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Abstract. Nyquist sampling is used in the conventional digital converter to convert
the analog audio signal to digital audio data. Traditional approaches, such as Nyquist
sampling, require high sampling rates, leading to large datasets. After sampling, the dig-
ital audio data is often compressed using algorithms like Moving Picture Experts Group
Layer-3 Audio Coding (MP3), Advanced Audio Coding (AAC), or other codecs to re-
duce the file size for storage or transmission. Recently, Compressive Sensing (CS) has
been used instead of Nyquist Sampling. Instead of sampling at the Nyquist rate, Com-
pressive Sensing samples the signal at a much lower rate. The recovery of the original
signal from these fewer samples is possible through minimization techniques. Hence, in
the proposed algorithm, we use Compressive Sensing for audio compression. The basis
matrix for Compressive Sensing is generated by exploring different transform matrices.
The proposed algorithm leverages the principles of Compressive Sensing to enhance au-
dio compression by reducing the number of samples needed and using efficient recovery
techniques, resulting in a high compression rate suitable for modern audio applications.
Keywords:Audio signal, Compressive sensing, Audio Compression, l1 minimization

1. Introduction. An audio signal is a representation of sound, typically as an electrical
voltage or current, that can be transmitted, processed, or recorded. These signals are es-
sential in various applications, including music production, telecommunications, hearing
aids, and multimedia systems. Understanding audio signals and their processing is fun-
damental to a wide array of technologies and applications. Advances in signal processing
techniques continue to enhance our ability to manipulate and utilize audio signals effec-
tively, opening new possibilities in communication, entertainment, and beyond. Audio
signal compression is critical for efficient storage and transmission, especially in appli-
cations such as streaming, telecommunications, and multimedia systems. Traditional
compression techniques rely on Nyquist sampling[1], which dictates that the sampling
rate must be at least twice the highest frequency present in the signal. This results in a
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substantial amount of data, necessitating further compression through codecs like MP3
and AAC[2].

1.1. Audio Compression Vs Compressive Sensing. To convert an analog signal to
a digital format, it must be sampled at a rate at least twice the highest frequency present
in the signal, as stated by the Nyquist-Shannon sampling theorem. This ensures that
the signal can be accurately reconstructed from its samples. Figure 1 shows the audio
signal acquisition, analog to digital converter which includes Nyquist sampling, encod-
ing, quantization, and Audio Compression. Compressive Sensing (CS) has emerged as a

Figure 1. Traditional Audio Compression

promising alternative, capable of reconstructing signals from significantly fewer samples[3].
This method capitalizes on the sparsity of signals in a certain domain, allowing for ef-
fective compression and accurate reconstruction using optimization techniques such as l1
minimization[4]. Figure 2 shows the audio compression based on compressive sensing.

