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Abstract. The effective manifold ranking (EMR), an extended graph-based algorithm,
is used quite successfully in content-based image retrieval (CBIR) for large image databases
where images are represented by multiple low-level features to describe the color, texture
and shape. Moreover, image features and appropriate distance metric are the important
factors for researchers to improve the performance of image retrieval. The success of
Deep Metric Learning (DML), is based on deep architectures to learn a suitable metric
from data and obtain embedded features that are more discriminative. The advantage of
low-level features is the ability to quickly recognize differences in color, texture and shape
without learning, while embedded features provide a higher discrimination but depend on
the pre-trained DML model and a given image object detection algorithm. To increase
the performance of the manifold ranking in image retrieval, in this paper we propose the
use of a combined rank to take advantage of both low-level features and embedded vectors
which represent high-level features derived from the pre-trained DML model. This new
rank focuses on embedded vectors when they are not degraded and uses the rank values
on low-level features instead if embedded vectors do not provide good retrieval results.
Experiments have been conducted to demonstrate the effectiveness of the proposed rank
when increasing the quality of EMR.
Keywords: Content-based image retrieval, EMR, Metric learning, Deep metric learning,
Triplet loss.

1. Introduction. In computer vision, distance metric learning is an approach based
on a distance metric that aims to establish similarity or dissimilarity between objects.
To improve performance, distance metric learning aims to build a good metric over in-
put space by reducing the distance between similar objects but increasing the distance
between dissimilar objects [1, 2]. Many studies have shown that distance metric learning
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significantly enhances accuracy in CBIR [3–5]. Xing et. al [1] demonstrated empirically
to indicate that using the learned distance metric based on given examples of similar pairs
is much more efficient than raw data while clustering with K-means. Weinberger et.
al [2] improved the performance in kNN classification by using trained distance metrics
in which the k-nearest neighbors always belong to the same class and distinguish with
examples from different classes by a large margin.

Yang [6] indicated that there exist the connections between Manifold Learning and
distance metric learning, i.e. the problems in distance metric learning is connected to
or the same with those in manifold learning. Related to manifold learning, Manifold
Ranking (MR) is known as a graph-based model that has been successfully applied to
content-based image retrieval (CBIR) using low-level image features [7–10]. To extend
its applicable ability to a large database, an Efficient Manifold Ranking (EMR)
proposed in [7] that aims at building an anchor graph on the database and upgrading
construction of adjacency matrix to improve the ranking speed. Giang, Huy et. al [8]
applied EMR to improve the quality of CBIR systems using low-level image features and
Relevance feedback. To raise a higher performance of the manifold ranking algorithm
EMR the authors in [9] proposed a method to normalize the values of feature vectors that
support finding the weight of each edge in the graph thereby raising the accuracy of the
ranking results in K-means clustering. The selection of the anchor points for an EMR
graph is also one of important ways to increase the quality of image retrieval. [10] proposed
an algorithm for determining the anchor points of the image database by upgrading EMR
using a modified FCM clustering. The authors in [11] enhanced the powerful ability
of EMR by integrating low-level features into hybrid features or normalized features to
calculate better weights. However, these above methods have only mentioned using low-
level features for EMR. The EMR algorithm applied to low-level features has been shown
to bring a good image retrieval result because these features describe images with color,
texture and shape which are normally invariant with rotation and scale. In fact, although
there are many kinds of low-level features and baseline machine learning models that have
been upgraded and studied for improving image retrieval efficiency [30–32], the retrieval
accuracy is generally not very high, does not fluctuate significantly with the different
query images, and rarely decreases.

Besides multiple low-level features used in CBIR, high-level features proved more effec-
tive because of the semantics they can obtain. In the last years, the high-level features
extracted from CNN models are considered as a semantic image representation that
reveals the strong ability in improving the accuracy of image recognition [12]. In the field
of face verification and recognition, Deep Convolution Neural Networks (CNNs) bring
significant benefits. The triplet loss used in deep CNNs has been proved to increase the
effectiveness and reach the state-of-the-art performance, in which the face images of the
same identity should be closer to the face images of the different persons [13, 14]. CNN
features are generally immutable with rotation and scale, and they depend on pre-trained
models and object detection algorithms [15], so despite the average accuracy in CBIR is
high but uneven for different types of query images. In particular, with the case of diverse
natural query images, the CNN features, which were derived from the model that had
been trained for a specific purpose earlier, may not be appropriate and reduce retrieval
quality.

