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ABSTRACT. Identifying diseased leaves is one of the most critical tasks in agriculture.
In Vietnam, dragon fruit is particularly susceptible to various leaf diseases during its
development. Recently, artificial intelligence techniques have advanced significantly and
achieved notable success in image recognition. Therefore, applying Al techniques to iden-
tify diseased leaves, especially those of dragon fruit, is essential. One issue is that dragon
fruit leaves can suffer from numerous diseases. For instance, while there are 11 known
diseases affecting dragon fruit leaves, we only have data for 5 of them. Consequently,
training a deep learning model will only be effective for these 5 diseases, and adding
data for other diseased leaves can affect accuracy. To update the model without conflicts,
we have developed a semantic connection-based learning model aimed at creating separate
classification spaces for each label. Accordingly, we designed a semantic connection model
to integrate new features from both old and new classes to enhance accuracy. Our ex-
periments demonstrate superior performance, achieving 92% accuracy when adding new
classes.

Keywords: identifying diseased leaves; semantic connection-based learning; deep learn-
ing; leaf dragon disease classification
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1. Introduction. In recent years, the applications of deep learning in the agricultural
sector have achieved significant milestones [1][2][3]. Specifically, in the area of pest and
disease identification on plant leaves, many researchers worldwide have been implementing
new technologies such as Al and deep learning [4][5]. Identifying diseases on dragon fruit
stems is one of the challenging yet fascinating problems. Although it presents many
challenges, developing a deep learning model that can assist in the early detection of
diseases on dragon fruit stems would be a small yet beneficial success for farmers and the
agricultural industry in general.

The advent of artificial intelligence technologies has brought remarkable efficiency to
practical applications in image recognition problems [6][7]. With the increasing modernity
of technology, data is also growing at an astonishing rate, necessitating the development
of systems capable of accommodating this influx of new data. Accordingly, the greatest
obstacle in deep learning models is that learning new data classes can affect previously
learned models, leading to the forgetting of previously learned features [8][9][10]. There-
fore, some studies have inspired [11][12] the construction of deep learning models capable
of learning new data without forgetting the old features, demonstrating superior perfor-
mance and meeting the demands of today’s practical applications [13][14].

Convolutional neural network (CNN) models [15][16] generally generalize the features
and learn to produce fixed weights to perform classification tasks. Since training is mostly
based on fixed classes, the prediction process is relatively good and reliable. However,
learning new features can affect old features, causing conflicts between the new and old
features, resulting in suboptimal prediction models [17][18][19].

Some models [20][21] have been developed to learn new features while retaining old ones.
Most of these models involve a trade-off between stability in accuracy and flexibility in
adding new data features. In an era of increasing data, we need to enhance flexibility,
such as expandable network models [22] that can address flexibility when adding new
features and new labels. Most of these models are optimized to ensure that adding new
labels does not affect old labels through various mechanisms such as fixing old features
23] or combining features into tasks [24]; additionally, there are many other mechanisms.

To create deep learning models capable of recognizing various diseases on dragon fruit
plants with diverse classes and learning new classes in the future, we have optimized
the expandable network based on semantic connectivity learning to avoid feature loss
between tasks. Here, the key issue is to build a semantic connection space to represent
tasks without relying too heavily on samples, leading to reduced computational costs.

1.1. Related works. Deep Learning Models for Incremental Learning of Classes: Some
models are based on old label features, and when new label features are added, they do
not affect existing classes [25][26]. Methods that can maintain features by storing them
in a database [27] have the drawback of high storage costs and the need to retrain from
scratch. Research groups working on plant disease recognition [28] frequently use this
method in training their models. Data mapping methods through models that reflect
old features during training [29] incur high computational costs. Methods for adjusting
model parameters [30] to increase unbiased evaluations of more feature-rich labels have
also been explored. Recently, some models [31][32] based on teacher-student frameworks
help incorporate new labels, ensuring balanced prediction processes without bias towards
old labels in plant disease recognition problems. When adding new labels, deep learning
models often create large feature map frameworks to learn similar classifiers, thereby
adjusting features across all classes (both old and new labels). Two main factors affect
model expansion: the memory cost for training multiple features and the computational
time required when adding new labels.
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Pre-trained Deep Learning Models: We can leverage pre-trained models from research
groups worldwide to address the issue of new and old label features [33][34]. In recent
years, many recommendation models [35][36] have been extensively trained and have
proven effective for image recognition tasks, making these backbones advantageous to
use. Some feature extraction models for storage [37][38] have also significantly improved
the ability to learn important features in images, especially for plant disease images. Many
groups have enhanced loss functions [39][40] to support the recognition of leaf diseases,
and these functions can be reused to evaluate models for dragon fruit disease recognition.
Additionally, incorporating multi-modal [41][42] approaches to handle various pests and
labels from different models into a comprehensive model is a growing trend. Using pre-
trained models to transfer necessary parameters into the dragon fruit disease recognition
model is an effective and accurate approach.

