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Abstract. In this paper, we propose a novel graph-based clustering model with spa-
tiotemporal contour energy for video salient object detection, which can preserve the
salient object and suppress the irrelevant surrounding background regions effectively. In
order to estimate the salient object robustly in spatiotemporal domain, a novel spatiotem-
poral contour energy is modeled by exploiting optical flow, spatial contour and gradient
flow field, which can enhance the energy inside the salient object and weaken it outside
the salient object. Then, we estimate the saliency degree of superpixels by computing
the geodesic distance of spatiotemporal contour energy between each superpixel node and
border background nodes on a superpixel level graph model. The comprehensive experi-
ments show that the proposed model outperforms the state of the art models, which are
evaluated on two challenging datasets by three widely used performance metrics. We also
applied the saliency map of the proposed method as a prior knowledge to unsupervised
video object segmentation, showing that the proposed method can improve the segmenta-
tion performance of unsupervised video object segmentation.
Keywords: Video saliency, Spatiotemporal Contour Energy, Graph-based Clustering.

1. Introduction. Human observer can be attracted by the most salient and attention-
grabbing object in a visual scene[1]. Salient object detection (SOD) aims to distinguish
the salient object from the complex visual scene. SOD is motivated by biologically plau-
sible human visual attention mechanisms including the center-surround contrast [2] and
feature integration theory (FIT) [3]. It also serve as an initial preprocessing step to select
a certain subset of visual information for further enhanced processing. Then, the lim-
ited computational resources may be directed toward processing the salient object and
improve overall performance. SOD can be applied to many visual tasks, including im-
age/video compression[4], content-aware image/video retargeting[5], content-based image
retrieval[6], object recognition and tracking [7],[8], unsupervised video object segmenta-
tion [9],[10] and video summarization[11].

A salient object in videos is defined as the one that consistently receives the highest
fixation densities[12]. The perceptual vision research shows that the contrast priors are
the most important factors in low-level visual saliency: the appearance contrast as spa-
tial saliency cues and the motion contrast as temporal saliency cues. How to locate the
salient object in a dynamic visual scene and separate the entire salient object from the
background are two key issues for SOD in videos. Several existing video-based SOD mod-
els [13],[14] model the motion information of the salient object based on the statistical
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motion histogram of the optical flow and compute the contrast between the salient ob-
ject and the background. A novel spatiotemporal contour (STC) is estimated from the
contour of the optical flow and the contour of the color frame in [15],[16]. This STC is
used to distinguish the salient object from the background. However, although existing
video-based SOD models have achieved adequate performance for some easy videos, they
may hardly handle more challenging videos, such as motion blur, a dramatic changing
background.
In this paper, we propose a novel spatiotemporal contour energy to represent the salient

object in a dynamic visual scene and highlight the entire salient object uniformly on a
superpixel level graph model. We also applied the saliency map of the proposed method as
a prior knowledge to unsupervised video object segmentation, the experiment results show
that the proposed method can improve the segmentation performance of unsupervised
video object segmentation.
The remainder of this paper is organized as follows. Section 2 gives in detail of the

proposed salient object detection for video. In Section 3, experiments are conducted to
validate the effectiveness and superiority of the proposed method. An application of our
proposed method to unsupervised video object segmentation is given in section 4 and the
article is concluded in section 5.

2. The Proposed Method. As shown in Fig.1, we firstly model a robust spatiotemporal
contour energy by exploiting optical flow, gradient of color frame and gradient flow field,
which can highlight the dominant motion regions. Then, an undirected weighted graph
is constructed on each single frame, where the nodes are superpixels and two spatially
adjacent nodes are connected. Finally, the saliency degree of the each superpixel can
be estimated by measuring the geodesic distance between the node and the background
prior nodes. In the following part, we will describe the spatiotemporal contour energy
and graph-based clustering, respectively.
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Figure 1. Illustration of the proposed framework. We integrate a new
spatiotemporal contour energy in a graph model to cluster the salient object.

2.1. Spatiotemporal contour energy. For each adjacent frame-pair {Ft, Ft+1}, we can
obtain the spatial contour SCt of each color frame (e.g., Ft) by using the contour detection
method in [17]. To model the motion information, we extract the motion vector field Vt

by computing optical flow (LDOF [18]) between frame-pair Ft−1 and Ft+1. The motion
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contour MCt represent the displacement range of the moving salient object and can be
obtained by a gradient operation in (1).

