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Abstract. Underwater environments are more challenging than that of terrestrial. The
performance of a controller or the augmented system depends on the real measured data,
so noise on data readings can be fatal. To effectively and adaptively control noise fre-
quency, the Active Noise Cancellation (ANC) was developed. The primary focus of this
paper is to design a system by modifying the parameters of FxLMS to reduce noise. The
required equations is analyzed and discussed briefly. Moreover, the system is simulated in
MATLAB, and the filtered result is analyzed. Based on the simulation results, this pro-
posed model can filter out noisy signals, particularly when there is a significant variation
in the data and no knowledge of the noise frequency that might affect sensor readings.
Keywords: FxLMS, Kalman Filter, Signal Denoising, Signal Enhancement

1. Introduction. It is very challenging to eliminate noise from a signal in an underwater
environment without losing some of its information. Acoustic active noise cancellation
(ANC) got a lot of attention for separating noise from a noisy signal. In ANC, a 180-
degree phase signal (anti-noise) is generated and used to interfere destructively with the
unnecessary noise. Bernard Widrow et al. pioneered the core concept [1][2].

Various methods have been proposed in order to improve the performance of the ANC.
RLC, LMS, and their variants (NLMS, VLMS, and so on) are popular because they have
fewer complications [1]. The RLS algorithm is known for its fast rate of convergence.
However, the algorithm’s ability to track estimation can be compromised due to its re-
liance on the model, input data, and correlation matrix. As the computation progresses,
the correlation matrix may lose its property and become unstable, resulting in explosive
divergence. This instability can cause the algorithm to fail in accurately tracking the
estimation [3]. As a result, the LMS and its successor algorithms are the most widely
used algorithms. The Filtered-X LMS (FxLMS) algorithm is a simple variant of the LMS
algorithm, which was developed independently in the context of adaptive control systems,
and originally introduced as a modification in applications where an intervening system
exists in the error path [4] [5].

The LMS algorithm, which is based on the steepest descent method, cannot produce
an accurate anti-noise signal as it does not consider secondary path effects. In contrast,
the FxLMS algorithm is computationally simple and accounts for secondary path effects,
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making it a viable option for ANC applications [6]. However, several other ANC algo-
rithms have been proposed to improve convergence properties, such as ANC systems in the
frequency domain, RLS-based algorithms like FxRLS and FxFTF, Lattice ANC systems,
and IIR filter-based LMS algorithms like FuRLMS and filtered-v algorithms. Despite
their advantages, these methods may suffer from inherent stability problems, computa-
tional requirements, and numerical instability problems [7]. For these reasons, FxLMS
remains a promising option for ANC applications.

The step size is the most inherent feature of the Least Mean Squares (LMS) algorithm
that FxLMS inherited, and it requires careful adjustment. The Small step size, required
for small excess mean square error, results in slow convergence. Large step size, needed
for fast adaptation, may result in loss of stability. For controlling the step size and making
it variable rather than fixed, we used the Kalman filter. Kalman filter was proposed by
R. E. Kalman in 1960 [8] is popular for having easy computation, memory requirements
and good capability on overcoming noises. There are various types of Kalman Filter, such
as standard Kalman Filter, Extended Kalman Filter, Unscented Kalman Filter etc [9].
The paper used standard Kalman filter since it contains enough part of equation for noise
reducing.

The paper is organized in the following way: Section II presented all the necessary
equations of FxLMS and linear Kalman filter, and also devoted to the developing of a
modified FxLMS with Kalman filter to reduce active noises. Section III is devoted to
the simulation and discussions of the obtained results. The conclusion section closes the
paper.

2. Materials and Methods. The aim of this paper is to demonstrate a simulation,
where we proposed a noise reduction model by modifying existing FxLMS algorithm,
employing Kalman filter. The step size of FxLMS needs to be carefully adjusted. We
replaced step size µ with kalman gain in each iteration. There are two step sizes in
FxLMS, one in LMS part and another in the secondary noise path. So, in that case, the
whole simulation based on three assumptions: using µ during LMS and Kalman-Gain at
secondary noise path, using Kalman-Gain during LMS and µ at secondary noise path,
and using Kalman-Gain during both in LMS and in secondary noise path. Finally, we
compared data with novel FxLMS algorithm based on Signal to noise ratio (SNR). Our
experimental data shows that after using kalman, it filtered noisy signal more efficiently
than before. All the simulations are carried away by MATLAB R2015b on a Windows 10
PC (x64) with an Intel i3-7100U CPU and an Nvidia GeForce 920MX GPU card.

