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Abstract. Today, the development of smart cities is relatively rapid, and one of the
components of a smart city is the Intelligent Transportation System (ITS). Vehicle
detection and assistance on the road is part of ITS, which can be done by identifying
the vehicle’s license plate. In the following study, the authors conducted the detection
and assistance of motorized vehicle license plates by modifying the TGA network.
Altering the TGA network on super-resolution video increases the accuracy and speed of
detecting vehicle license plates. Furthermore, with network modification, the temporal
information retrieved can be more balanced and have a more dynamic structure. We
made modifications in several parts : (i) using the PDC (Pyramid Deformable
Convolution) method for registration, where this process did not exist in the previous
TGA. (ii) on Temporal Grouping, group division is made dynamic depending on the
number of input frames. (iii) on the Intra Group Fusion Module, using the MSTC
(Mixed Spatial-Temporal Convolution) method, while on the previous TGA, using 3D
convolution. (iv) reducing the number of repetitions of the method DSC (Dense Skip
Connections) in feature extraction and reducing the use of GCSC (Group Convolution
with Skip Connections) only once in the Intra Group Fusion Module process. According
to the experiment, our modification can boost accuracy by up to 4.23% while
maintaining the same computation time. Therefore, this research contributes positively
to the problem of vehicle license plate detection.
Keywords: : Smart City, Intelligent Transportation System, TGA Modification.

1. Introduction. Smart cities are rapidly growing, and one important aspect is the
Intelligent Transportation System (ITS). ITS has several research areas that can be
explored, such as improving video frame extraction [1], developing image classification
methods [2], and building vehicle identification systems [3]. In particular, detecting and
identifying vehicles on the highway is a crucial component. Vehicle identification can be
accomplished by identifying the vehicle’s license plate [3–5]. Vehicle number plates are a
unique and visible identity and are a source of information regarding detailed
specifications and vehicle ownership. The author uses a digital image processing
approach to detect vehicle license plates. The image obtained must have a high
resolution for identification to be easy. However, obtaining vehicle license plate data
from CCTV recordings typically results in low-resolution images, making identification
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challenging [6–8]. In digital image processing, the image quality will be significantly
influenced by the level of resolution. The higher an image resolution, the greater its
pixel density and the richer the visual details. Another way to increase image resolution
is by using super-resolution techniques [9, 10].

Rapid scientific progress has made many super-resolution methods use a deep learning
approach in their applications. Deep neural networks are a data-driven approach that
examines the characteristics of input patterns. Continuous advances in deep learning
research show superior speed and accuracy compared to traditional computer vision
algorithms [11]. As a result, data scientists and practitioners often adopt this model in
the machine learning industry. Therefore, extending this deep learning approach in
super-resolution based image reconstruction applications is critical.

Most video super-resolution techniques generally depend on either time-based or space-
based temporal information. In a time-based system, frames are treated as time series data
and sent over the network [12,13]. This approach frequently employs an iterative method,
using the previously estimated high-resolution frame as input to aid in reconstructing the
next low-resolution frame. However, since it cannot analyze multiple frames concurrently,
this method can only utilize a limited amount of temporal information from earlier frames
and operates at a slower pace.

Super-resolution video with a space-based approach to low-resolution target frames
considers the large size of adjacent frames as an additional information resource [14].
Several techniques are used to combine this information, including selective fusion [15],
deep fusion [16], or 3D convolutional neural networks [17]. Compared to time-based
techniques, this supports maintaining correlation between frames while taking advantage
of parallel computations. Furthermore, video sequences represent spatial-temporal
information in three dimensions. Therefore, a model of merging spatial-temporal
information in neural networks using 3D-CNN provides a natural and economical
solution for super-resolution video [18]. The latest 3D-CNN network stacks 3D layer by
layer for super-resolution video.

In license plate detection, super-resolution video techniques enhance the resolution
of detected objects, transforming low-resolution frames into high-resolution ones. This
improvement is expected to increase the accuracy of license plate localization. In our
research, we use the YOLOv3 method to detect vehicle license plates because of its fast
and effective performance in license plate detection as in the research [19]. That research
also used YOLOv3 to detect similar problems for the license plate recognition. In addition,
the method also has a fundamental advantage, which is a simple architecture which makes
it rapid in detection and evidenced by the stable mAP with fast inference time.

Based on the description above, if the detection process produces a negative image or
many license plates are not detected, it will affect the character recognition process, such
as low character recognition accuracy. Therefore, our research focus on the performance
of super-resolution video in detecting license plate locations. The video super-resolution
method is Temporal Group Attention (TGA) with a temporal super-resolution technique
to obtain higher image quality [20]. In addition to improving visual quality, TGA is also
used to get more detailed information from each frame to detect the movement of plate
objects and produce more accurate detections. Our research also uses feature extraction
and attention module with the Mixed Spatial Temporal Convolution approach, which is
proven to handle detail recovery better in [15].

