden
state Sj at time t− 1.
Definition 2 (Forward Probability) Under the given second-order HMM model,

some observation sequences by time t are defined as O1, O2, ..., Ot. Its probability under
the hidden state Si at time t − 1 and under the hidden state Sj at time t is regarded as
the forward probability. These are written as αt(i, j) = P (O1, O2, ..., Ot, Xt−1 = Si, Xt =
Sj|λ), which is consistent with the first-order HMM forward algorithm. The αt(i, j) and
sequential probability P (O|λ) can be calculated by recursion.

P (O|λ) =
N∑
i=1

N∑
j=1

αT (i, j) (1)

Definition 3 (Backward Probability) Backward probability is similar to the defini-
tion of the forward probability. For the second-order HMM model λ and Si at time t− 1
and Sj at time t, the probability of some observation sequences of Ot+1, Ot+2, ..., OT from
time t+1 to time t is referred to as the backward probability, which is written as follows:

βt (i, j) = P (Ot+1, Ot+2, . . . , OT , Xt−1 = Si, Xt = Sj|λ) (2)

The probability of an observation sequence can also be expressed by forward probability
and backward probability as follows:

P (O|λ) =
N∑
i=1

N∑
j=1

αt (i, j) · βt (i, j) (3)

Setting the initial parameter of the model as λ = (π,A1, A2, B1, B2) and the observation
sequence O = O1, O2, ..., Ot, then

ξt(i, j, k) = P (Xt−1 = Si, Xt = Sj, Xt+1 = Sk|O, λ)

=
αt(i,j)·Aijk·Bij(Ot+1)·βt+1(j,k)

P (O|λ )

(4)

γt(i, j) = P (Xt−1 = Si, Xt = Sj |O, λ)

= αt(i,j)·βt(i,j)
P (O|λ )

(5)

Among the above equations, ξt(i, j, k) represents the probability for state transition

at time t, while γt(i, j) =
N∑
k=1

ξt(i, j, k) represents the probability under the state Si at

time t − 1 and under the state Sj at time t. According to the maximum likelihood
estimation method, the Baum-Welch learning formula for the second-order HMM model
can be expressed as follows:

πi =
N∑
j=1

N∑
k=1

W∑
w=1

ξwt=2 (i, j, k) (6)

Aij =

N∑
k=1

W∑
w=1

ξwt=2 (i, j, k)

N∑
j=1

W∑
w=1

N∑
k=1

ξwt=2 (i, j, k)

(7)
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Aijk =

T−1∑
t=2

W∑
w=1

ξwt (i, j, k)

T−1∑
t=2

W∑
w=1

N∑
k=1

ξwt (i, j, k)

(8)

Bkl =

N∑
i=1

N∑
j=1

W∑
w=1

ξwt=2 (i, j, k) · δow1 = vl

N∑
i=1

N∑
j=1

W∑
w=1

ξwt=2 (i, j, k)

(9)

Bjkl =

N∑
i=1

N∑
j=1

T−1∑
t−2,Ot=O1

W∑
w=1

ξwt (i, j, k)

N∑
i=1

N∑
j=1

T−1∑
t=2

W∑
w=1

ξwt (i, j, k)

(10)

3. A Second-order HMM trajectory prediction framework based on Spark.
Figure 1 shows the framework of the user trajectory prediction algorithm based on the
Spark platform. It mainly consists of three parts: trajectory data preprocessing, HMM2
model training based on Spark, and prediction processing.

Figure 1. Trajectory prediction framework based on the Spark platform

(1) Trajectory data preprocessing
It is necessary to preprocess historical travel trajectories, such as filtering the noise

data, abstracting processing of trajectories, and extracting a sequence of historical travel
areas of users.

1) Trajectory data denoising
Due to the lack of GPS positioning signals, data drift, etc., there is a large amount of

data noise. To filter the noise data out of the original trajectory data, the trajectory data
points with the same spatial density characteristics are divided into a set by the DBSCAN
clustering algorithm so that the noisy data points can be effectively removed.

