
Journal of Information Hiding and Multimedia Signal Processing ©2022 ISSN 2073-4212

Ubiquitous International Volume 13, Number 4, December 2022

Expeditiousness Serpent Using CTR Mode and
Logistic Map

Huwaida T. Elshoush
Computer Science Department

Faculty of Mathematical Sciences and Informatics
University of Khartoum, Sudan

htelshoush@uofk.edu

Batool H. Abdallah
Computer Science Department

Faculty of Mathematical Sciences and Informatics
University of Khartoum, Sudan
Batoolhussein3@yahoo.com

Duaa M. Ahmed
Computer Science Department

Faculty of Mathematical Sciences and Informatics
University of Khartoum, Sudan

duaatom@icloud.com

Abdalmajid A. Ishag
Computer Science Department

Faculty of Mathematical Sciences and Informatics
University of Khartoum, Sudan

Majid.fms010@gmail.com

Sittana O. Afifi
Applied Mathematics Department

Faculty of Mathematical Sciences and Informatics
University of Khartoum, Sudan

Sittanams@hotmail.com

Received September 2022; revised November 2022

Abstract. This paper presents an approach to enhance the execution performance and
security of the Serpent algorithm. Our proposed method SerpentCTR−LogisticMap used
CTR encryption mode with multi-threading to allow the parallel execution of the algo-
rithm. In addition, we made a function which generates the encryption key automatically
using Logistic map. This adds more robustness to the algorithm because of the intricate of
the key. The proposed method was implemented using Python 3.9, and the comprehensive
experiments clearly show that the proposed SerpentCTR−LogisticMap algorithm achieved
superior reduction rate in execution time of up to 91%. From the security facet, the
experimental results demonstrated the effectiveness of the proposed method against brute
force attacks. Moreover, NIST Statistical Test Suite was used to measure the randomness
of the proposed method, and the results affirms its efficacy. In particular, compared to
prevailing schemes, it proclaimed its effectiveness.

Keywords: Serpent, Logistic Map, Parallel Computing, Multithreading

214

https://orcid.org/0000-0003-0142-393X
http://scholar.google.com/citations?hl=en&user=AVDpUW0AAAAJ

Using Logistic Map and CTR Mode to Expedite Serpent 215

1. Introduction. Encryption is an ancient technology for securely transmitting and re-
ceiving data. The encryption provides data confidentiality, anonymity and authentication,
integrity to secure data from attackers.

In January 1997, the National Institute of Standards and Technology (NIST) announced
the development of a Federal Information Processing Standard (FIPS) for Advanced En-
cryption Standard (AES). It was the beginning of an effort to replace the Data Encryption
Standard (DES). Call for AES candidate algorithms resulted in 15 candidate algorithms.
Five of them have been selected as AES finalists. Serpent was one of them [1–3].

Serpent is a symmetric block cipher, where a 128-bit block is ciphered utilizing a 256-bit
key using 32 different rounds. The first 31 rounds are identical, consisting of the same
sequence of elementary operations, while the last round differs only in the key schedule.
Instead of mixing a single key like in the first 31 rounds, an additional key is mixed in
the last round. Hence, 33 round keys are required in the whole process that are generated
from the external key [4–9]. Figure 1(a) represents the Serpent encryption process.

Figure 1. The Serpent Algorithm

The algorithm consists of three basic functions, namely Initial Permutation (IP), 32
Round function and Final Permutation (FP). IP is applied on plain-text in order to
rearrange the bits. It is given by (i∗32) mod 127. Applying this to a plain-text, produces
a data block B0. The round function is performed 32 times on Bi. The algorithm defines
eight S-boxes (Si). Inside these rounds, each data block Bi is mixed with a sub key Ki

(i.e. taking XOR), then Bi⊕Ki is passed through Simod8 which is one of the eight S-boxes.
After this, a linear transformation to the Si(Bi ⊕Ki) is applied to get Bi+1, where i = 0,
1, 2. . . 30. In the 32nd round (i.e. last round), a 33rd key is XOR-ed instead of applying
a linear transformation (LT). Now the final permutation (i ∗ 4) mod 127 is applied to get
the cipher text. The whole process is described shortly as [8–12]:

B0 = IP (p)
Bi+1=LT (S-boxi mod 8(Bi ⊕Ki))

where i= 0, 1, 2. . . 30
B32 = S7(B31 ⊕K31 ⊕K32)
C = FP (B32)

216 H.T. Elshoush et al.

Concerning the decryption, the inverse S-boxes, the inverse linear transformation and
reverse order of sub keys are used. Figure 1(b) represents the whole decryption process
of Serpent Algorithm [5][9].

There are different encryption modes for block ciphers. Specifically, in counter mode
(CTR) no single block of cipher is dependent upon a previously calculated block [13,
14]. Each block can be calculated independently. Therefore, this could be paralleled by
splitting the cipher into chunks for each individual thread to encrypt or decrypt. Hence,
speeding up the process.

The idea of parallelism was suggested by Pendli et al [15] to enhance the execution
time of AES algorithm on multiple cores processors. Their experimental results achieved
considerable reduction in time, and hence was recommended to be used with similar algo-
rithms. Nagendra et al [16] also proposed enhancing AES performance using parallelism.

The commencement of this work is precisely to enhance the performance and security
of Serpent. Ergo, the proposed approach improves the execution time of Serpent by using
multithreading to accelerate the speed of encryption and decryption processes using CTR
mode [8]. Moreover, the proposed approach enhances the security by generating different
keys for each block using Logistic Map. The execution performance of the proposed
method is then compared with the traditional Serpent and some recent related works.

Our contribution can be summed up as follows:

• Expediting the Serpent by dividing the input into blocks and further producing
Logistic Map chaos-based sub-keys for every block, with parallel CTR mode imple-
mentation.
• Strengthen the Serpent from a security aspect, by creating Logistic Map chaos-based
sub-keys for each block which clearly adds more strength to the algorithm due to the
complexity of the sub-keys. Besides, using a different key for every distinct block
conceals plaintext patterns.
• Testing the proposed method manifests its efficacy by being speedy and secure.
• Moreover, our proposed method gave superior results compared to the state-of-the-
art schemes.

The remainder of the paper is structured as follows: the recent schemes in enhancing
the performance and security of the Serpent are examined in the next section. Section 3
elucidates the proposed method. The experimental results and analysis are represented
in section 4. Finally, section 5 concludes the paper and recommends some future work.

2. Related Work. Here are some improvements of Serpent from functionality aspect.
Early in 2016, Singh et al [17] suggested an algorithm named Block Key Generation

(BKG) that generated multiple keys for every block from single user defined key. Hence,
each block has a different key and is not depending on the output of the previous blocks.
This eliminates any data pattern and lets each block to run independently.

Kadhim et al [18] suggested a new approach for Serpent algorithm by depending on
modifying the process and round as the traditional Serpent has more time and simple
complexity. This algorithm is used to encrypt wave media. Their paper has a new
structure that has many techniques, such as Mix Column, S-box, IP, and IP-1, in order
to increase the complexity. As a result, they found that the consumed execution time for
Serpent is more than traditional block ciphers because the S-boxes need more time, so
they present a new idea for S-box which consumes less time compared with the original S-
box. Also, the new structure of Serpent can be used to encrypt text and sound files (Multi
input). In addition, the complexity of Serpent can increase by using new functions in new
structures. Versions of the S-box instructions are presented, requiring only 5 registers and
also utilizing parallelism.

Using Logistic Map and CTR Mode to Expedite Serpent 217

To enhance the performance of Serpent, Elkamchouchi et al [19] used chaotic map-
ping and cycling group instead of S-box. The number of rounds is hence reduced to 10.
Moreover, from security facet, chaotic map adds complexity to the key, hence strengthen
Serpent more.