2. Briefly Overview of Related Work. Research conducted by [6] with title
Number plate recognition on vehicles using YOLO-Darknet. This research discusses the
introduction of vehicle license plate characters into the text. The study results indicate
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that the accuracy of credit using the YoloV3 method for numeric characters and letters
of the alphabet increases to around 88% and 97.6%, respectively, when pre-processing is
carried out. This study conducted experiments under various lighting conditions ranging
from -75 to +75. YoloV3 demonstrated significant accuracy in performance.

Sun [15] demonstrates video super-resolution using mixed spatial-temporal convolution
and selective fusion. This research proposes a video super-resolution network with Mixed
Spatiotemporal Convolution, which enables 2D CNNs to extract deeper spatial features
and capture temporal information between consecutive frames using 3D convolution as an
additional component to enhance detail reconstruction. Experimental results show that
MSTC significantly outperforms the performance of 2D or 3D CNNs, and the selective
feature fusion strategy better handles detail recovery. Additionally, comparisons across
various test videos with different types of motion, scenes, and input sizes demonstrate
that this approach achieves acceptable performance when processing multiple SR videos.
However, the performance could be better for small textures; some minor details still need
to be more transparent and straightforward than the ground truth.

Another research completed by [20], Video super-resolution with Temporal Group
Attention. In his research, Isobe proposes a new method for hierarchically combining
temporal information in video super-resolution. This approach utilizes spatial and
temporal information across all frames to enhance the details of low-resolution frames.
However, this research still needs to explain in detail the analysis of motion
compensation when the object in each frame experiences different movements.

Khan proposed a method called DSTnet: Deformable Spatio-Temporal Convolutional
Residual Network for Video Super-Resolution [21]. This research proposes a method
consisting of (2 + 1)D spatiotemporal residual convolution blocks with deformable
convolution layers to simultaneously utilize spatial and temporal information.
Experimental results confirm that DSTnet can effectively catch and model complex
motion between frames in the Vid4 benchmark dataset. The proposed method is
evaluated using SSIM and PSNR, achieving SSIM of 0.795 and PSNR of 26.39 dB.
Additionally, the proposed method has fewer parameters to learn during training,
making it computationally leaner and exhibiting fast learning capability.

3. Methodology. This method takes a sequence of N = 2n + 1 LR frames
{It−n, ..., It, ..., It+n} as input. Where It is the target frame. The SR video aims to
release a version of HR It. The framework consists of three main modules: motion
compensation, deep spatial-temporal feature extraction, and selective feature fusion.
Figure 1 shows the overall structure of the proposed network.

3.1. Motion compensation. Firstly, we extracted the first flat feature from each frame
adjacent to {F i

t−n, ..., F
i
t , ..., F

i
t+n} by utilizing shared 3×3 convolutional layers Ci(·). Then

we employ a Pyramid Deformable Convolution (PDC) as in [22] to align each neighboring
frame to a single target frame Ft at the feature level, as illustrated in Figure 2. This
involves applying pyramid processing to the shallow features of each neighboring frame
and the target frame to generate multi-scale features. At the l-th level of the pyramid,
offsets and aligned features are predicted using ×2 offset upsample and features aligned
from above at the (l − 1)-th level, we get:

∆P l
t−n = Cf ([F

i
t−n, Ft], (∆P l−1

t−n)
↑2) (1)

Zt−n = Cg

(
DConv(F i

t−n,∆P l
t−n),

(
(F i

t−n)
l−1

)↑2)
(2)

where:

1. ∆P l
t−n is the resulting offset for the deformable convolution at the l-level,
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Figure 1. Research Work Block Diagram

Figure 2. Motion Compensation Architecture

2. [·, ·] is a concatenation operation,
3. (·)↑2 is an upscale process with a factor of 2,
4. (F i

t−n)
l−1 is the generated features at the (l − 1)-th level,

5. Cf and Cg are general function consisting 3× 3 convolution layers,
6. DConv means the deformable convolution

The visual informativeness of each frame and avoiding harmful features entering into
the merging process, we used the attention module to calculate the correlation of each
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Figure 3. Entire network architecture with PDC and MSTC extensions
to TGA modification.

element between the features at each location, which shows how informativeness to
reconstruct target frame. The {Zt−n, ..., Zt−1, Zt+1, ..., Zt+n} aligned features fed into the
Ca(·) attention module. In particular, considering the aligned features of Zt−n, the
feature map of F l

t−n is obtained through the attention module.