2) Trajectory sequence extraction
During the process of removing noisy data points, the DBSCAN algorithm is used to

cluster the historical trajectory data and obtain the clustering clusters, which are the
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hidden state set of the hidden Markov model. The historical trajectory sequence can
be transformed into a cluster sequence according to time. Additionally, the trajectory
sequence can be extracted according to the grid division. The road network space is
divided into grids, which are the observation state sets of the hidden Markov model, and
the sequence of grid cells is the observation sequence. Hidden states are shown in Figure
2, S1, S2, S3 and observation states are shown in Figure g1, g2, g3, etc.
The division of the grid size determines the number of observation states of the hidden

Markov model. A small partition will lead to a cluster covering multiple grids; that is,
one hidden state is associated with multiple observation states. A large partition will lead
to the problem of one grid cell containing multiple clusters; that is, one observation state
is associated with multiple hidden states. In addition, due to the nonuniform distribution
characteristics of the trajectory data, the parameters of clustering need to be reasonably
set.

Figure 2. Trajectory sequence extraction

(2) HMM2 model training based on Spark
Spark is a general parallel framework based on the Hadoop platform. It has the ad-

vantages of Hadoop MapReduce. However, unlike MapReduce’s repeated reading and
writing HDFS, it is a memory-based computing model that can store intermediate results
in memory, can greatly improve the efficient processing ability of the data stream and
has great advantages in performance. It can be applied to machine learning and other
algorithms that require iterative calculation. The computing framework of the distributed
learning algorithm for the second-order HMM model in a large data environment is shown
in Figure 3.
The pseudo code of the learning algorithm based on Spark is as follows:

Algorithm 1 HMM2 distributed learning training

Input: path, nState, nEsym, observe, nITER, partitionMaxCnt
path: training data set HDFS storage path
nState: the number of hidden states
nEsym: number of observation states
observe: all possible observations
nITER: algorithm iterations
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Figure 3. HMM2 distributed learning algorithm

partitionMaxCnt: the maximum number of partitions
Output: model parameters λ = (π,A1, A2, B1, B2)
(1) lines ← readFromHdfs(path)
(2) rdd ← lines.map{ x=> distributeIDToLineData(partitionMaxCnt) }
(3) matA1,matA2,Pi,matB1,matB2 ← initByRandom(nSate, nEsym)
(4) Xi2 ← initMatrixXi2ByZero(lines.size, nState, nEsym)
(5) for all in nITER do
(6) logP, tmpB1,tmpB2,tmpA1,tmpA2,tmpPi← initMatrixByZero(nState, nEsym)
(7) rdd.map{ x=> logP, alphas,betas ← doForwardBackward(Xi2)
(8) update(Xi2, tmpB, tmpA1, tmpA2, tmpPi) }
(9) matA1, matA2, Pi, matB1, matB2 ← updateParam(tmpB,tmpA1,tmpA2,Xi2)
(10) println(logP)
(11) return hmm(Pi, matA1, matA2, matB1, matB2)

Line 1 reads the training data set from the HDFS file management system.
Line 2 divides the RDDs, and the ID of each partition’s data set is marked to facilitate

subsequent statistical processing.
Lines 3 and 4 initialize the relevant parameters.
Lines 5-11 perform the algorithm iterative process. First, the local variables are initial-

ized to accelerate the subsequent update of the HMM parameters.
Line 7 performs forward and backward algorithm processing on each of the data sets

in the partition to obtain alphas and betas matrix information.
Line 9 is used to speed up the update of HMM parameters.
Line 11 generates the basic HMM structure. The current algorithm further enhances

the execution speed of the algorithm by consuming space in the above Spark framework.
(3) Prediction processing
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Given the current trajectory, the trained HMM2 model is used to predict the next grid
cell. The current trajectory sequence is transformed into a grid sequence, which is input
into the trained HMM2 model, and the grid sequences with the top k values are calculated
by the forward probability algorithm. The pseudo code of the prediction algorithm is as
follows:

Algorithm 2 Trajectory Prediction Algorithm

Input: pts, Roads, Hmm, K
pts: set of trajectory points to be processed
Roads: grids set
Hmm: Hidden Markov Model
K: the number of the maximum prediction grid cell