1.2. Motivation and contribution. In this paper, we propose a model based on Se-
mantic Connection Learning (SCL) to address the aforementioned challenges. To enhance
efficiency between new and old tasks, we construct a feature label connection space based
on the semantics of each feature, aiding in the recognition of individual tasks for each la-
bel. This approach allows for effective learning of new classes without affecting previously
learned classes. These working spaces are learned by adjusting pre-trained models, and to
address training costs and capacity issues, we utilize parameter copying from pre-trained
models to improve the process of continuing to learn new labels. This way, we can lever-
age the strength of old labels with new ones while efficiently and optimally aggregating
informational features from multiple labels.
The main innovations and contributions of this work include:

1. Construct training feature spaces to train the proposed Semantic Connection-based
Learning (SCL) model. We refine pre-trained models to save training costs and
resources while achieving desired accuracy when adding new labels.

2. Build a dataset for diseases on dragon fruit, named D-Dragon. D-Dragon is a dataset
we collected from various dragon fruit fields in Vietnam. The images we collected
include dragon fruit, dragon fruit stems, and various pests and diseases on dragon
fruit plants.

3. Analyze the effectiveness of the training model in adding new labels, and objectively
evaluate the accuracy on the D-Dragon dataset against current state-of-the-art mod-
els.

2. Proposed method.

2.1. Problem Definition. The semantic connection learning model is a continuous
learning model for classification that creates a unified classifier [10] Suppose there is a
sequence of different classes L in the training set Dy qining, denoted as L = Ly, Lo, ..., Ly,
where L; = X, y;,7 € N, is the ¢ — th training set with label y;,. X will include data
features belonging to class y;, and y; belongs to Y, where Y is the label space of the
dragon fruit disease recognition problem. Our objective is to ensure that when adding the
sequence of classes L into the model training, the model’s performance remains unaffected
and it can still accurately classify dragon fruit diseases.

2.2. Model Architecture. As described in Figure 1, we propose a new model for Se-
mantic Connection-based Learning (SCL) to strengthen the model with both old and new
labels. Initially, the model is trained using available labeled datasets, and then during
the model’s usage phase, when additional data is introduced, a new model is created with
the new labels integrated into the working space. The SCL model is trained to create
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FIGURE 1. Overview of the proposed Semantic Connection-based
Learning (SCL) algorithm

working spaces that are unbiased towards either old or new labels, allowing the model to
learn both simultaneously. Additionally, the SCL model aggregates unassigned labels for
transfer learning and synthesis, ensuring that the model can continue to assimilate the
aggregated knowledge within the working space.

2.3. Pre-training Objectives. In today’s modern world, reusing pre-trained models
[43] is quite common. Instead of fine-tuning and training from scratch, we can leverage
pre-trained models to maintain previously trained data. The basic idea is to inherit some
important pre-trained weights or copy critical layers and then modify the final layers to
suit the specific problem at hand. We will construct the models as follows:

model_old = copy_layer(model_pretrain(L;)),i € N (1)

After obtaining the pre-trained model to continue learning with new classes, to avoid
conflicts with old classes, we will expand the model by freezing certain layers and extending
connections between models before training. Here, the working space will connect the
models:

model_new = working_space(keep(model_old1l, model_old2, ..., model _oldN)), model _old(L;)
2)
Once the new model is created, the working space updates this model to encode in-
formation about the tasks into future predictions, optimizing to avoid conflicts between
old and new labels. Moreover, the SCL. model also promises to prevent overwriting new
label information onto old labels. This benefits the exploration of new data in the future,
enhancing operational capabilities and optimizing training costs and usage.