MCt(x, y) = ∥∇Vt(x, y)∥ (1)

The existing work [15] multiplies SCt and TCt to generate a spatiotemporal contour,
which represents the spatial contour of the moving salient object. However, the motion
contour is larger than the spatial contour and multiplying them directly may yields an
inaccurate STC. The inaccuracy may be propagated to the subsequent processing. Dif-
ferent from existing work, we first compute a new motion contour energy (MCE) by using
the gradient flow field [15]. The formulation (2) is used to compute the contour energy
based on gradient flow field (GradFF ) operator.

MCEt(x, y) = GradFF (MCt(x, y)) (2)

The GradFF represents the gradient flow operation. The pixel inside a closed boundary
region gain a high value and those pixels outside the region gain a low value. The details
can be refered to [15].

MCEt is a mask showing the moving object, which can be seen in Fig.1 (a). Then, our
new spatiotemporal contour STCt can be obtained by multiplying MCEt with spatial
contour SCt via (3) and it can preserve the spatial contour of the moving salient object
inside MCEt and exclude the irrelevant surrounding background noise outside MCEt

effectively, as shown in Fig.1 (b).

STCt = log{SCt · (1− exp(−λ ·MCEt)) + 1} (3)

The log is a base-2 logarithm and the coefficient λ is set to 1.0. We compute our new
spatiotemporal contour energy STCEt by the GradFF operator. It can be formulated
as (4)

STCEt(x, y) = GradFF (STCt(x, y)) (4)

2.2. Graph-based clustering. To achieve a reliable saliency estimation, we integrate
our new spatiotemporal contour energy in a graph model to cluster the salient object.
Specifically, we perform SLIC [19] to segment each frame into a set of superpixels. Then
an undirected weighted graph Gt = (Vt, Et) on each frame is constructed: the nodes Vt

are superpixels and any spatial adjacent nodes are connected by the edge Et. Finally, the
saliency degree can be estimated by geodesic distance measurement.

Firstly, we select the superpixels touched four image borders as background nodes for
that they are likely belong to the background. Any border superpixels are connected each
other to form a closed-form graph model. As shown in Fig.1 (c), all blue nodes (border
superpixels) are all connected.

Secondly, we design the edge weight based on the spatiotemporal contour energy (STCE)
difference between two connected superpixels. The STCE difference between two adjacent
superpixels can be defined as follows:

Wt(vi, vj) =

{
|STCEi

t − STCEj
t |, if i , j are connected

0, otherwise
(5)

The STCEi
t denotes the average STCE of all pixels in the i th superpixel.

Finally, we employ the geodesic distance measurement to estimate the saliency of every
superpixel. Specifically, the saliency degree of a superpixel is computed by accumulating
the edge weights along the shortest path from spi to the borders background nodes of the



362 B. Liu, M.Z. Xu and P. Fu

frame. It can be formulated as follows:

salt(vi) = min
n∈B∑

m=i,n;m,n∈ℵ

Wt(vm, vn) (6)

where m,n are indexes of two connected superpixels and ℵ denotes the set of neighboring
nodes.

3. Experimental Evalution. We perform an extensive experiments to demonstrate the
superiority of our proposed method. In the following part, we give a brief introduction of
the datasets and the evaluation criteria, then the results of the proposed method will be
compared to the 10 state-of-the-art models. A detail discussion is also followed.

3.1. Experimental datasets and evaluation criteria. The experiments are conducted
on two widely used benchmark datasets: the UVSD dataset [20] and the DAVIS dataset
[21]. UVSD consists of 18 unconstrained videos with complicated motion and complex
scenes. A total of 3184 frames in this dataset, and each frame is pixel-wisely annotated
on the salient object within each video. DAVIS is a challenging dataset for video object
segmentation and it is also popular for video-based SOD. A total of 50 video sequences in
this dataset and it has two different resolutions 480p and 1080p, and all 3455 frames are
pixel-wisely annotated as the ground truth. We test our proposed method on the 480p
for the computation efficiency.
Three widely used performance metrics, which are PR curves, Fmeasure curves and

mean absolute error(MAE), are adopted to evaluate the performance of the proposed
model.
Here, PR curves refers to the Precision-Recall curves. The precision value is defined as

the fraction of salient pixels correctly assigned to all pixels of the extracted regions, while
the recall value is defined as the ratio of detected salient pixels with respect to the ground
truth foreground pixels. For a saliency map, we generate a set of binary images by using
different threshold values from 0 to 255. The precision/recall pairs of all the binary maps
are computed to plot the precision-recall curve in the rectangular coordinate system.
Fmeasure is served as the overall performance measure, which is defined as:

Fmeasure =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
(7)

where β2 is set to 0.3 to assign a higher importance to precision. We also compute the
Fmeasure by different pairs of precision and recall acquired from the above calculation
and plot the Fmeasure results in the rectangular coordinate system.
The MAE computes the average difference between the saliency map and the ground

truth.

3.2. Comparison to the state-of-the-art SOD models. In this section, we compare
the proposed method with 10 state-of-the-art models: SAG [22][16], CG [15], RWRV [23],
SCUW [24], CBCS [25], MC [26], DRFI [27], SORBD [28], MR [29], SF [30]. The first
five models are designed for video-based SOD, while the last five models are designed
for image-based SOD. The MC is a new deep models for salient object detection in still
images. The results of all these baseline models are generated by using the publicly
available codes with the default parameters.
The quantitative comparison results can be seen in Fig.2, from which the top row shows

the comparison results on the DAVIS dataset and the bottom row shows the results on
the UVSD dataset. In Fig.2, we can observe that our proposed method outperforms all
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Figure 2. PR curves, Fmeasure curves and MAEs of different models on
two wildly used benchmark datasets. The solid lines show the performance
of five video-based SOD models, while the dashed lines show the perfor-
mance of five image-based SOD models.

10 state-of-the-art methods, including the deep models MC on both datasets in all three
metrics.

Input MR SORBD SF DRFI CBCS SAG CG OURS GTSCUW MCRWRV

Figure 3. Examples of saliency maps generated by the 10 state-of-the-art
models and our proposed method on DAVIS and UVSD datasets. The first
column shows the input frames, the 2nd-5th columns show the saliency maps
of four image-based salient object detection models, the 6th-10th columns
show the saliency maps of five video-based salient object detection models,
the 11th column shows the saliency maps of the deep learning models, the
12th column shows the saliency results of our proposed model and the final
column shows the ground-truth maps.

From Fig.2, it also can be observed that the models designed for videos (represented
by the solid lines) achieve a higher performance than the models designed for still images
(represented by the dash lines) in terms of the all three metrics generally. The reason
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behind this may lie in that the motion cues have been extensively exploited in video-based
models and the motion cues play a key role in the salient object detection for videos.
We also compare the saliency results generated by the proposed method with 10 state-

of-the-art models visually. In Fig.3, the first two rows show the samples selected from
DAVIS dataset and the last two rows show the samples selected from UVSD dataset. The
2-11th columns show the saliency results generated from the 10 baseline models, the 12th
column shows the results of our proposed method and the last column shows the manually
annotated groundtruth map. These video examples contain complex visual scenes, such
as low contrast between the salient object and background (e.g., the 4th row), motion
blur caused by camera jitter (e.g., the 3th row), dynamic background noise (e.g., the 2th
row).
From Fig.3, we can see that our proposed method achieve a superior performance than

other 10 baseline models (including one deep learning method). The five video-based
saliency models can better highlight the salient object than the 4 conventional image-
based saliency models, by exploiting dominant motion cues. The deep learning method
MC also achieve good performance, which benefits from the large scale training data.
Our proposed model achieves the state-of-the-art performance and is independent of the
large-scale training data, benefiting from the spatiotemporal contour energy.