Farooq et al [12] improved the Serpent Algorithm computationally and algebraically
making it compatible in different usages like Rijndael Algorithm. Their method uses
4×4 S-box, which consists of bytes instead of nibbles, and is constructed through the
multiplicative group of finite commutative chain rings. Furthermore, all the operations
in the work coincides with the operations of the commutative chain ring. They modified
the Serpent algorithm by using different S-boxes and the cipher in a way that it satisfies
the AES requirements and is even better than the Serpent algorithm. The modification
occurs in the form that it become 31% less complex and faster than the original algorithm.

Yousif [20] propound modifying Serpent algorithm by replacing the static permutation
and substitution with dynamical properties using logistic chaos map and standard map.
The proposed dynamic initial permutation (IP), final permutation (FP), substitution box
(S-box), and the generated round keys give the best randomness compared with classical
Serpent algorithm and also can reduce the number of rounds and time usage. Their
method has sensitivity to any change in the key since it uses chaotic map in the key
round generation. And also, is more robust than classical Serpent since it uses another
chaotic map to create dynamic permutation and substitution.

Zagi et al [21] proffer to improve and support the confidentiality of data while adhering
to the external structure of the standard algorithm, relying on designing a new approach
to the key generation function because the sobriety of block cipher relies on the use of
a strong and unique key. Several functions are used, such as Gost external structure,
with a combination of Shift <<<, AES key schedule, and MD5. The developed Serpent
algorithm aims to preserve the general structure and main layers of the standard algo-
rithm. The results of the modified algorithm appear more complicated and random and
enhance the spread and confusion properties of the data. Their new method is used to
encrypt all types of data. The diffusion and confusion property of the bits of the modified
Serpent was tested using five metrics: five basic statistical tests, the NIST test set, coding
runtime, brute force attack and analytical attack. Concerning the NIST test, the result
sub-keys passed all the test and achieved a full spread for bits.

Recently in 2022, Elshoush et al [9] suggested improving Serpent by running it in
parallel using EBC mode and further a key is generated for every block using Lorenz 96
chaotic map. Their method achieved a reduction in execution time by 53.2% compared to
traditional Serpent, whilst our proposed method attained up to 91% using five threads.

3. The Proposed Expeditiousness SerpentCTR−LogisticMap.

3.1. Automated Key Generation Using Logistic Map. Chaos in dynamical systems
has been investigated over a long period of time. With the advent of fast computers, the
numerical investigations on chaos have increased considerably over the last two decades
and by now, a lot is known about chaotic systems [22–26]. One of the simplest and most
transparent system exhibiting order to chaos transition is the logistic map [27].

The logistic map is a polynomial mapping (equivalently, recurrence relation) of degree
2, often cited as an archetypal example of how complex, chaotic behavior can arise from
very simple non-linear dynamical equations. The map was popularized in a 1976 paper by
the biologist Robert May, in part as a discrete-time demographic model analogous to the
logistic equation written down by Pierre François Verhulst. Mathematically, the logistic
map is written as in equation 1 [27, 28]:

218 H.T. Elshoush et al.

xi+1 = µxi(1− xi) (1)

where xn is a number between zero and one that represents the ratio of the existing
population to the maximum possible population.

This nonlinear difference equation is intended to capture two effects [27]:

• reproduction where the population will increase at a rate proportional to the current
population when the population size is small.
• starvation (density-dependent mortality) where the growth rate will decrease at a
rate proportional to the value obtained by taking the theoretical ”carrying capacity”
of the environment less the current population.