3. Model Description.

3.1. Semantic Connection-based Learning. From the CNN backbones [44], we ob-
tain comprehensive feature vector embeddings. We construct classifiers on the [45] pro-
totype to support the prediction model. Specifically, each workspace will contain em-
beddings information to perform specific tasks corresponding to each label. Essentially,
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after converting from images to feature vector embeddings, the data becomes significantly
lighter and requires fewer parameters compared to the original image parameters. The
cost of storing these embeddings is also quite low.

Once the overall embedding set is obtained, we will establish connections between the
embedding space features and the corresponding label sets. Here, prototype extraction
will be performed from the i-th layer in the connection set workspace:

Pi= D1 =1) g

where, N is the number of data samples in class i. P; is the connection set of prototypes
in class i. [ represents the prototype extraction method.

When a new class is introduced, the connection set and the workspace will carry
out their tasks. Here, the recalculations will be performed in the new workspace with
new connection sets. For example, if we have workspace W; with connection sets P =
Py, P, ..., Py, adding a new label P,.,, will update W; and P by recalculating the weights
and aggregating the prototypes of the old classes in the new workspace.

To avoid conflicts between the old and new workspaces, the connection sets will carry
out their tasks to find the new connection sets with the closest similarity. When adding
a new connection set P; to the old workspace, to find the best weight set for the new
workspace, there needs to be a similarity measure between the connection set P; and one
of the old connection sets P}, calculated across the classes using the workspace prototypes:

T
P )
T Bl 1B

The similarity reflects the local relationship between the connection sets of the old
classes and the new classes. Additionally, similarity is a way to share the workspace

between the old and new workspaces. After calculating the similarity, we will establish
relationships between the classes and thereby construct the new workspace.

stm

3.2. Working Space. The essence of the workspace is to act as a transitional area from
one connection set to another across classes, with the input being the feature vector
embeddings of images. The workspace aggregates multiple embedded prototypes from
different connection sets. These connection sets extract specific features according to the
tasks of each class. Thus, the prototypes are suitable for performing classification tasks
and supporting inference in the final prediction layer.

The training process involves finding a workspace that can appropriately coordinate
for each task to encode information for specific tasks. Extracting embedded information
from input images is the process of connecting and aggregating the prototypes of previ-
ous classes. Ultimately, the workspace will implement complete and balanced classifiers
across classes to make predictions. Therefore, after the training process is completed, the
workspace will contain only the connection sets, not the feature vector embeddings.

3.3. Loss function. Our model’s primary objective is the classification of pest and dis-
ease images on dragon fruit plants. We calculate dual loss functions between the label
sets of the unified model y and the normalized connection sets y’ generated by the trained
model. The ESL loss function is constructed as follows:

N

Lest(y,y) = %Z(yj —y7)? (5)

j=1
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To ensure effective updates of the workspaces, we construct a loss function to evaluate
each updated connection set. If an old class with an old connection set has high accuracy,
and when a new class is added, we will use the old model’s objective function as the
regression target. Otherwise, the output of the model with the updated connection set
will be chosen as the replacement. This way, we will assess the comprehensive convergence
of the connection sets and the overall ESL model. The loss function of ESL for the
connection sets is as follows:

Lconnection—based(cy C/) - Z SmOOthLoss(ck - C;c) <6>
k

4. Experimental results and analyses.

4.1. Dataset Description. We collected 11 labels of unhealthy conditions on dragon
fruit tree stems and 1 label of healthy dragon fruit trees, with approximately 500 images
collected for each label. We named this dataset D-Dragon, to analyze and evaluate the
performance of the proposed method in classifying diseases on dragon fruit tree stems.
Based on the features extracted from the D-Dragon dataset, we calculate for pest-infected
and non-pest-infected images, and if a disease is detected, we determine the specific type
of disease from one of the dragon fruit tree pest types. Figure 2 shows some sample images
corresponding to each type of pest.