Figure 2. Traditional Audio Compression

2. State of Art.
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2.1. Audio Compression algorithms. Audio compression is a crucial field in signal
processing, driven by the increasing demand for efficient storage and transmission of audio
data. Over the years, various algorithms have been developed to optimize the trade-off
between compression efficiency and signal quality. These algorithms incorporate advanced
mathematical models, transformative techniques, and hybrid approaches to address chal-
lenges such as maintaining high fidelity, minimizing storage requirements, and ensuring
secure communication. The author[5] proposes an audio compression algorithm leveraging
compressive sensing. The basis matrix is generated using the Gaussian random numbers.
The proposed algorithm uses the Moore-Penrose pseudoinverse to recover the compressed
signal. This approach yields correlation coefficients and SSIM values near one and achieves
low MSE values around 5.0E-4 while maintaining a PSNR within an acceptable range. The
paper [6]proposes a hybrid algorithm for analyzing, compressing, and encrypting speech
signals. It compresses the speech by removing low-intensity frequencies while maintaining
quality. The compressed signal undergoes a two-level scrambling process: external scram-
bling rearranges speech segments divided using Fuzzy C-Means, and internal scrambling
scatters block values using a Sudoku pattern and quadratic map. Finally, the scrambled
speech is encrypted using the Threefish algorithm. The approach is shown to be efficient
for both compression and encryption, validated by statistical measures. In [7], the au-
thor proposes a statistical method for analyzing four compression algorithms—Huffman
coding, LZW, RLE, and LZ77. The algorithms were evaluated using the compression
ratio as the comparison parameter. Results showed Huffman and RLE performed best
for video and audio files, RLE excelled for images, and LZW outperformed the others for
text files. This paper [8] explores audio compression using DWT and RLE techniques
in MATLAB, aiming to enhance audio signal clarity and reduce noise at the receiver.
The results indicate improvements in compression factor and signal-to-noise ratio (SNR)
for all Daubechies wavelet families (DB1, DB6, DB8, DB10) when applying DWT and
RLE techniques In [9], the author introduces an alternative method for compressing audio
files, utilizing the Discrete Cosine Transform (DCT) and LZW coding techniques. When
tested on various uncompressed audio files using the necessary hardware and software, this
method produced promising and acceptable results compared to existing audio compres-
sion methods. The author [10] introduces a modified audio compression algorithm that
utilizes DCT with TAM. The newly developed algorithm achieved a high compression ra-
tio, reducing the output audio signal to one-fourth of its original size. This reduction was
facilitated by the recording device’s ability to ignore background noise. The results of this
research will enhance audio compression systems, particularly for future applications that
demand highly compressed audio signals while maintaining high quality. This paper [11]
proposes an algorithm based on compressed sensing (CS) for simultaneously compressing
and encrypting audio signals. In this method, audio signals are segmented into frames of
1000 samples, which are then transformed into sparse frames using the Discrete Cosine
Transform (DCT). Each frame is compressed using a unique sensing matrix, generated by
an M-sequence generator and a chaotic mixing scheme, ensuring that the proposed system
meets the Enhanced Whitening Security (EWS) criterion. Evaluation results across vari-
ous classes of audio signals demonstrate that the proposed scheme enables the compressed
and secure communication of different types of audio signals. Summary of the literature
review is given in table 1.

This review synthesizes key contributions in the field, highlighting their methodolo-
gies, strengths, and performance metrics. It provides a comprehensive perspective on the
evolution and potential applications of audio compression algorithms. The paper [12]
presents a modified vector quantization algorithm for scalable audio coding with multiple
layers of audio fidelity. The algorithm enhances the quantization and encoding stages,
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Table 1. Literature Review

Reference Methodology SNR CR
[5] CS with Gaussian Random number 20.9 1.81
[6] Compressing and encryption 12.299 2.0
[8] DWT and RLE 28.80 1.11097
[9] DCT and LZW 57.95 4.28
[10] DCT with TAM 54.31 1.20
[11] CS with DCT - 7.81

utilizing psychoacoustic and arithmetic techniques to optimize data handling. It gener-
ates a scalable bitstream effective at both low and high bit rates. Subjective evaluations
using the MUSHRA test showed improved performance compared to previous algorithms,
with mean normalized scores recorded across various bit rates. In [13], the author con-
cludes, the Wavelet compression as the best-performing algorithm among the other com-
pression algorithm such as MP3, LPC, Wavelet, and Sub band algorithms, delivering
outstanding accuracy, perceptual quality, and minimal audio distortion. The traditional
compression algorithm such as MP3, has some limitation also. The study [14] examined
how MP3 compression and reduced sampling rates impact avian bioacoustics applica-
tions. MP3 compression lowered detection rates, reduced individual abundance counts,
and decreased precision and recall for automated recognition. Sampling rate reduction
caused systematic biases in acoustic indices and affected recognizer performance. The
authors advise against MP3 compression, recommending lossless compression methods to
preserve recording accuracy. Compressive sensing can also be used to protect the audio
signal. In [15], the author proposes a method to detect music plagiarism using melodic
methods: a supervised learning algorithm, Edit distance, and N-grams. The analysis
indicates that the Optimized Edit Distance with the Bipartite Graph Matching approach
achieves an accuracy of 87.5% with a smaller dataset. In [16], the author proposes a
crypto-watermarking algorithm based on Compressive sensing to protect the audio sig-
nals. The proposed algorithm generates the watermark using the HAAR transform. The
algorithm is tested on various audio signals, achieving an SNR greater than 30dB, and
demonstrates good robustness against attacks such as echo addition, noise addition, and
reverberation. Generally, audio compression is implemented on the digitally converted
audio data. As the Nyquist sampling is used, the number of data will be more, which
increases the algorithm’s complexity and the compression time. Our research addresses
this issue by proposing an algorithm to compress the audio signal during the analog-to-
digital conversion. The compressive sensing is used in the proposed algorithm. By using
compressive sensing instead of Nyquist sampling, fewer samples will be acquired, resulting
in a higher compression ratio.