In the proposed expeditiousness SerpentCTR−LogisticMap, we applied an auto generation
of the encryption key using the logistic map function using equation 2:

Xi+1 = R×Xi × (1−Xi) (2)

which receives two initial values x and r, that are generated using a random number
generation function as shown in algorithm 1:

Algorithm 1: Generating encryption key using Logistic Map

Output: Key: Encryption key
1 Function LogisticMap(key, blockno):
2 x← randomnumber(0, 1) ; // generating the initial value x

3 r ← randomnumber(0, 4) ; // generating the initial value r

4 for i of x do
5 xi ← r ∗ x(1− x) ; // Logistic map

6 key ← converkeytohexa ; // key=(x*10pow16)/256

7 Return: Key

3.2. Encryption using the Proposed SerpentCTR−LogisticMap. The proposed expe-
ditiousness SerpentCTR−LogisticMap uses CTR encryption mode. In the CTR encryption
mode, blocks are independent of one another, once the initial vectors have been gener-
ated, both encryption and decryption of blocks can be done in parallel. Furthermore, the
CTR mode is considered to be very secure and efficient for most purposes. So we made a
new function which encrypt and decrypt the plain-text and cipher text respectively using
the method of the CTR encryption mode. In addition, to boost the parallelism, we used
threads to get more efficiency from the modified algorithm. However, one problem with
the CTR is that a synchronous counter needs to be maintained at both receiving and
sending ends. Losing track of this counter could lead to incorrect recovery of plain-text.
Algorithm 2 demonstrates the encryption process using CTR [29]. The proposed method
split-up the input data into fixed-length blocks according to the Serpent block size, which
is 128 bit. Finally, the ciphered blocks are united together to form the final cipher text.

3.3. Decryption using the Proposed SerpentCTR−LogisticMap. Algorithm 3 presents
the steps taken to decrypt a cipher text using the proposed SerpentCTR−LogisticMap with
multithreading. As in algorithm 2, the proposed method also split the cipher text data
into fixed 128 bit blocks, and then finally, the produced blocks are merged together to
form the final plaintext.

Using Logistic Map and CTR Mode to Expedite Serpent 219

Algorithm 2: Encryption process using CTR

Input: P,K, IV,NT,E − IV // P=planetext; K=Encryption key;

IV=initial-vector; E-IV=encrypted IV NT=number of threads

Output: C,K, // LC=cipher-text ; K=Encryption key

1 Function Encrypt-CTR(R, IP, SIP, PNO):
2 nonce← IV

3 Function Split-blocks(P,NT):
4 ReturnListofblocks

5 for each block do
6 encrypt(K,IV) ReturnE − IV
7 Xor (block,E-IV) ReturnC
8 for each C do
9 join (c)

10 end
11 end
12 Return : LC
13 End Function

Algorithm 3: Decryption process using CTR

Input: C,K, IV,NT, d− IV // C=cipher-text; K=Encryption key;

IV=initial-vector; NT=number of threads; D − IV =decrypted IV

Output: C,K, // LP=Plain-text ; K=Encryption key

1 Function Decrypt-CTR(R, IP, SIP, PNO):
2 nonce← IV Function Split-blocks(C,NT):
3 ReturnListofblocks
4 for each block do
5 dncrypt(K,IV)ReturnE − IVXor (block,E-IV)ReturnP for each C do
6 join (P)
7 end
8 end
9 Return: LP

10 End Function

4. Experimental Results and Analysis. This section presents series of experiments
to evaluate the performance and demonstrating the efficiency of the proposed expedi-
tiousness SerpentCTR−LogisticMap in relation to the execution time, and comparing its per-
formance with the traditional Serpent. From the security aspect, the key space of the
proposed method has been investigated. Moreover, comparisons to related schemes are
also conducted.

4.1. Preliminaries. The proposed SerpentCTR−LogisticMap and traditional Serpent were
implemented using Python 3.9. All the experimental results were tested on a laptop with
Windows 64bit OS with 4 GB RAM, Core i5 processor with 2.20 GHz speed.

4.2. Performance testing. Performance testing is conducted to know the proposed
SerpentCTR−LogisticMap performance compared to the traditional Serpent and some pre-
vailing recent work. Effectively, the system is tested under multiple and different envi-
ronments and it meticulously checks the time taken by the proposed method to respond

220 H.T. Elshoush et al.

under varying block sizes and varying number of threads. Hence, it shows how it performs
in terms of responsiveness and stability when implemented under differing conditions.