In the last few years, Deep Metric Learning (DML), which is mentioned as a
combination of deep learning and metric learning, has exposed its important role in solving
learning tasks. While metric learning approaches are related to the linear transformation
of the data, DML utilizes deep architectures by obtaining embedded feature similarity
through nonlinear subspace learning, from which to develop problem-based solutions that
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are caused by learning from raw data. DML is based on the similarity relationship among
samples using popular networks, such as Siamese and Triplet [16]. However, to improve the
performance, sampling strategies also play an important role besides the structure of the
network model. For example, Triplet network uses sample triplets, one of which includes
an anchor, a positive, and a negative sample to train a network for classification. Learning
based on triplet loss ensures that the distance from the anchor to the positive sample is
closer than the anchor to the negative sample, thereby improving discriminating power of
the samples and increasing the success of network model. Wang et. al [17] solved the
limitations of sampling triplets by upgrading a selection strategy to find a margin that
allows the positive samples to be closer than the negative samples. As a result, input
data trained by DML becomes more discriminative and performance is achieved. DML
is also applied in many domains to gain better performance, such as offline signature
verification [18]. Similar to CNN features, embedded features are also immutable with
rotation and scale. CNN features are often extracted from nearby layers to avoid being too
bounded to the categories used during training [19], while embedded features are extracted
at the last layer and focus on increasing discrimination through semi-supervised learning.
Therefore, although the image query accuracy when using embedded features is higher
than using the CNN features on the same topic, it is unavoidably degraded in some cases
with specific query images.
From the knowledge we gained about the applicability and performance of EMR and

DML provided in CBIR, we decide to use high-level image features (i.e. embedded vectors
derived from the pre-trained DML model) as input feature database for EMR. However,
to solve their limitation, we combined with the use of low-level features in cases when
the ranking values on embedded vectors are low. As analyzed above, the advantage of
low-level features is the ability to quickly recognize differences in color, texture and shape
without learning. Therefore, to increase the performance of the manifold ranking in image
retrieval, in this paper, we propose the use of a combined rank to take the advantages of
both low-level features (LF) and embedded vectors (EV). The main contributions of our
proposal are as follows:
(1) Provide a combination of LF and EV effectively, thereby increasing the accuracy of

image retrieval results in CBIR.
(2) Demonstrated experimentally on the dataset VGG 60K. that, the similarity measure

on embedded vectors using EMR is more effective than Euclidean distance.
The rest of the paper is organized as follows. Section 2 reviews related words on image

retrieval. Sections 3 presents the framework. Section 4 provides the experimental results
and the analysis, followed by the conclusions in Section 5.

2. Related Work.

2.1. Deep Metric Learning. Deep Metric Learning, which utilizes deep architectures
to solve limitations that caused from raw data by obtaining embedded feature similarity
through nonlinear subspace learning [16]. The use of image data input which is embedded
feature vectors extracted from DML, has been proven to bring effectiveness in classification
and clustering. Thanks to the efficient discrimination power, DML is applied in various
domains, such as face verification and recognition [13, 20, 21], three-dimensional (3D)
modelling [22,23], offline signature verification [18] etc.
DML consists of three main parts, which are informative input samples, the structure of

the network model, and a metric loss function. Informative sample selection plays a very
important role to increase the success of DML in classification or clustering. Siamese,
Triplet and Quadruple networks are most commonly used to train samples in DML,
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however, Triplet network is simple but proved to gain high performance in face verification
and recognition [13]. There is the reason why in this paper we chose the DML with
Triplet network as a pre-trained model for extracting embedded vectors obtaining high-
level features. Triplet network trains on raw data using Euclidean distance measure and
sample triplets which contains an anchor, a positive, and a negative sample. The most
important part of DML models is loss functions which can be represented in many different
ways such as Contrastive loss [24], Quadruple loss [25], N-Pair loss [26]. However, a triplet
loss function is the one of these that is proved to provide a higher discrimination power
for data [13]. The triplet loss function, which aims to pull the anchor point closer to the
positive point than the negative point by a fixed margin α, is defined as follows:

LTriplet = max (0, ∥GW (X)−GW (Xp)∥2 − ∥GW (X)−GW (Xn)∥2 + α) . (1)

For X1, X2 is a pair of input samples, let Gw(X1) and Gw(X2) are generated as a new
representation ofX1 andX2 respectively, thenDw is used to calculate the distance between
the two samples.

DW (X1, X2) = ∥GW (X1)−GW (X2)∥2. (2)

The main purpose of learning based on triplet loss is enforcing a margin value to
achieve a goal that the distance from the anchor to the positive sample is closer than the
anchor to the negative sample, thereby improving discriminating power of the samples and
increasing the success of network model. The raw data is initially transformed through
triplet networks and then computed distance metric similarity to obtain embedded feature
vectors that finally contain more semantics and higher discrimination.

2.2. The Efficient Manifold Ranking. An important application of the EMR algo-
rithm is to rank an image database by image queries. In contrast to the standard manifold
ranking algorithm, to construct a similar measure between images, the EMR only used
anchor image vectors instead of the entire image database. In the EMR algorithm, the
adjacent relations of two image vectors are built based on anchor points instead of based
on the s-neighbor relationship of each image vector, meaning that Ei is called connected
to Ej if i ̸= j and there exists a certain common anchor point Ac (different meaning with
the anchor mentioned in DML) such that Ac is neighbor of each Ei and Ej.

With each Ei image vector symbol, let us denote by Nb(i; s) is the set of s anchor
feature vectors that are closest to Ei (s is an experimental parameter, such as s = 5) and

ds = max
l∈Nb(i,s)

{d (Ei, Al)} (3)

, with kernel

K (t) =
3

4

(
1− t2

)
,−1 ≤ t ≤ 1. (4)

The manifold measure is built by solving the following objective function:

EMR(r;Q) =
1

2

 ∑
1≤i,j≤n+1

wij

∥∥∥∥∥ ri√
Dii

− rj√
Djj

∥∥∥∥∥
2

+ µ
n+1∑
i=1

∥ri − r0,i∥2
 → min (5)

, where Q is a query image, (For convenience, we assign the image vector of Q to En+1),

r0,n+1 = 1, r0,i = 0, i = 1, n. (6)

Z =(zki)1≤k≤C,1≤i≤n+1, zki =
K

(
d(Ei,Ak)

ds

)
∑

l∈NB(i,s)

K
(

d(Ei,Al)
ds

)∀k ∈ Nb(i, s), zki = 0∀k /∈ Nb(i, s). (7)
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W =(wij)1≤i,j≤n+1,W
def
= ZTZ. (8)

wij =
∑

k∈Nb(i,s)∩Nb(j,s)

zki ∗ zkj, 1 ≤ i, j ≤ n+ 1. (9)

Dii
def
=

n+1∑
j=1

wij. (10)

As described above, the ranking results obtained by EMR algorithm depend on the
selection of the number of anchor points C and the set of anchor points {Ac}Cc=1.
In CBIR systems, EMR has been prove to bring the performance while using low-level

images features [8]. To increase the quality of the manifold ranking algorithm in EMR,
the authors in [9] presented a method that allows to find the edge weights of the graph
through normalizing the values of feature vectors, and as a result the accuracy of the
ranking results in K-means clustering is raised. Although K-means is quite simple, it
is an algorithm widely used for clustering and brings high efficiency. In original EMR
algorithm, the K-means is used to select clustering centers as anchor points. In a variant
of EMR proposed in [10], FCM algorithm has been improved in selecting suitable anchor
points for building an anchor graph.
However, the above studies with EMR are limited to deployment on image databases

with low-level features. A fact is that the embedded feature vectors, which are extracted
from raw data using DML, obtains more semantics and higher discrimination. The sam-
ples with more information improve the efficiency in K-means clustering [1], namely in-
creasing the quality of anchor points, thereby upgrading the performance of EMR.