2.1. FxLMS Algorithm. From data preparation to final evaluation, total methodology
is divided into several subsections. Widrow, Shur and Shaffer proposed the integration of
a secondary path model in the reference signal path (from speaker to error microphone)
[11]. Figure 1 shows the block diagram of FXLMS algorithm on how the noise reduction
algorithm works and the definition of each symbol is shown in Table 1.

ANC has commonly used in two different configurations of the FxLMS algorithm, one
is a feedback ANC approach proposed by Olson and May in 1953 [12], in this model,
a microphone is used as an error sensor, and also as a reference sensor. The second is
a feed-forward ANC approach, which uses two sensors, an error sensor, and a reference
sensor. This setup is used for narrow-band noise control using a non-acoustic reference
sensor [13].

Figure 1 shows the general how the feedforward approach uses a different microphone
to measure the signal at the output. It is significant to know the software elements that
are part of the ANC controller, these are the LMS adaptive algorithm that updates the
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Figure 1. Block diagram of FxLMS algorithm.

Table 1. Symbols and Definitions for Figure 1

Symbols Definitions
x(k) Noise signal
xs(k) Noise signal combined with assumed Sh(z)

based on S(z)
P(z) Primary path transfer function
yp(k) Primary noise signal at the error micro-

phone
e(k) Modified error signal
S(z) Secondary path transfer function
C(z), Sh(z) Controller for the FxLMS algorithm
yw(k) Generated noise based on C(z) controller
ys(k) Output of adaptive filter

coefficients of the W(z) adaptive filter, which in this case is represented as an FIR filter.
The C(z) filter represented the secondary path estimation or the transfer function between
the secondary source (control source) and the error microphone. To derive the FxLMS
algorithm, a similar method of the LMS algorithm is utilized but with the steepest descent,
the following update equation can lead to this minimization:

WNew = WOld +∇J(n) (1)

Where W is the controller weight error,
µ is an adaption step size (scalar),
J(n) is the power of error signal.
The derivation of ∇J(n),

J (n) = E{e2(n)}
Where E{.} denotes statistical expectation operator and E{.} is a theoretical function.

To avoid this operator, J(n) is approximated by

J (n) ≈ e2(n)

Then, estimate ∇J(n) as follows,

∇J (n) = ∇e2(n)

∇J (n) = 2e(n)∇e(n) (2)
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Now to estimate ∇e(n), the derivation is as follows based on the block diagram,

e (n) = d (n) + s (n) ∗ y(n)

Where s(n) is the secondary path impulse response.

∇e (n) = s (n) ∗ ∇y(n) (3)

Now to estimate ∇y(n), the derivation is as follows based on the block diagram,

y (n) = W Tx(n)

Where W is the controller weight vector and x is the reference signal tap vector (of the
same length as the controller length)

Now ∇y(n) can be expressed by,

∇y (n) =
∂y(n)

∂W

∇y (n) = x(n) (4)

Substitute (4) into (3)

∇e (n) = s (n) ∗ x(n) (5)

Substitute (5) into (2)

∇J (n) = 2e (n) .s (n) ∗ x(n) (6)

Substitute (6) into (1)

WNew = WOld + 2e (n) .s (n) ∗ x(n) (7)

The reference signal is filtered by ŝ(n) before passing through the standard LMS al-
gorithm. Therefore, resulting the compensation for secondary path. ŝ(n) should be esti-
mated through off-line or online secondary path techniques. If ŝ(n) denotes an estimate
of s(n), then

WNew = WOld + 2e (n) .̂s (n) ∗ x(n)

OR
WNew = WOld + 2e (n) .xf (n)

The stability of the FxLMS algorithm is highly dependent on the x f(n) power where
it directly proportional to the step-size µ. So, Step-size is indirectly proportional to the
steady state performance.

FxLMS is simple, fast, and surprisingly robust. Despite its straightforwardness, FxLMS
acquired the most central feature of the Least Mean Squares (LMS) algorithm is the step
size, and it undoubtedly requires precise adjustment. To properly control step size, we
utilized the Kalman filter.

2.2. Kalman Filter. The paper will use a standard Kalman filter since it contains
enough parts of the equation for noise cutting. Kalman Filter has two parts, the pre-
dicted part, and the update part. The standard Kalman Filter equation is shown in
(8)-(12).

Predict:

x̄t|t−1 = Ftx̄t−1|t−1 +Btut (8)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt (9)

Update:
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x̄t|t = x̄t|t−1 +Kt(yt −Htx̄t|t−1) (10)

Kt = Pt|t−1H
T
t (HtP t|t−1H

T
t +Rt)

−1
(11)

Pt|t = (1−KtHt) Pt|t−1 (12)

where x̄ is estimated state, F is state transition matrix,u is control variables, B is
control matrix, P is state variance matrix, Q is process variance matrix, y is measurement
variables, H is measurement matrix, K is Kalman gain, R is measurement matrix, t|t is
current time period, t− 1|t− 1 is previous time period, and t|t− 1 is intermediate steps.