2.2. Compressive Sensing. To convert the audio signal into a digital signal, the first
step involves is acquiring the signal at specific intervals, a process known as sampling.
Let’s denote the audio signal as A(t), and the traditional sampled data as shown in
equation (1),

A(nT) for integer values of n. (1)
Where n is the integer value T=1fs is the sampling rate. To accurately reconstruct

the host signal from the sampled data, the sampling process must adhere to the Nyquist
rate. In recent days, signal acquisition methods have undergone a paradigm shift, in-
creasingly focusing on sparse coding or compressed sensing techniques [17][18]. Unlike
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traditional analog-to-digital conversion, which relies on digital filtering based on Shan-
non’s uniform sampling principle, this non-uniform sampling approach generates fewer
samples and allows signal recovery through mathematical convex programming rather
than interpolation or decimation filters [19]. A critical aspect of Compressive Sensing is
the selection of an appropriate basis matrix [20]. This research explores various trans-
form matrices, including Discrete Fourier Transform (DFT), Discrete Cosine Transform
(DCT), and Haar transform, to identify the optimal basis for audio signal compression.
Compressive Sensing exploits the sparsity of signals in a transform domain, enabling the
reconstruction of signals from a small number of linear measurements. The audio signal is
first transformed into a sparse domain using the selected basis matrix. Sparse sampling is
then performed, capturing fewer measurements than traditional methods. The recovery
process employs l1 minimization to reconstruct the original signal from these sparse sam-
ples. This contrasts with the Nyquist-Shannon sampling theorem, which requires dense
sampling to ensure signal recovery.

2.3. Recovery algorithm. Sparse recovery involves reconstructing a sparse signal from
a limited number of measurements, and one of the common approaches to achieve this
is by solving an optimization problem. The most popular method for sparse recovery is
l1 minimization, also known as Basis Pursuit. This approach seeks to minimize the l1
-norm of the signal subject to a set of linear constraints. The l1-minimization algorithm
is particularly effective because it promotes sparsity in the solution. The l1-minimization
is widely used in compressed sensing, image processing, machine learning, and other areas
where sparse signal recovery is critical.

3. Proposed Method.

3.1. Algorithm. The proposed algorithm aims to reduce the sampled data count at the
initial stage, rather than during the compression process. The original audio signal is
converted into the sparse audio signal using equation (2):

a = BA (1)

Where:

• A ∈ Rn×1 is the original audio signal
• B ∈ Rn×1 is the transform matrix
• a ∈ Rn×1 is the sparse signal

The compression of the sparse audio signal is given by equation (3):

Acomp = Ψa (2)

Where:

• a ∈ Rn×1 is the sparse signal
• Ψ ∈ Rm×n is the sensing matrix
• Acomp ∈ Rm×1 is the compressed audio signal

Sparse recovery involves finding the sparsest solution to an underdetermined system of
equations. Ideally, we’d solve this using ℓ0-minimization as given in equation (4):

∥a∥0 subject to Acomp = Ψa (3)

where ∥a∥0 counts the number of non-zero elements in a.
However, ℓ0-minimization is a non-convex, NP-hard problem, making it computation-

ally intractable for large-scale problems. ℓ1-minimization is used as a convex relaxation of
ℓ0-minimization. Under the condition of the Restricted Isometry Property of the sensing
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matrix, the solution to the ℓ1-minimization problem is exactly the same as the solution
to the ℓ0 problem. Therefore, the ℓ1-minimization problem[21][22] can be framed as a
convex optimization problem, specifically a linear program (LP), given by equation (5):

min
n∑

i=1

|xi| subject to Ψa = Acomp (4)

3.2. Methodology. The proposed methodology for compressing and recovering audio
signals using compressive sensing is illustrated in the block diagram shown in Figure 3.
It consists of the following steps:

1. The audio signal in the time domain is considered as the primary signal.
2. The primary signal is transformed into a sparse domain using a predefined transform

matrix, such as the Discrete Cosine Transform (DCT), Discrete Wavelet Transform
(DWT), or Haar transform. This step ensures that the signal exhibits sparsity, a
critical requirement for compressive sensing.