Output: Whether the trajectory prediction is correct
(1) seqDatas ← convertTrajectory(pts, roads)
(2) if (seqDatas.size() < 3) // check if the sequence length is > 3
(3) return false;
(4) (datasDeal, dataCheck) ← splitIDs(seqDatas)
(5) roadsWithPro ← new List
(6) for all road in roads do
(7) pro ← forward(hmm, idsDeal + road)
(8) roadsWithPro.add(road, pro)
(9) roadPredicats ← sort(roadsWithPro).getTop(K)
(10) if roadPredicats.Contain(idCheck)
(11) return true;
(12) return false

In lines 1-3, feature extraction processing on the current travel trajectory of the user
to obtain a sequence of grid cells of the user is performed.
In line 4, a new list is created for storing each set of feature information and the last

set of feature information as the probability value of the next predicted link of the current
sequence.
In line 7, the forward algorithm of the second-order HMM model is used to calculate

the probability of occurrence of this sequence, and the results are saved to the list.
In line 9, the list is sorted according to the stored probability value, and the top k with

the larger probability value is taken as the prediction grid cell of the current trajectory.
In lines 10-12, whether there is a last grid cell ID of the current trajectory sequence in

the top k prediction grids is checked.

4. Experimental results and analysis. To verify the prediction effect of the proposed
method, we implemented three prediction methods: a prediction method based on a
standard order hidden Markov model (HMM), a prediction method based on a second-
order hidden Markov model (HMM2) and a prediction method based on a variable-order
Markov model based on kernel smoothing (KVLMM). Experiments are conducted from
the aspects of grid division, cluster size setting, the ratio of observation and hidden state
numbers as well as trajectory sequence size.
(1) Experimental configuration
We implement the algorithms with Java and conduct the experiments on four PCs with

an Intel(R) Core(TM), i5-3470 CPU with 2.8 GHz (4 CPUs) and 4 GB main memory
running the Windows 10 operating system. One PC is a master computer, and the three
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PCs are slaver computers. Experiments are deployed on a Spark platform in distributed
mode.

Experimental data set 1: Geolife data set. This data set is collected from 182 users
in Microsoft’s Asian Research Institute Geolife project over five years (from April 2007
to August 2012). These data consist of a series of time-stamped points, each including
latitude, longitude and altitude information. Moreover, the data set contains 17,621 tracks
with a total distance of 1,292,951 km and a total duration of 50,176 hours.

Experimental data set 2: floating car data (FCD) in Fuzhou, Fujian Province. This data
set consists of floating vehicle trajectory data from May 2016. It covers the geographic
area of approximately 1430 km2 with a longitude range of [119.113, 119.684], a latitude
range of [25.904, 26.155].

(2) Experimental results and analysis
1) The effect of grid division on prediction accuracy
Here, we first discuss the effect of grid size settings on prediction accuracy. To verify

the effect of grid division on accuracy, observation sequences are extracted in different
grid sizes, and experimental results in data set 2 are shown in Figure 4.

Figure 4. Effect of grid division on prediction accuracy (top 1 prediction)

A grid size of 0.001 represents 10 meters. The prediction accuracy varies with the grid
size. Excessively small grid division leads to dense extraction of the trajectory sequence,
too much sequence state and low prediction accuracy. Excessively large grid division leads
to a sparse sequence of trajectory extraction, and prediction accuracy begins to decrease.
The experimental results show that when the grid size is approximately 50 100 meters,
the prediction accuracy is optimal.

2) The effect of cluster size on prediction accuracy
In road networks, the distribution of the trajectory data is nonuniform. When using

the DBSCAN algorithm for clustering, different cluster parameters will lead to differences
in the number of clusters, which affect the extraction of trajectory hidden state sequences.
Experiments are carried out in data set 1 and data set 2. The results are shown in Figure
5 and Figure 6.