For data partitioning during the training process, we follow the standard evaluation
protocol [46]. We will divide the data by class. Five classes will be used for initial
training, and the remaining classes will be split into two groups to be included in sub-
sequent training phases. We adhere to the method of random class order shuffling when
partitioning data for continued training to ensure fairness across all classes.
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TABLE 1. Comparison to traditional exemplar-based Incremental
Learning of Classes methods

Methods Exemplars Datasets
ImageNet-mini D-Dragon (ours)

iCaRL [50] 5 / class 70.56 82.64

DER [51] 5 / class 78.25 89.73

MEMO [52] 5 / class 73.84 85.68

EASE [53] 5 / class 79.67 90.24

SCL (ours) 5 / class 80.34 91.89
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FIGURE 3. Prediction of SCL model

4.2. Experimental Setting. We conducted experiments on an Nvidia 4090 25GB GPU,
using the Pytorch framework [47] Additionally, we leveraged the ViT [48] representative
model to fine-tune the pre-trained model. We also evaluated the performance on two
datasets: ImageNet-mini [49] and our dataset, P-D-Dragon. In our SCL model, we trained
the model using the SGD optimizer and found that after 38 epochs, the training process
nearly converged. The learning rate was set to 0.001, and the balance parameter was set
to 0.01.
The research in this paper focuses on two main questions:

e Research Question 1 (RQ1): How much does SCL improve performance on the two
datasets, ImageNet-mini and D-Dragon, compared to other baseline methods?

e Research Question 2 (RQ2): How close are the predictions of the SCL model to the
ground truth values?

4.3. Performance Compare of SCL and other baselines (RQ1). In this section,
we compare SCL with other advanced methods based on the concept we mentioned on
two datasets for evaluation. Table 1 reports the comparison results of different methods
based on the Incremental Learning of Classes approach. We can see that our SCL method
achieves the best accuracy results among the five comparable methods, significantly out-
performing current SOTA methods such as EASE. Our SCL method, as shown in the
last row of Table 1, demonstrates 1-2% higher accuracy compared to the SOTA method
EASE on both proposed evaluation datasets. Additionally, we also mention the number
of classes, where we initially train with 5 labels, and subsequent labels are gradually in-
troduced to obtain the average accuracy during the training and evaluation process. As
shown in Table 1, SCL performs quite well compared to competitors, and the experiments
allocate labels reasonably.
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4.4. Qualitative Study (RQ2). We conducted the study by evaluating specific labels
in the test set and obtained results from the SCL model. The input consists of images
of diseased dragon fruit, and the output is the prediction results of the SCL model as
shown in Figure 3. The SCL model takes an input image of diseased dragon fruit with
a size of 1024x480. Below are illustrative output images from the test set of the D-
Dragon dataset. Corresponding to each label above, we evaluated five labels with names
in Vietnamese: "Dom nau,” "Mat ca,” "Nam canh,” "Dom den,” and ”Thoi dau trai,”
representing various diseases on the leaves and fruits of dragon fruit plants. These are
typical diseases that damage farmers’ dragon fruit crops. The prediction results of the
SCL model are displayed below, next to the actual images.

We initially trained the model with 5 labels: ”Dom nau,” ”Mat ca,” and "Nam canh.”
We then added 2 more labels, "Dom den” and ”Thoi dau trai,” enabling the model to
predict 7 labels. From these five examples, it can be seen that the SCL model classifies
the diseases of dragon fruit very well. For the most part, the model’s performance is not
adversely affected by the addition of new labels and achieves satisfactory results.

5. Conclusion. In this work, we aim to improve the method of incremental learning
of new labels based on semantic learning by connecting labels and features to enhance
learning capabilities in the real world. This paper proposes the Semantic Connection-
based Learning (SCL) method for expanding classes with a pre-trained model to support
the recognition of diseases on dragon fruit plants. Specifically, we have attempted to
build a diverse workspace through connection sets. The aggregation of semantic features
allows the model to understand the prototype features of classes and create integral con-
nection sets that support adding new labels without affecting the prediction quality of
existing labels. Additionally, we have built a dataset of diseases on dragon fruit, a sig-
nificant agricultural product in Vietnam. We conducted experiments to demonstrate the
effectiveness of our SCL model. Although the SCL model fundamentally achieves good
accuracy, it requires considerable storage space for model retention, which is memory-
intensive. Therefore, our future work will focus on designing a more streamlined model
and optimizing the connection sets to minimize memory usage.

Acknowledgement. This research was funded by the scientific project under code
KC-4.0-11/19-25 of the Ministry of Science and Technology of Vietnam.
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