4.2.1. The Encryption/Decryption Process Performance Using Two Threads. Here, the
Proposed SerpentCTR−LogisticMap performance is tested and compared with the traditional
Serpent using varying number of blocks and two threads. Table 1 and figure 2 clearly show
the efficacy of the proposed method over the traditional Serpent in terms of encryption
execution time. Likewise, table 2 and figure 3 presents the performance comparison of
the decryption process using the proposed method and the traditional Serpent, affirming
the performance efficiency of the proposed method.

of Traditional Proposed Time Execution
blocks Serpent SerpentCTR−LogisticMap Reduction rate in %
500000 17697.33 15432.955 13%
1000000 34688.72 29873.57 14%
1500000 60182.26 45884.81 24%
2000000 66056.65 61993.94 6%

Table 1 Encryption Execution Time for the Proposed
SerpentCTR−LogisticMap Compared with Traditional Serpent Using Two
Threads

Figure 2. The Encryption Process Performance of the Proposed
SerpentCTR−LogisticMap Compared with Traditional Serpent Using Two
Threads

of Traditional Proposed Time Execution
blocks Serpent SerpentCTR−LogisticMap Reduction rate in %
500000 15872.51 14394.5 9%
1000000 30840.49 27791.02 10%
1500000 50218.26 42612.92 15%
2000000 61638.85 57570.13 7%

Table 2 Decryption Execution Time for the Proposed
SerpentCTR−LogisticMap Compared with Traditional Serpent Using Two
Threads

Using Logistic Map and CTR Mode to Expedite Serpent 221

Figure 3. The Decryption Process Performance of the Proposed
SerpentCTR−LogisticMap Compared with Traditional Serpent Using Two
Threads

Figure 4. The Encryption and Decryption Execution time of the Pro-
posed SerpentCTR−LogisticMap Using Different Number of Threads

4.2.2. The Performance of the Proposed SerpentCTR−LogisticMap Using Varying number
of Threads. The graph of figure 4 presents the effect of varying the number of threads
(from 1 up to 8 threads) in the encryption and decryption execution time for the pro-
posed SerpentCTR−LogisticMap. Blatantly, the more number of threads used, the less is the
execution time, and hence the better is the performance.

4.2.3. Performance Results of the Proposed SerpentCTR−LogisticMap Using Five number of
Threads. Table 3 illustrates the execution time for the proposed SerpentCTR−LogisticMap

compared to the traditional Serpent algorithm using varying number of blocks with five
threads. Patently, the performance test revealed that the proposed method is more effi-
cient for both encryption and decryption processes. Moreover, the execution time reduc-
tion rate reaches up to 91%, hence asserting the effectiveness of the proposed method.

222 H.T. Elshoush et al.

of Traditional Proposed Execution Time
blocks Serpent SerpentCTR−Logisticmap Reduction rate in %

Enc Dec Enc Dec Enc Dec
100 3.760 3.496 3.337 2.939 11% 16%
1000 36.431 33.365 32.672 30.213 10% 9%
10000 354.66 330.47 339.90 324.95 4% 2%
100000 3469.41 3291.66 336.88 309.51 90% 91%

Table 3 Execution time Comparison of the Proposed
SerpentCTR−LogisticMap Compared with Traditional Serpent Using Five
Threads

Its worth noted that execution time reduction rate is much better using five number of
threads than using only two threads as shown in tables 2 and 3. Ergo, using more number
of threads in parallelism, the superior is the performance.

4.3. Security Analysis.

4.3.1. Key Space Analysis. From the security aspect, the key space of the proposed
method is analyzed and is given by the following equation 3:

n× 2256 (3)

where n is the number of blocks.
The traditional serpent, on the other hand, has a key space of only 2256, which is

incomparable to our proposed method. Furthermore, the more number of threads used,
the better execution time as demonstrated in figure 4.