3. Proposed EMR Ranking Combination. Image features can be divided into low-
level and high-level, where the low-level features contain the characteristics of image, like
color, texture, shape etc., and represented in a high-dimensional vector with less semantics
but without losing image details, while the high-level features of image can represent more
semantics but are limited by the reduction of color and texture details.
For CNN features, [19] has presented a deep analysis and experiments on ImageNet

dataset, from which the authors indicated that the two feature representations, fc4096a
and fc4096b, which are extracted from the first and the second layers of AlexNet, have a
better generalization ability than other features of CNN and bring the high performance.
However, CNN features are not widely used because the pre-trained model has classified
images in the last layers, which predefined objects to be identified. To improve accuracy,
the author in [14] proposed a weighted linear fusion between high- and low-level features,
i.e. CNN and SIFT, by integrating their respective ranking scores into average scores.
This fusion only aims to take the average scores but does not focus on analyzing the
weaknesses of each feature type in order to choose the appropriate rank. Therefore,
although the average accuracy increases, there are still very poor results compared to
using a single feature type for the same query.
Using high-level features represented by embedded vectors, the image query proved to

be remarkably effective with relatively high accuracy [13]. In [28] DML may provides a
framework which overcome above challenge and combine two separate modules together,
one is learning the color feature, texture feature and another is metric. However, this
module combination is quite complex and in general DML also has the same limitation
as CNN which is limited in color and texture representation. As an additional note, an
embedded vector usually represents the object area that is located from a natural image,
however, it is possible that locating objects is unsuccessful, so we assign the value of this
embedded vector as undefined (NaN) in our work.
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The above limitations of embedded features lead to the fact that when high-level fea-
tures (i.e. embedded vectors) are ineffective, it is possible to use low-level features to
replace. This allows us to take advantage of these features, thereby improving image
ranking results. We define a query problem in CBIR when the query image Q can or can-
not be found a related object area, corresponding to two situations that Iq (the embedded
vector of Q) is valued or (NaN). To solve the this problem, we assume that the original
dataset contains the images, each of which has a unique embedded vector corresponding
to the largest object identified by DML, represented respectively {I1, I2, I3, ...}. Depend-
ing on the value of Iq, we choose the ranking according to low-level featured images r∗lf.v.Q
or combine with the ranking of the high-level featured images, i.e. r∗i = F (r∗lf,Q,i, r

∗
ev,Q,i)

where r∗lf.Q.i and r∗ev.Q.i are calculated by EMR. The F function here is a combination func-
tion which allows choosing the appropriate rank and eliminating the case of low query
results (when using low- or high-level features separately). The following is our algorithm
in details.

Algorithm 1: CoEMR (Ω0,Ω1, T ) (Combination of EMR rankings on low-level fea-
tures and embedded vectors)
Ω0: pre-trained model of object detection.
Ω1: pre-trained model of DML.
T : the number of low-level feature sets.
Input: image dataset {Ii}1≤i≤n, query image IQ.
C: the number of anchors for EMR
Output: r = {ri}1≤i≤n, ri ∈ [0, 1]∀i = 1, n the combined similarity value of Ii ranked
by Q.
Put: In+1 = IQ.
Step 1 (offline):
1.1: Calculate low feature vectors {It,i}1≤t≤T,1≤i≤n of {Ii}1≤i≤n.

1.2: For each image Ii, calculate {Ipre,i}1≤i≤n by using model Ω0.