3. Using the Haar matrix, the orthogonal basis matrix or sensing matrix is generated,
which will be used to perform the compressive sensing.

Figure 3. Proposed block diagram

4. Compressive sensing is applied to the sparse signal using a sensing matrix, which
reduces the dimensionality of the data by capturing only a subset of its components.
This step significantly reduces the number of samples required, enabling efficient
compression.

5. The compressed signal is stored or transmitted to the receiver for reconstruction.
6. At the receiver end, a recovery algorithm is employed to reconstruct the original

signal from the compressed data. The reconstruction process often involves solving
an optimization problem, such as using the Moore-Penrose pseudoinverse or other
iterative algorithms.

7. The recovered signal is obtained as the output, closely resembling the original pri-
mary signal. The quality of reconstruction is evaluated using metrics such as Signal-
to-Noise Ratio (SNR) and Compression Ratio.

This methodology leverages the principles of compressive sensing to achieve efficient
audio compression while ensuring accurate signal reconstruction at the receiver.
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3.3. Performance Evaluation. The performance evaluation of the proposed algorithm
is measured using the objective measurement parameter, Signal-to-Noise Ratio (SNR)
and, it is given in equation (6).

SNR = 10

∑N
i=1A

2
p(i)∑N

i=1(Ap(i)− Ar(i))2
dB (5)

Where:

• Ap,i is the audio signal before compression
• Ar,i is the decompressed audio signal

where Ap is the audio signal before the compression and Ar is the decompressed audio
signal. The next performance evaluation is the compression ratio. The compression ratio
of an audio file is a measure of how much the original file size has been reduced after
compression. It is typically expressed as a ratio or a percentage and can be calculated
using the formula given in equation (7):

Compression ratio =
Primary Audio file size

Compressed Audio file size
(6)

The compression ratio is closely related to the bitrate of the compressed audio file.
Lower bitrates generally result in higher compression ratios but may reduce audio quality.

4. Results And Discussion.

4.1. Experimental Setup. The proposed algorithm was implemented using MATLAB
2016 on an Intel Core i5 processor to achieve the research objectives. A set of 5 primary
audio clips was selected for the experiment. All audio clips are mono-channel, with a
duration of less than 60 seconds, sampled at 44.1 kHz, and have an audio data width of
8 bits. The selected audio clips include solo musical instruments (such as violin, guitar,
piano, and flute), songs (such as bass, Handel, track, Mary Song, Backstreet Boys song,
Emilie Big World), and various frequency clips. Table 2 provides details of the selected
audio clips.

Audio Length Duration Sampling Frequency (Hz)
Handel 73113 8s 8192
Mary 319725 7s 44100

Backstreet Boys 1323000 30s 44100
Emilie Big World 1323000 30s 44100
Irish Whistle 1323000 30s 44100

Table 2. Test audio files

The selected audio clips are considered as the primary signal for the compression and
are represented as A ∈ Rn×1. Table 3 shows the different primary audio signals in the
time domain.

Most of the audio signals are sparse when converted to the transform domain. The
transform matrix used is DFT, DCT, and Haar wavelet transform matrix and is rep-
resented as B. In the proposed algorithm, different transform matrix is tested to find
the optimum sparse domain of the audio signal. The sparse transformation is given in
equation (1), a=B A. Figure 4 shows the primary audio signal and the Fast Fourier Trans-
form signal. It can be seen from Figure 4 that the transform signal is sparser, therefore,
compressive sensing can be performed on the audio signal.
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Audio Audio clips Audio Audio clips

Handel Backstreet Boys

Mary Emilie Big World

Irish Whistle

Table 3. Experimental Audio clips

Figure 4. Primary and Sparse audio signal

Consider the transform signal is K-sparse. The next criteria to consider is the length
of the measurement m. The condition for the recovery of all K-sparse signals [4, 14] for
any recovery algorithm is given in equation (8):
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m ≥ CK ln
N

K
(7)

Where C > 0 is the universal constant and is independent of K, m, and N . It can
be observed from equation (8) that m is directly proportional to K. Therefore, if the
sparsity is low, the measurement m is also chosen to be small relative to N , ensuring that
the solution to the underdetermined system of linear equations remains reasonable.