4.3.2. The Security of the Logistic Map. The proposed method enhances the security by
generating sub keys for each block using the Logistic Map, which is chaos-based. Chaotic
systems are well suited to encryption and secure transmission because of its characteristics
of being unpredictable, random, ergodic and high sensitive to preliminary conditions [8].
Hence, adding complexity to the Serpent. Moreover, all block keys can be generated prior
to the initiation of the Serpent, hence encrypting each block in parallel and thus hide
plaintext patterns. Furthermore, running the enhanced Serpent in parallel CTR mode
makes the algorithm expeditious.

4.3.3. The Randomness of the Proposed Method SerpentCTR−LogisticMap. The randomness
property of the proposed SerpentCTR−LogisticMap is tested using the Statistical Test Suite
(STS) recommended by the NIST [30], which ensures that the output is statistically
indistinguishable when a random output is used. This NIST suite consists of 15 distinct
tests, where a probability (P-Value) is calculated for each test. A method passes any
specific test if the P-Value is in the range 0.01 ≤ P ≤ 1. As specified in the guidelines
of the NIST, the null hypothesis is that the sequence being tested is random. The tests
have been conducted on a significance level of 0.01, which signifies that the probability
of rejecting the null hypothesis while it is true is 0.01 [30]. Figure 5 manifests that the
proposed method passed all tests successfully, and thus affirms the efficacy of the proposed
method.

Using Logistic Map and CTR Mode to Expedite Serpent 223

Figure 5. Examining the randomness of the Proposed
SerpentCTR−LogisticMap using NIST statistical test suite

4.4. Comparison with State-of-the-Art. The proposed SerpentCTR−LogisticMap is fur-
ther compared in terms of the reduction in execution time with the works of Pendli et
al [15], Rahmah et al [21] and Elshoush et al [9]. Obviously, as illustrated in table 4, it
is blatant that the proposed method prove superior to the prevailing enhanced Serpent
schemes by attaining a reduction rate of up to 91% using five threads, whereas [9] achieved
48.1 - 53.2%, [15] achieved a reduction of 40 - 45% and [21] a 20.6 - 23.8% reduction in
execution time.

Table 4 Comparison of the Time Execution Reduction Rate in % for
different Serpent Enhanced Schemes

Reference Algorithm Time Execution
Reduction rate in %

Pendli et al [15] 2016 AES 40 - 45%
Rahmah et al [21] 2020 Serpent 20.6 - 23.8%
Elshoush et al 2022 [9] Serpent 48.1 - 53.2%

Proposed Method Serpent up to 91%

5. Conclusion. A new method to expedite the Serpent algorithm is proposed. The
proposed SerpentCTR−LogisticMap method uses CTR encryption mode enabling the paral-
lel execution of the data blocks. Specifically, distinct sub-keys were produced for every
different block using random key generator through the Logistic Chaotic Map, hence con-
cealing plaintext patterns. Moreover, adding more security due to the complexity of the
keys. Furthermore, the sub-keys may be generated prior to the execution of the algo-
rithm, ergo speeding it up. In addition to the Logistic Map randomness key generation,
an exceedingly large key space contributes to higher security and assured the strength
against brute force attacks. Moreover, NIST Statistical Test Suite was used to evaluate
the randomness of the proposed method, and it passed all tests successfully ratifing its

224 H.T. Elshoush et al.

efficacy. The proposed method was tested with respect to execution time and the exper-
imental results accomplished affirmative results in reduction rates of up to 91%. Ergo,
the effectual results of the proposed method compared to the traditional Serpent gave
reassurance of its efficacious and affirms its superiority to existing schemes. Therefore,
the proposed SerpentCTR−LogisticMap proclaimed its effectiveness.

For future work, we recommend to implement the proposed method in encrypting
images, as it is reckon to attain great results.

REFERENCES.

[1] D. A. Osvik, “Speeding up Serpent,” presented at the AES Candidate Conf., pp.
317–329, Citeseer, 2000.