1.3: For each image Ipre,i, calculate embedded vectors {embvi}1≤i≤n by using model
Ω1.
Step 2 (online):
2.1: Calculate low feature vectors It,Q, Ipre,Q by using model Ω0

and embedded vectors embvQ by using model Ω1 Note, Ipre,Q = Ipre,n+1 = NaN
when the preprocessing is failure and then embvQ = embvn+1 = NaN .
2.2: Put

rlf,Q = {rlf,i}1≤i≤n+1, rlf,i = 0∀i = 1, n, rlf,n+1= 1.0

and calculate ranking values r∗lf,Q =
(
r∗lf,Q,i

)
1≤i≤n

based on low-level features

{It,i}1≤t≤T,1≤i≤n+1 by using EMR.
2.3: Put

rev,Q = {rev,i}1≤i≤n+1, rev,i = 0∀i = 1, n, rev,n+1= 1.0

and calculate ranking values r∗ev,Q =
(
r∗ev,Q,i

)
1≤i≤n

based on embedded vectors

{embvi}1≤i≤n+1 by using EMR.

Step 3: Combine ranking values r∗lf,Q =
(
r∗lf,Q,i

)
1≤i≤n

,

r∗ev,Q =
(
r∗ev,Q,i

)
1≤i≤n

, and obtain r∗ = {r∗Q,i}1≤i≤n, where r∗i = F (r∗lf,Q,i, r
∗
ev,Q,i), 1 ≤ i ≤ n..

Return r∗ = {r∗Q,i}1≤i≤n.
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4. Experiment result.

4.1. Image Dataset. To proceed with the empirical part, we begin by selecting an
appropriate dataset to prove the arguments and algorithms proposed in this paper are
reasonable. The dataset should be large, complex and unlabeled. We choose face images
because the face image belongs to the same type of image object, distinguished through
image details, and has many variations compared to the background and posture. In
addition, the face image dataset has been tested for the ability of embedded vector,
invested in research on triplet loss and other strategies. However, the face recognition
accuracy of the trained dataset may be not good when applied on other datasets, the
parameters need to be adjusted or the dataset must be retrained.
For the above reasons, we selected the experimental dataset with a total of 60000 images

of 500 people taken from the VGGFace2 dataset (test image) which is a highly complex
and unlabeled. The image dataset is divided into 500 equal layers, each containing 20
randomly selected images from the testVGG image set, which has a capacity of 768Mb.
This dataset is temporarily named VGG 60K. Image names are assigned by a folder name
with a picture number. This dataset is temporarily named VGG 60K (Figure 1) in which
the image name is assigned by the folder name with the image number.

Figure 1. Dataset VGG 60K.

4.2. Feature extraction. In our experiments, we selected and extracted five global low-
level features to describe an image: Color Moments, LBP, Gabor Wavelets Texture, Edge,
and GIST. All of these features of the dataset VGG 60K are normalized so that each vector
component of each image is within the range [-1, 1] and then are concatenated into one
vector with a dimension of dlf = 809 (see [9]) In parallel, each image in this dataset is run
through the deep learning model Ω1 with the Multi-task Cascaded Convolutional Networks
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(MTCNN) algorithm [29] that is used to detect faces. The obtained result is an image that
has been cropped, aligned and normalized with a size of d x d (d = 160). The process of
selecting an appropriate and unique cropped face image for an ID can be associated with
manual filtering. In the next step, this face is put into the model Ω2 FaceNet using the
Triplet loss and a corresponding embedded vector with dimension deb = 128 is obtained.
In [10], Quy, Huy et.al use only low-level features but the obtained accuracy with EMR
is quite high, even in the case of a partially covered human face. In addition, although
embedded vectors can represent edges and borders well, not sure about color and texture.
Therefore, for a specific problem, a low-level feature combination is needed to provide the
best retrieval performance.