F l
t−n = Ca([Zt−n, Ft]) (3)

Details of the concern module are shown in Figure 3. This module was first performed
by combining the features of Zt−n with Ft, then obtained the attention of 64-channel F l

t−n

maps.

3.2. Temporal Grouping. Two adjacent sets of N images were grouped based on the
duration of the target frame, and the original sequence was rearranged as
{G1, G2, . . . , Gn}, n ∈ {1, 2, . . . , N}, where Gn = {F l

t−n, F
l
t , F

l
t+n} is a downlink sequence

from the previous F l
t−n frame. The frame target is F l

t , and the last frame is F l
t+n. Note

that the target conditions are shown for each group and this method can easily be
generalized to any input frame. Clustering allows for the clear and efficient integration
of adjacent images captured at different time intervals. First, it ensures that the
contribution of adjacent images with varying time intervals is equally captured,
particularly in images with significant distortion, mismatch, and motion blur. When an
area is grouped (e.g., due to congestion), any lost information can be recovered by
another group. This indicates that information from different clusters complements each
other. Secondly, the reference conditions in each cluster guide the model in extracting
useful insights from adjacent frames, enabling an efficient extraction and synthesis of
information.

3.3. Mixed spatial-temporal convolution (MSTC). In Figure 4, we demonstrate
the construction of an MSTC when given successive features from several frames with a
size of T ×H ×W × C as input. T,H,W, and C denote the temporal duration, height,
and width in the spatial domain and the number of channels. We begin by independently
applying 2D spatial convolution of shared weights to each frame, as detailed below:

F 2D
t = Csc(F

l
t ), (4)

where t is the temporal dimension index, Ft is the input feature of frame t, and CSC(·)
is the 2D spatial convolution process seen in Figure 5. F 2D

t depicts the t-the frame has
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Figure 4. Illustration of a Mixed Spatial-Temporal Convolution (MSTC)
that integrates 3D temporal information as supplement materials into the
features generated by 2D spatial convolution

Figure 5. Illustration of 2D spatial convolution

extracted feature maps, which are self-independent features from each frame. Following
the 2D spatial convolution procedure, the independently recovered features only include
the learned spatial information from each frame.

We include a 3D convolution operation layer CTC(·) to explore the temporal correlation
between consecutive frames in addition to complementing the temporal signals in the video
for more in-depth feature development. The kernels of a 3D convolution operation are
represented as a 5D tensor. κ ∈ Rck×nk×tk×hk×wk , where ck, tk, hk, wk are the kernel sizes
for the C, T,H,W dimensions, and nk is the number of kernels. A 3D convolution layer
accepts the input 3D features Fl

n = {F l
t−n, F

l
t , F

l
t+n} and produces the feature maps F 3D

t

by implementing convolution along the temporal dimensions of the inputs,

F 3D
t = κ⊗ Fl

n (5)

3.4. Our TGA Procedure. In Figure 1, it is shown that our TGA is modified in several
parts. The main modifications involve registration using PDC for motion compensation
and feature extraction using MSTC in one of the reconstruction stages. In addition, we
also made dynamic depending on the temporal clustering stage according to the amount
of frame input and reduced the repetition of skipped connections. Our TGA modification
processes are summarized in the following Procedure 1.

4. Experiments. In order to assess the method, an experiment was carried out to
compare the detection results on frames with super-resolution and without
super-resolution. Additionally, the detection results will be compared to the actual plate
location by matching the number of empirical-looking plates, i.e., by cutting the image
of the detected plate to the size of the visible plate based on the detection results. The
dataset we utilize is proprietary data collected directly at one-way highway intersections.
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Procedure 1 TGA Modification with PDC registration and MSTC feature extraction

Input : LR image sequential data X = {It−n, ..., It, ..., It+n}, number of groups N
Output : HR image of It
Procedure:
1. For each image in X, extract a flat feature such that F = {F i

t−n, ..., F
i
t , ..., F

i
t+n}

by utilizing shared 3× 3 convolutional layers Ci(·)
2. Registration by applying PDC according to Equation (1)-(2) to obtain Zt−n and

acquire the feature map F l
t−n on each element of F using the attention module

in Equation (3).
3. Divide the registered data into groups of length N , i.e. {G1, G2, . . . , Gn}, for

n ∈ {1, 2, . . . , N} where Gn = {F l
t−n, F

l
t , F

l
t+n}.