The trajectory data in data set 1 are mostly user travel data, with a low sampling
frequency, a large spatiotemporal span and relatively sparse data points. Therefore, when
the clustered parameter settings are Minpts = 50∼100 and Eps = 50 meters, the effect
is best. In data set 2, the trajectory data are mainly taxi data, with high and dense
sampling frequencies. When the parameter settings are Minpts = 300∼500 and Eps = 50
meters, the effect is best.
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Figure 5. Geolife data set experiments

Figure 6. FCD data set experiments

3) Effect of different explicit and implicit numbers on comparison precision
The appearance of the observation state sequence of the hidden Markov model con-

tains the corresponding hidden state sequence. There is a specific association between
the hidden state sequence and the observation state sequence. We obtain the model’s
hidden state and observation state numbers by adjusting the size of clusters and grids.
Experiments are conducted on the Geolife data sets using 7-day travel data from multiple
users. The average experimental results are shown in Figure 7.
The grid size and cluster affect the number of observation states and the number of

hidden states, respectively. When the ratio of observation states to hidden states is too
small, the number of observation states is obviously less than the number of hidden states,
and the prediction accuracy is low. As the ratio increases, the number of hidden states
and the number of observation states are relatively balanced, and the prediction accuracy
is gradually improved. The prediction effect is optimal when the ratio is 0.6∼0.8. As the
ratio increases further, the number of hidden states and the number of observation states
tend to be unbalanced, and the prediction accuracy decreases.
4) Comparison of data sets in different sizes
According to the above results, to better distinguish the influence of data sets on the

prediction accuracy, the ratio of observation state numbers and hidden state numbers in
this experiment is 0.6. The experimental results are shown in Figure 8 and Figure 9.
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Figure 7. Prediction accuracy (top 3 predictions)

Figure 8. Geolife dataset (top 3 predictions)

Figure 9. FCD dataset (top 3 predictions)

The experimental results show that when the amount of trajectory data increases, the
prediction accuracy increases gradually. In the Geolife dataset, the prediction accuracy
is stable at approximately 90% as shown in Figure 8. For the FCD dataset in Fuzhou,
shown in Figure 9, the average accuracy rate is 82.7% due to the large variation in taxi
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sample data, which reduces the accuracy relative to the Geolife data. With the increase in
data quantity, the prediction accuracy of the KVLMM model is gradually improved, but
the curve changes more smoothly, the learning ability of the HMM and HMM2 models is
stronger, the prediction accuracy is obviously improved, and the effect is better than that
of KVLMM.
5) Comparison of computational efficiency
We compare the computational efficiency of the learning algorithm in stand-alone and

Spark distributed mode. The ratio of observation state numbers and hidden state numbers
in this experiment is 0.4, and the iteration number of the learning algorithm is 100 times.
The comparison of results is shown in Table 1 and Figure 10.

Table 1. Comparison of runtimes in stand-alone and Spark distributed mode

Size (sequence) Stand-alone mode (second) Distributed mode (second)
10 89.8 31.4
100 800.7 219.4
1000 5618.6 1824.8
10000 49512.3 16574.8
100000 518000 172000

Figure 10. Comparison of runtimes in stand-alone and Spark distributed modes

When the trajectory sequence size is not large, the algorithm operating efficiency be-
tween the stand-alone mode and the distributed mode is not obviously different. However,
when the scale sequence exceeds a certain number, the running time of the algorithm
sharply increases in stand-alone mode. In distributed mode, the running time of the al-
gorithm increases steadily. Comparison experiments between stand-alone and distributed
mode show that the algorithm has a good speedup ratio.

5. Conclusions. The Markov model only describes the statistical characteristics of a
single dimension in a data set but fails to describe the implicit relationship among mul-
tiple dimensions in a data set. In this paper, we propose a second-order hidden Markov
trajectory prediction method based on the Spark platform. The formulas of the second-
order hidden Markov model are given, and the trajectory prediction framework under the
Spark platform is designed. The data preprocess, training algorithm, prediction algorithm
and other specific processes are described. The experimental results show that the HMM
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model is better than the MM model in characterizing the statistical characteristics of data
sets. The proposed method has a good prediction effect and has a higher computational
efficiency and a higher acceleration ratio on the Spark platform. Experiments on different
data sets show that the proposed method is more robust than other tested methods. The
next step is to introduce more dimensions to classify data sets or integrate multisource
information to extract comprehensive features to further improve the prediction accuracy
of this method.
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