[2] K. Kabilan and M. Saketh, and K. K. Nagarajan, “Implementation of Serpent Cryp-
tographic Algorithm for Secured Data Transmission,” IEEE, pp. 1-6, 2017.

[3] R. Anderson and E. Biham, and L. Knudsen, “The Case for Serpent,” presented at
the AES Candidate Conf., 2000.

[4] S. Simha, Prathibha and Prof. H. Priya, “Enhancing Cloud Security with the Imple-
mentation of Serpent Encryption Algorithm,” Imperial Journal of Interdisciplinary
Research, vol. 3, no. 5, 2017.

[5] H. R. Zagi and A. T. Maolood, “A Novel Serpent Algorithm Improvement By The
Key Schedule Increase Security,” Tikrit Journal of Pure Science, vol. 25, no. 6, 2020.

[6] M. Tayel, G. Dawood, and H. Shawky, “A Proposed Serpent-Elliptic Hybrid Cryp-
tosystem For Multimedia Protection,” presented at the 2018 Int. Conf. on Advances
in Computing, Communications and Informatics (ICACCI), IEEE, pp. 387-391, 2018.

[7] Y. H. Ali, and H. A. Ressan, “Image Encryption Using Block Cipher Based Serpent
Algorithm,” Engineering and Technology Journal, vol. 34 (2 Part (B) Scientific), pp.
278–286, University of Technology, 2016.

[8] H. T. Elshoush, B. M. Al-Tayeb, and K. T. Obeid, “Enhanced Serpent algorithm
using Lorenz 96 Chaos-based block key generation and parallel computing for RGB
image encryption,” PeerJ Comput. Sci., 2021. 7:e812 http://doi.org/10.7717/peerj-
cs.812

[9] H. T. Elshoush, K. T. Obeid, and M. M. Mahmoud, “A Novel Approach to Improve
the Performance of Serpent Algorithm using Lorenz 96 Chaos-based Block Key Gen-
eration,” Journal of Information Hiding and Multimedia Signal Processing, vol. 13,
no. 1, Mar. 2022

[10] R. Anderson, E. Biham, and L. Knudsen, “Serpent: A candidate block cipher for
the Advanced Encryption Standard,” Página oficial do SERPENT, dispońıvel em
http://www. cl. cam. ac. uk/˜ rja14/serpent. html, 2005.

[11] M. Naeemabadi, B. S. Ordoubadi, A. M. Dehnavi and K. Bahaadinbeigy, “Compar-
ison of Serpent, Twofish and Rijndael encryption algorithms in teleophthalmology
system,” Advances in Natural and Applied Sciences, vol. 9, no. 4, pp. 137-149, Apr.
2015.

[12] T. Shah, T. ul Haq, and G. Farooq, “Serpent Algorithm: An Improvement by 4× 4
S-Box from Finite Chain Ring,” in Proc. 2018 Int. Conf. on Applied and Engineering
Mathematics (ICAEM) IEEE, 2018, pp. 1-6.

[13] A. Altigani, M. Abdelmagid, and B. Barry, “Analyzing the Performance of the Ad-
vanced Encryption Standard Block Cipher Modes of Operation: Highlighting the
National Institute of Standards and Technology Recommendations,” Indian Journal
of Science and Technology, vol. 9, no. 28, 2016.

REFERENCES 225

[14] D. Bujari and E. Aribas, “Comparative Analysis of Block Cipher Modes of Op-
eration,” presented at the Int. Advanced Researches & Engineering Congr., 2017
http://iarec.osmaniye.edu.tr/. Osmaniye/TURKEY 16-18 November 2017.

[15] V. Pendli, M. Pathuri, S. Yandrathi, and A. Razaque, “Improving performance of
Advanced Encryption Standard algorithm,” in Proc.Mobile and Secure Services (Mo-
biSecServ), 2016 2nd Int. Conf. on, IEEE, 2016, pp. 1-5.

[16] M. Nagendra and M. C. Sekhar, “Performance improvement of Advanced Encryption
Algorithm using parallel computation,” Int. Journal of Software Engineering and Its
Applications, vol. 8, no. 2, pp. 287-296, 2014.