After the selection of suitable m≪ N and K, the sensing or basis matrix ψ ∈ Rm×n is
generated using the Haar matrix. The Haar matrix is used to generate the basis matrix
because of its orthogonal nature. As the sparse audio signal a ∈ Rn×1 and the basis matrix
ψ ∈ Rm×n are generated, the compression of the primary audio signal is performed using
compressive sensing. The compressed audio signal is represented as Acomp ∈ Rm×1. The
compressed signal can be stored with less space or can be transmitted. At the receiver,
using ℓ1 minimization, as given in equation (5), the primary signal can be recovered
without disturbing the audio quality.

After the selection of suitable m≪ N and K, the sensing or basis matrix ψ ∈ Rm×n is
generated using the Haar matrix. The Haar matrix is used to generate the basis matrix
because of its orthogonal nature. As the sparse audio signal a ∈ Rn×1 and the basis matrix
ψ ∈ Rm×n are generated, the compression of the primary audio signal is performed using
compressive sensing. The compressed audio signal is represented as Acomp ∈ Rm×1. The
compressed signal can be stored with less space or can be transmitted. At the receiver,
using ℓ1 minimization, as given in equation (5), the primary signal can be recovered
without disturbing the audio quality.

4.2. Results. The proposed algorithm is implemented on the selected audio clips. The
selected audio signal serves as the primary signal and is divided into multiple frames for
processing. Various frame lengths were tested for the proposed algorithm, but as the
results showed minimal variation, a frame length of 256 is chosen and discussed in this
paper. As discussed in the previous section, different transform matrices, such as DFT,
DCT, and Haar, are applied to the primary signal to convert it into a sparse signal. The
Discrete Fourier Transform (DFT) matrix achieved the best SNR performance. Assuming
the audio signal is K-sparse in the frequency domain, various K values were tested, and
the results are discussed in this section.

The next step is to determine m, the measurement of the compressive sensing matrix.
The proposed algorithm is implemented by varying both K and m. Table 4 shows the
SNR of the fixed m = 32 and variable K. At the receiver, for each compressed segment,
the primary signal is recovered using the ℓ1 optimization algorithm. The measurement
parameter used is SNR and is given in equation (6). Finally, the signal in the frequency
domain is converted back to the time domain by applying the inverse transform.

Measurement Handel Mary Backstreet Boys Emilie
K=64, m=32 -0.7618 -16.86 -16.43 -20.79
K=128, m=32 -0.7618 -16.86 -16.2 -20.79

Table 4. SNR comparison with fixed m.

From Table 4, it is observed that for m < 32, the SNR is less than zero. Figure 5a
shows the SNR comparison of fixed m = 32 and varying K = 64 to 128. The SNR can
be improved by increasing m from 32 to 64 and 86. Table 5 shows the SNR of the fixed
K and variable m.
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(a) SNR comparison with fixed
m

(b) SNR comparison with fixed
K

Figure 5. (a) SNR comparison with fixed m (b) SNR comparison with
fixed K

Measurement Handel Mary Backstreet Boys Emilie
K=128, m=32 -0.7618 -16.86 -16.2 -20.79
K=128, m=64 6.0461 25.52 8.0134 17.456
K=128, m=86 8.7678 30.59 10.55 21.2504

Table 5. SNR comparison with fixed K.

Figure 5b shows the SNR comparison of fixed K = 128 and varying m = 64 to 86.
It is observed from the table and the graph that the SNR is improved by increasing
the measurement parameter m. The proposed algorithm is tested with various sparse
parameters K varying from K = 32 to 128 and compressive sensing measurement value
m varying from m = 32 to 86 for a frame length of 256. The best results are discussed in
this article. The primary audio signal and the decompressed signal are shown in Figure
6.

(a) Primary and Decompressed
Emilie Audio

(b) Primary and Decompressed
Handel Audio

Figure 6. Primary and Decompressed Audio signals
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The table 6 shows the compression ratio and SNR for the K=128. The table compares
the compression ratio and Signal-to-Noise Ratio (SNR) for four different audio samples
(Handel, Mary, Backstreet Boys, Emilie Big World) at two different values of M (64 and
86). For all audio samples, the compression ratio is 4:1 when M=64. The compression
ratio decreases to 3:1 when M=86.