4. Perform the feature extraction process with MSTC according to Figure 4 with a
sequence of processes using 2D spatial convolution and 3D convolution operations
in Equations (4)-(5) to get the output feature F ′

t

5. Apply attention map to get the upsampling sub-pixel image F̂ ′
t for each F ′

t .
6. Fuse features from multiple temporal groups based on the attention map results

with the Inter-group Fusion Module (IFM) into F̂t = IFM({F̂ ′
t}) and apply

bicubic upsampling (BU) on the LR image separately, which is Ît = BU(It).

7. concatenate the feature result of F̂t with the bicubic upsampling result of Ît to
get the HR image of It = Concatenate(F̂t, Ît).

It is a 30 FPS video with a 480 × 640 resolution. The video contains 8342 frames, of
which we divided 80% for training data and 20% for test data. On the training data, we
applied a Gaussian blur with a standard deviation of 1.6 and performed four times
downsampling to produce a low-resolution image. We used PSNR and SSIM scores to
evaluate the performance of the model.

In the MSTC module, the space-time extraction runs once for each cluster and
continues in the cluster-internal merge module. We used three 2D units for the spatial
feature extractor, followed by 18 2D units with 3D complete blocks and 3D integration
to integrate information in each group. In the intergroup compositing module, we used
N convolutional 2D units in 2D cubes and set the channel size of the convolutional layer
to 16 2D units. Our network accepts an odd number of low-resolution input frames. The
model is controlled by pixel-by-pixel L1 loss and optimized by Adams Optimizer.

Figure 6. Loss Value for Each Epoch on the Our TGA Model
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Figure 7. Qualitative comparison on video for 4× SR (PSNR / SSIM)

Table 1. Comparison of evaluation results of our TGA and original models

Model Frames PSNR SSIM Time (Seconds)
TGA 5 33.121333 0.965708 0.344177

7 32.962441 0.964119 0.344963
Our TGA 5 33.341816 0.966207 0.221901

7 33.291556 0.965986 0.568245

Weight loss during training is set at 5× 10−4, the learning rate is initially set at 2× 10−3

and then reduced by 0.1 every ten epochs at 50. The mini-batch size is set to 64 and the
training data is expanded by mirroring and twisting with a probability of 0.5. All tests
are run on servers with Python 3.6.4, PyTorch 1.1, and Nvidia P100 GPUs.

In the training process, the loss value is calculated for each iteration, and then the
values from several iterations are averaged to determine the loss for each epoch. Loss
training results from each epoch are presented in Figure 6. In the figure, the loss value
of each epoch is decreasing, meaning that the more epochs are done, the better the
results. The best loss value is at the 50th epoch, so the model at that epoch is used for
experimenting with the testing data. Table 1 presents the PSNR and SSIM results. It
shows that our TGA model with input frame 5 has the largest PSNR and SSIM accuracy
compared to other models, namely 33.341816 db and 0.966207. These results show that
our modifications have been successful. Figure 7 shows a visual comparison of one of the
frames in the validation data. This is evidenced by the SSIM value, which is close to one.
It means that the super-resolution image has a good level of similarity with ground truth.

The comparison results of the number of license plates detected with our
super-resolution method are shown in Table 2. From the table, the use of
super-resolution improves detection accuracy. Our TGA with 5 and 7 frames gives a
very significant increase in accuracy compared to no super-resolution. The average
accuracy obtained for all frames was 90.37%, an increase of 4.23% compared to without
Our TGA. These results are also in line with the precision and recall values, which
provide positive differences at relatively the same time. In conclusion, super-resolution

Table 2. Comparison of detection results with our TGA

Model SR Accuracy Precision Recall Time (Seconds)
No 86.67% 88.64% 97.50% 1.334589

Frames 3 88.89% 90.91% 97.56% 1.342622
Our TGA Frames 5 91.11% 93.18% 97.62% 1.375788

Frames 7 91.11% 93.18% 97.62% 1.388070
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with Our TGA generally improves accuracy, precision, and recall. Therefore, this
research contributes positively to the problem of vehicle license plate detection.

5. Conclusion. Our research proposes a new hierarchical neural network that
implicitly integrates time information. The input sequence is rearranged into several
contiguous groups with different frame rates to use complementary information between
frames effectively. Clustering allows you to extract spatiotemporal information by
combining 2D and 3D convolutions or hierarchically combining intergroup and
intergroup fusion modules. The intra-group fusion module extracts features within each
group, and the intra-group fusion module adaptively borrows complementary
information from different groups. Furthermore, a high-speed spatial alignment
technique has been suggested for addressing video footage featuring significant
movements. The modification method can rebuild a high-quality, high-resolution
framework and ensure consistency over extended periods. It demonstrates a license plate
position accuracy of 90.37% without utilizing SR models and 86.67% using the Yolo V3
network during recognition testing. In the future, we expect to improve the performance
of the TGA model so that it can be utilized in other fields.
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