To implement Kalman Filter algorithm, so that it can be used to reduce noise of sensor-
readings, some adjustments for the conditions are needed. Those adjustments are as
follows [14].

2.2.1. Predicting the state. On this stage, adjustments are done in (11) by giving the score
Ft = 1 because there is no state transition. Thus, reducing the system’s input component
Bt because the used system does not have any input ut. The adjusted equation is,

xt|t−1 = xt−1|t−1 (13)

2.2.2. Predicting the error. Since Ft = 1, then (9) becomes,

Pt|t−1 = Pt−1|t−1 +Qt (14)

2.2.3. Updating the state value. From (10), Ht = 1 since the sensor data that will be
filtered is only consisted of one sensor reading. Hence, the equation can be written as,

x̄t|t = x̄t|t−1 +Kt(yt − x̄t|t−1) (15)

2.2.4. Calculating the gain of Kalman. Since Ht=1, then (11) can be written as,

Kt = Pt|t−1(Pt|t−1 +R)−1 (16)

2.2.5. Updating the error value. Since Ht=1, then (12) can be written as,

Pt|t = (1−Kt) Pt|t−1 (17)

The Kalman Filter equation can be modified to reduce sensor reading noise once the
necessary adjustments have been performed. The weights given to the data and the
current-state estimate are represented by the Kalman-gain (at eq. 16), which can be
”adjusted” to get a specific performance. We replaced the step-size µ in the FxLMS with
this Kalman gain so that the step size is flexible according to the signal elements rather
than being fixed.

As we replaced step size, µ with Kalman-gain in the original FxLMS algorithm, we
needed to declare some necessary variables to calculate Kalman-gain out of the noisy
signal. During calculating Kalman-gain, we had to specify the values for Q (process noise
covariance) and R (measurement noise covariance).

The value of Q and R are chosen according to the system operations. Covariance Q
and R states may not be in general observable but the measurements should be related
to the states [16].

Q, the process noise covariance, contributes to the overall uncertainty. When Q is large,
the Kalman Filter more closely tracks large changes in the data than when Q is small.
The measurement noise covariance R determines how much information is used from the
measurement. When R is large, the Kalman Filter considers the measurements to be
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Figure 2. Relations between Q and R.

inaccurate. The three images below visualize the positional data. The red lines represent
the measurement data, the green lines are the estimated states. [17]

We need to balance between Q and R according to our needs. The vast majority of
noise estimation methods were designed with the assumption of uncorrelated state and
measurement noise in mind [18]. For example, if kalman used in tracking cars on a road,
then the constant velocity model should be reasonably good, and the entries of Q should
be small. Else if it is used tracking people’s faces, they are not likely to move with a
constant velocity, so the Q need to cranked up [19].

In [14], author used kalman filter to denoising signals. During their operations, they
discovered that the greater the difference between R and Q, the greater the mean error
values. Furthermore, the same R and Q values result in similar value of mean error,
whatever the values of R and Q. According to their analysis, the best parameters that
provide results with their original data characteristics have mean error values ranging
from 40 to 55 in the table below.

They experimentally showed that in case of signal denoising, the kalman filter yields
best results if the ratio between R and Q are in 100:1. Therefore, in our operation, we
kept R, Q ratio 100:1 too.

Table 2. Ratio between R and Q and their yielding mean error

No. of
Analysis

Kalman Filter
Parameter Value

R and Q
Ratio

Mean
Error

R Q
1 1 1 1 26.0677
2 1 0.1 10 44.7392
3 1 0.01 100 53.4466
4 10 0.1 100 53.4541
5 100 0.1 1000 56.9959

The flowchart of our modified FxLMS showed at above figure. When we replace step
size µ with kalman gain at secondary path operation, we get the best output by far.

The reference signal ¯x(n) travels from the source to the sensor through the fluid medium
P(z), where the sensor measures the resulting noise as p(n). To reduce this noise, a
controller W(z) is used to generate another noise signal y(n), with the aim of destructively
interfering with the noise signal x(n). It means that the controller has to be a model of
the propagation medium P(z). The least mean square algorithm is employed to adjust
the controller weight/coefficients. However, there is a fluid medium S(z) between the
actuator and sensor, known as the secondary propagation path, which must also be taken
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Figure 3. Modified FxLMS algorithm.

into account. Therefore, the adjustment process must be compensated for, taking into
consideration the estimate of Ŝ(z).