4.3. Evaluation Indicators and Experimental Parameters. Given a query image-
set Q, for each image q ∈ Q, using the similarity metric given by EMR, we chooseN = 120,
is the number of images in a class that have the highest similarity values. The precision
value is average ratio between the number of relevant images in the N image that being
retrieved by the similarity of each image q. Calling the set of relevant images to the query

q ∈ Q is
{
Ij1 , Ij2 , ..., Ijmj

}
, the mAP value for all queries is calculated as follows:

mAP =

 1

|Q|

|Q|∑
j=1

mj

N

 ∗ 100. (11)

Most of the previous studies only mentioned the value of mAP, but the experimental
process also indicated that although mAP may be high, images with poor retrieval results
still exist (Figure 2.a). Therefore, we added two indicators, minP and σP , to determine
the minimum accuracy and the uniformity of the retrieval results of all the images in Q.
The minP indicator is important for checking and eliminating impaired cases which cause
low retrieval results. An improved minP value evaluates the recovery efficiency in queries
that give the worst results. A small σP value proves that accuracy is uniform and good
for all query images in Q. The indicators are calculated as follows:

minP = min
1≤j≤|Q|

(mj

N

)
∗ 100. (12)

σP = σ
{mj

N
∗ 100

}
1≤j≤|Q|

. (13)

Experimental parameters. We set the following general parameters for all of our
experiments. The coefficient T = 5 corresponds to the five selected low-level feature sets
(listed in Section 4.2.). The parameter α is adjusted in the range 0.3−0.5 and the number
of anchors C for EMR is set with 10000.

4.4. Experiment and discussion. To evaluate the Image retrieval efficiency (IRE)
of our proposed algorithm, four experiments were conducted on the selected dataset
VGG 60K.

Exp1. IRE with low-level features
In this experiment, we proceed with standard EMR, using K-means clustering, for low-
level features of VGG60K. From each layer, 24 images are selected randomly. Similar to
the experiments conducted in [9,10], the accuracy obtained from Exp1 is 70.61% and used
to compare with our next experiments. With low-level features, the IRE of the retrievals
is quite stable because the standard deviation σP of the obtained results is low according
to Formula 12 (see Table 1). Therefore, it can be confirmed that the EMR is effective for
the image dataset with low-level features.
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Exp2. IRE with embedded vectors
With the same VGG 60K image dataset, we divide this experiment into two cases of using
Euclidean distance in Exp2.1 and of using standard EMR in Exp2.2 to measure IRE with
embedded vectors. An embedded vector is selected corresponding to the query image that
contains the largest face in size. Exp 2.1 achieved an accuracy of 83.54%, higher than
the case of only using low-level features in Exp1. In Exp 2.2, the accuracy is 88.71%
which is 18.1% higher than Exp1. The combined results from the Exp2 indicate that
using the embedded features brings good retrieval performance and the image similarity
measurement on embedded vectors using EMR is more efficient than using Euclidean
distance.

(a)

(b)

Figure 2. Query image n000667 0057.jpg, (A) the case of using Euclidean
distance and (B) the case of using EMR.
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We also compared the σP and minP indicators of the two cases, using Euclidean dis-
tance with embedded vectors and using EMR with embedded vectors (EMR-EV) and
low-level features (EMR-LF). As the results in Table 1, σP is higher and minP is lower
when using Euclidean distance, which shows the stability of this method is lower and
its recovery efficiency is also less than that of EMR. Figure 2 is an example of the low
stability of retrieval results when using Euclidean distance.

Reviews. We conducted a number of experiments and found that there are some
specific cases for poor retrieval results although the query image has very good embedded
vector. Figure 2 is the result of the query image n000667 0057.jpg with two cases of using
Euclidean distance and standard EMR. The returned images have very high error rates,
even up to 100%. This poor recognition results are due to pre-trained datasets, which are
trained on another set of images, and now are used for another dataset, namely VGG 60K

(a) n000001 0004.jpg

(b) n000998 0119.jpg

Figure 3. Query image n000001 0004.jpg and n000998 0119.jpg, (A) high
accuracy and (B) low accuracy.
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in this paper. This is a common problem when applying Deep Learning to CBIR because
the features are extracted from the model that has been trained on a previous dataset.
Although the average accuracy is high (88.71% in Exp 2.1), the embedded vectors with

EMR do not always produce the desired results. This result does not reflect the uniformity
of each specific case when there are images that return almost 100% accurate query results
but also images that return very poor results, Figure 2 as an example.
More observations, when making queries with n000667 0057.jpg using EMR-LF, the

query results returned not bad, accuracy 61.67%. For some complex images such as the
objects in the image overlap or a part of the object is obscured, these objects cannot be

(a)

(b)

Figure 4. Query image n009294 0046.jpg, the top 20 images obtained (A)
EMR-EV and (B) EMR-LF.
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cropped or if they can be cropped, the accuracy results are reduced. But when using
EMR-LF, the results are much better, as shown in Figure 3.