4. Application To Unsupervised Video Object Segmentation. Unsupervised video
object segmentation (VOS) is formulated as a binary labeling optimization problem, which
aims to separate foreground objects from background in a video and outputs a binary
map [10],[31],[21]. On the other hand, salient object detection (SOD) aims to detect the
salient object in a video and outputs a probability map (non-binary map) where the value
of each pixel represents its probability of belonging to salient objects [32],[33]. Although
unsupervised VOS and SOD are different tasks, SOD are also beneficial to unsupervised
VOS when the primary objects are the salient objects. Many unsupervised VOS methods
use saliency map as an initial foreground likelihood estimation and a set of significant
post-processing are also incorporated to improve the final segmentation map [9],[22],[10].
Faktor [9] used saliency map as an initial foreground likelihood votes and correct these
votes by consensus voting across entire sequence. Wang [22] estimated the saliency map
based on geodesic distance and segmented the salient object by exploiting saliency term,
appearance term and location term. Jang [10] constructed a hybrid energy function in
terms of a saliency map and optimized the foreground and background distributions in
alternate convex optimization way, which achieves state-of-the-art performance.
Next, we validate the impact of our proposed SOD method for improving the segmen-

tation performance of unsupervised VOS method and demonstrate the applicability of
our proposed SOD method to unsupervised VOS. Specifically, we use the saliency maps
acquired from our proposed method as a substitute for saliency maps in NLC [9]. In other
words, we start a crude saliency votes from our saliency map, instead of the saliency map
in NLC, and then correct these votes in a consensus voting way across entire sequence
to get the final segmentation map iteratively. We use OURS+NLC and NLC [9] to rep-
resent them respectively. Additionally, we also give the results of several most recent
unsupervised VOS methods, such as ACO [10], FST [31].
We tested all the methods on DAVIS and UVSD datasets using the publicly available

source codes with the default parameters or the results in the DAVIS benchmark [21].
In order to evaluate the results properly, we adopted 2 widely used metrics (IOU and
Recall) in DAVIS benchmarks and a newly enhanced-alignment metric (E-measure) [34].
IOU measure the intersection over union (IOU) between a segmented map and its ground-
truth. Recall measure the fraction of all frames scoring IOU higher than 0.5. E-measure
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Figure 4. Visual comparison between the improved NLC method by our
proposed SOD method and the original NLC method on both datasets,
which can be seen clearly in the red bounding box. The results of the other
2 most recent unsupervised VOS models (ACO and FST) are shown in 5-
5th rows. The 1-3th columns show some examples selected from the DAVIS
dataset and the 4-6th columns are selected from the UVSD dataset.

evaluate the object structure similarity (between segmented map and ground-truth) by
considering both global statistics and local pixel matching in a compact term. Note that,
the higher the metric value, the higher the performance, for all metrics.

Table 1. Quantitative Comparison Between Improved NLC Method By
Our Proposed SOD Method And The Original NLC Method. The Best is
Remarked In Boldface. The Results Of The Other 2 Most Recent Unsuper-
vised VOS Models (ACO and FST) Are Shown In 5-6th Rows.

Methods
DAVIS UVSD

IOU Recall E-measure IOU Recall E-measure
OURS+NLC 0.581 0.659 0.871 0.478 0.529 0.832

NLC [9] 0.551 0.558 0.850 0.463 0.497 0.799

ACO [10] 0.518 0.589 0.818 0.446 0.458 0.802
FST [31] 0.558 0.649 0.852 0.401 0.329 0.778

From TABLE 1, we can see that our proposed SOD method improves the segmentation
performance of NLC by 0.030, 0.101 and 0.021 on the DAVIS dataset and 0.015, 0.032
and 0.033 on the UVSD dataset, in terms of IOU, Recall and E-measure respectively.
It demonstrates that a good saliency map can improve the performance of unsupervised
VOS. This results also proves the superiority of our proposed method.
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OURS+NLC performs better than the other two unsupervised VOS methods (ACO,
FST) on both datasets in all metrics, which can be seen in TABLE 1 clearly.
Some examples of the segmentation results are shown in Fig.4. We can see that our

proposed SOD method improved the segmentation performance of NLC clearly, which are
enclosed in a red bounding box.

5. Conclusions. In this work, we present a novel graph-based clustering with a new
spatiotemporal contour energy for salient object detection in videos. We provide detailed
derivations of our new spatiotemporal contour energy and present a superpixel-based
graph model that incorporates our new spatiotemporal contour energy to cluster the
salient object. We also validate the performance improvement of unsupervised VOS by
applying our proposed method to unsupervised VOS.
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