3. Results and Discussions. In this research, we generate a noisy signal, which will
then be filtered using two algorithms: the conventional FxLMS algorithm and a modified
version of the FxLMS algorithm developed in this study. The effectiveness of the modified
algorithm will be evaluated and compared to the performance of the conventional algo-
rithm. The step size, µ is used in two major operations in the FxLMS algorithm; one in
the LMS calculating process which is run in the secondary path, and another one in the
whole secondary noise path of FxLMS. So, in that case, we run whole simulation based
on three assumptions: a) Use µ during LMS and Kalman-Gain at secondary noise path,
b) Use Kalman-Gain during LMS and µ at secondary noise path, c) Use Kalman-Gain
during both LMS and secondary noise path.

In section (a), where we used µ during LMS and Kalman-Gain at secondary noise
path, yields better SNR value. In section (b), where we used Kalman-Gain during LMS
and µ at secondary noise path, we almost got same SNR in novel FxLMS and in our
modified FxLMS algorithm. In section (c), we used Kalman-Gain during both LMS and
secondary noise path. Here we got slightly better output than that of in section (b), but
in some samples, we got less SNR than novel FxLMS. So, the operation here is considered
unstable.

So, we concluded, if we don’t change µ during LMS operation and use Kalman-gain as
a replacement of µ during secondary noise path of FxLMS, we will get more stable and
better output. In figure 4, existing FxLMS and modified FxLMS plots are shown. In
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Table 3. SNR analysis between three assumption: a) Use µ during LMS
and Kalman-Gain at secondary noise path, b) Use Kalman-Gain during
LMS and µ at secondary noise path, c) Use Kalman-Gain during both LMS
and secondary noise path.

Use µ during LMS
and Kalman-Gain at
secondary noise path

Use Kalman-Gain
during LMS and µ at
secondary noise path

Use Kalman-Gain
during both LMS
and secondary noise
path

no. SNR of
FxLMS

SNR of
mod-
ified
FxLMS

no. SNR of
FxLMS

SNR of
mod-
ified
FxLMS

no. SNR of
FxLMS

SNR of
mod-
ified
FxLMS

1 12.41158 13.40830 1 11.48765 11.48765 1 12.39523 13.34103
2 11.50421 12.46322 2 11.06984 11.06986 2 11.62135 12.43485
3 12.10779 12.72214 3 10.97759 10.97759 3 12.02066 12.42624
4 11.52281 12.35170 4 11.56018 11.56018 4 11.15641 11.55346
5 12.16835 12.79602 5 11.73240 11.73242 5 10.33399 9.478464
6 12.23658 13.26459 6 11.81109 11.81109 6 10.11580 11.03627
7 11.09591 11.38486 7 11.73250 11.73251 7 11.80953 12.60883
8 11.64333 11.96308 8 11.64378 11.64377 8 12.36314 13.29479
9 11.64407 12.45536 9 11.31957 11.31932 9 11.59755 12.55345
10 11.10289 11.52138 10 11.52379 11.52379 10 11.36943 12.10035

this particular sample we have shown, having SNR of FxLMS is 11.706468 and modified
FxLMS is 12.226385.

As having higher SNR means more information, at figure 4(b) we got best output. In
4(a), filtered signal lost more information than that of 4(b). If we analysis noise residue
plots at figure 5, modified FxLMS got relatively less noise after each iteration, and at
the end of discrete time T, noise figures are way smaller than before that indicates, our
modified FxLMS capable of reducing noises much efficiently.

4. Acknowledgment. The authors gratefully acknowledge the Institute of Research and
Training (IRT), Hajee Mohammad Danesh Science and Technology University for their
support.

5. Conclusion. To conclude, this paper demonstrated an underwater acoustic active
noise cancellation (ANC) system using Filtered-x LMS and kalman filter. Based on the
simulation and test results, proposed model of modified Filtered-x LMS is able to reduce
noise in received signals. Performance of modified FxLMS is best when we keep using step
size µ during LMS and replace it with kalman gain at secondary noise path calculation.
The future recommendations that can be taken into consideration is by using variations
of kalman filter, multiple frequency tone testing, and also implementation towards the
industrial system.
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Figure 4. Plot analysis between received noisy signal and filtered signal
of (a) FxLMS (SNR = 11.706468), (b) modified FxLMS (SNR = 12.226385).

Figure 5. Plot analysis of noise residue after each filtering iteration of (a)
FxLMS (SNR = 11.706468), (b) modified FxLMS (SNR = 12.226385).
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