Audio Compression Ratio SNR (M=64) SNR (M=86)
Handel 4:1 3:1 6.0461 8.7678
Mary 4:1 3:1 25.5222 30.5951

Backstreet Boys 4:1 3:1 8.0134 10.5518
Emilie Big World 4:1 3:1 17.4562 21.2504

Table 6. Compression Ratio and SNR

In summary, increasing M from 64 to 86 reduces the compression ratio but results in
a higher SNR for all audio samples. The proposed algorithm is implemented on different
transform matrices such as DFT, DCT, and Haar transform. The table 7 shows the SNR
comparison of all the transform matrices. The comparison is made with the assumption
of a compression ratio of 4:1.

Audio DFT DCT Haar
Handel 6.0461 6.7139 -1.4513
Mary 25.52 19.17 -47.5822

Backstreet Boys 8.0134 6.8539 -15.8943
Emilie Big World 17.456 12.5379 -27.1608

Table 7. SNR of different transforms

The table compares the performance of three different transforms—Discrete Fourier
Transform (DFT), Discrete Cosine Transform (DCT), and Haar Transform on the four
audio clips. From the table, we can observe, that the DFT generally performs the best
among the three transforms, whereas, the DCT performs well but slightly worse than
DFT. The Haar Transform performs poorly across all audio files, with particularly low
values for Mary and Emilie Big World. Hence, we can conclude, that the best compression
ratio with the acceptable SNR is achieved using the DFT transform matrix when the audio
signal is K=128 and the measurement parameter of the sensing matrix m=64.

5. Comparison And Conclusion.

5.1. Comparison. In recent days, many compression algorithms have been developed
to compress audio signals. All the existing algorithms perform compression on the dig-
itally converted data of the audio signal. In the proposed algorithm, compression is
performed during the analog-to-digital conversion. The proposed compression algorithm
uses compressive sensing rather than traditional Nyquist sampling for digital conversion.
As compressive sensing results in fewer samples, the compression ratio is increased. The
proposed algorithm is evaluated using parameters such as SNR and Compression Ratio.
The obtained results are compared with those of existing algorithms. The comparison is
shown in the table 8.

Signal to Noise Ratio measures the clarity or quality of the signal. Higher values indicate
better quality. Compression Ratio represents the percentage of data compression, with
higher values indicating more compression. The proposed algorithm achieves a good
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Reference Methodology SNR CR
[5] CS with Gaussian Random number 20.9 1.81
[6] Compressing and encryption 12.299 2.0
[8] DWT and RLE 28.80 1.11097
[9] DCT and LZW 57.95 4.28
[10] DCT with TAM 54.31 1.20

Proposed algorithm Compressive sensing with DFT and Haar based basis matrix 30.59 4.02

Table 8. Comparison with the existing algorithms

balance between SNR and CR, offering better compression performance (CR = 4.02)
than most existing methods, while maintaining a competitive SNR (30.59 dB). The [9]
results show significant better SNR and CR. But the complexity of the system is more,
as the analog audio signal is converted to digital signal and then the compression is
performed. Whereas in the proposed algorithm the compression is done during the analog
to digital conversion only, hence it reduces the system complexity. Therefore, the proposed
algorithm is particularly suitable for applications where a moderate-to-high compression
ratio is desired without a significant loss in signal quality. In conclusion, the proposed
algorithm effectively bridges the gap between compression efficiency and signal fidelity,
making it a competitive alternative to existing techniques.

5.2. Conclusion. In conclusion, the proposed algorithm effectively harnesses Compres-
sive Sensing to achieve significant audio compression by reducing the required sampling
rate and employing efficient signal recovery methods. This approach not only minimizes
the data size but also maintains the quality of the audio signal, offering a promising al-
ternative to traditional Nyquist sampling methods for modern audio applications. The
proposed algorithm offers an effective balance between SNR and CR, achieving signifi-
cant compression while preserving acceptable signal quality. The proposed algorithm was
tested using various transform matrices, including DFT, DCT, and Haar transforms, with
the best performance achieved using the DFT transform matrix. In future, the research
can be carried out to perform the hardware implementation of the proposed algorithm.
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