[17] H. Singh and P. Singh, “Enhancing AES using Novel Block Key Generation Algorithm
and Key Dependent S-boxes,” Cyber-Security and Digital Forensics, vol. 30, 2016.

[18] Prof. A. F. Kadhim, S. Hassin, and G. Ali, and I. Ahmed, “New Approach for Serpent
Block Cipher Algorithm Based on Multi Techniques,” Iraqi Journal of Information
Technology, Iraqi Association of Information, vol. 7, no. 3, pp. 1-13, 2017.

[19] H. M. Elkamchouchi, A. E. Takieldeen, and M. A. Shawky, “A Modified Serpent
Based Algorithm for Image Encryption,” in Proc. National Radio Science Conf.
(NRSC), 2018 35th, IEEE, vol. 25, no. 6, pp. 239-248, 2018.

[20] I. A. Yousif, “Proposed a Permutation and Substitution Methods of Serpent Block
Cipher,” Ibn AL-Haitham Journal For Pure and Applied Science, vol. 32, no. 2, pp.
131-144, 2019.

[21] H. R. Zagi and A. T. Maolood, “A Novel Serpent Algorithm Improvement by the
Key Schedule Increase Security,” Tikrit Journal of Pure Science, vol. 25, no. 6, pp.
114-125, 2020.

[22] R. Matthews, “On the Derivation of a ”Chaotic” Encryption Algorithm,” Cryptolo-
gia, Taylor & Francis, vol. 13, no. 1, pp. 29-42, 1989.

[23] Z. Lin, G. Wang, X. Wang, and S. Yu, and J. Lü, “Security Performance Analysis of
a Chaotic Stream Cipher,” Nonlinear Dynamics, Springer, pp. 1-15, 2018.

[24] K. Audhkhasi, “Chaos Based Cryptography,” CiteSeerX Scientific Literature Digital
Library and Search Engine, 2009.

[25] L. Kocarev, “Chaos-based Cryptography: A Brief Overview,” IEEE Circuits and
Systems Magazine, IEEE, vol. 1, no. 3, pp. 6-21, 2001.

[26] D. Xiao, X. Liao, and S. Deng, “One-way Hash Function Construction Based on the
Chaotic Map with Changeable-parameter,” Chaos, Solitons & Fractals, Elsevier, vol.
24, no. 1, pp. 65-71, 2005.

[27] S. C. Phatak and S. S. Rao, “Logistic map: A possible random-number generator,”
Physical Review E, vol. 51, no. 4, pp. 3670, 1995.

[28] Lin You, Jiawan Wang and Bin Yan, “A Secure Finger Vein Recognition Algorithm
Based on MB-GLBP and Logistic Mapping,” Journal of Information Hiding and
Multimedia Signal Processing, vol. 7, No. 6, pp. 1231-1242, November 2016

[29] H. Lipmaa, and P. Rogaway, and D. Wagner, “CTR-mode encryption,” Citeseer. MD,
vol. 39, pp. 114-125, 2000.

[30] M. M. Mahmoud and H. T. Elshoush, “Enhancing LSB Using Binary Message Size
Encoding for High Capacity, Transparent and Secure Audio Steganography–An In-
novative Approach,” IEEE Access, vol. 10, pp. 29954-29971, 2022, doi: 10.1109/AC-
CESS.2022.3155146.

	1. Introduction
	2. Related Work
	3. The Proposed Expeditiousness SerpentCTR-Logistic Map
	3.1. Automated Key Generation Using Logistic Map
	3.2. Encryption using the Proposed SerpentCTR-Logistic Map
	3.3. Decryption using the Proposed SerpentCTR-Logistic Map

	4. Experimental Results and Analysis
	4.1. Preliminaries
	4.2. Performance testing
	4.3. Security Analysis
	4.4. Comparison with State-of-the-Art

	5. Conclusion
	REFERENCES