Figure 4 illustrates the retrival results after applying each EMR-EV and EMR-LF
separately for query image n009294 0046.jpg, EMR-EV is inefficient in the case.

With observations in Exp1 and Exp2, we continue to conduct the experiment Exp3
with the cases of embedded vectors and and low-level features combined.

(a)

(b)

Figure 5. The top 20 images obtained by proposed method, (A) Query
image n000667 0057.jpg and (B) Query image n009294 0046.jpg.

Exp3. Query effectiveness of combining low-level features and embedded vectors. In
this experiment, we used two EMRs to rank respectively for embedded vectors and low-
order feature vectors, thereby combining these rankings according to the algorithm pro-
posed in section 3, using the coefficient alpha (α). So we divided this experiment into
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three small cases and found the best combined results as follows:

Case 1: Conduct combining two rankings from two EMRs according to Formula 14.
The obtained accuracy is 89.60%, higher than in Exp2.2.

r∗c = max (rev, rlf ) . (14)

Case 2: Conduct combining two rankings from two EMRs according to Formula 15.
The obtained accuracy is 90.61% with α1=0.5, higher than in Exp2.2

r∗c =

{
r∗ev , if r∗ev ≥ α1 or r∗ev ≥ r∗lf .
r∗lf , otherwise.

(15)

Case 3: Conduct combining two rankings from two EMRs according to Formula 16.
The obtained accuracy is 91.7% with α1=0.3, higher than in Exp2.2.

r∗c =

{
r∗ev , if r∗ev ≥ α2.
r∗lf , otherwise.

(16)

Figure 5 show the efficiency of the combination methods from the rankings of the two
EMRs (EMR-EV and EMR-LF) with two query images n000667 0057.jpg and n009294 0046.jpg.
The results returned are more accurate.

Table 1. Value indicators of experiments

EXP Method mAP minP σP
1. EMR (low-level feature vectors) 70.61% 0.83% 0.155179
2. Euclidean distance on cropped objects (EV) 83.54% 0.83% 0.179354
3. EMR on cropped objects (EV) 88.71% 0.85% 0.178524
4. EMR and combination of rev and rlf 91.70% 9.71% 0.130461

We summarize the results from the experiments into Table 1 according to our argu-
ments and the cases presented in this paper. The obtained results increased gradually
in terms of matching accuracy, which is calculated by mAP, minP and σP , in the fol-
lowing order: EMR applied for low-level feature vectors, Euclidean distance on cropped
objects (embedded vectors), EMR on cropped objects (embedded vectors) and EMR and
combination of ranks on EV and LF.

5. Conclusions. The combination of low-level feature vectors and embedded vectors in
CBIR has proven to be effective by using both color-texture-shape and trained semantic
characteristics. This contributes to partially solving the problem of the gap between low-
level features and semantics. The combination of low-level features and embedded vectors
was presented in paper with two corresponding ranking values calculated separately by
the EMR algorithm which were then combined simply into a single ranking. This com-
bination overcome the cases where embedded vectors have a degraded ranking quality of
EMR due to the diversity of query images and the immanent limitation of a pre-trained
for Deep Metric Learning.

In addition, the paper also demonstrates that for a pre-trained model for Deep Metric
Learning, namely FaceNet [13], using the Euclidean distance to measure the similarity
between embedded vectors, the results were lower than when using the similarity values
obtained by the EMR algorithm. The experimental results have proved the effectiveness
of the proposed method. In the next study, we intend to use the EMR algorithm to
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select triplet sets (anchor, positive, negative) for the triplet loss approach in Deep Metric
Learning to obtain effective embedded vectors, thereby increasing the efficiency of image
queries.
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