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Abstract. This paper’s goal is to identify the best or almost best course through a com-
plex environment while avoiding collisions with both static and dynamic obstacles. In this
study, a dynamic path-planning approach to the mobile robot planning problem in dynamic
situations is proposed. The Dynamic Window Approach (DWA) and the hybrid River
Formation Dynamic and Particle Swarm Optimization (RFD-PSO) algorithm make up
the dynamic path planning method. Firstly, we Initialize particles using the RFD path
as the initial position, we Divide the solution space into smaller segments or windows.
secondly, using a Sliding Window at each iteration; we apply PSO updates to only a seg-
ment (window) of the particle’s position and slide the window across the entire solution
space over iterations. Thirdly, Update and Evaluate; after updating the positions within
the window, we evaluate the fitness of the new positions and update the personal and
global bests. Lastly, in Integration with RFD, we Use RFD to handle specific constraints
and improve path feasibility by refining the positions obtained from PSO. The comparing
simulations between the hybrid (RFD-PSO) algorithm sliding window method, and the
Dijkstra Algorithm Dynamic Window Approach, the proposed method shows that the pro-
posed hybrid approach outperforms the Dijkstra Algorithm Dynamic Window Approach
method, which travels more efficiently and optimizes paths in dynamic environments.
Keywords: Mobile robot, Path Planning, Particle Swarm Optimization, River Forma-
tion Dynamic, Dynamic Window approach, Dijkstra algorithm, dynamic environment

1. Introduction. Robots are used in many fields, possess distinct design characteristics,
and are therefore categorized and grouped based on their functions. Researchers univer-
sally identify robotics as a distinct field that encompasses the intellectual advancement of
manufacturing, building, and several other aspects of human existence [1]. Mobile robots
are used in several sectors such as industry, agriculture, space exploration, military op-
erations, medical field, education, rescue missions, and more [2]. A mobile robot must
be able to navigate its current location to its destination position, finding a path that
avoids both static and moving obstacles. It should also optimize its path to save time and
energy, finding the fastest and safest way to reach its destination [3]. To attain secure
and independent navigation, the mobile robot must be capable of seeing its surrounding
environment and devising a course that is free from collisions, and It should be able to
traverse seamlessly in an unfamiliar setting, evading obstacles without coming to a halt
[4].

For mobile robots to operate efficiently, path planning technology is essential. Finding
the most effective or nearly ideal route from the starting point to the destination while
avoiding obstacles in a complicated environment is what it comprises. Predetermined
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initial and target locations control the robot’s movements [5]. Fixed path planning [6]
and dynamic path planning [7] are the two main categories into which robot route planning
is typically separated in scholarly discussions.

Contemporary mobile robots often rely on a pre-established magnetic pathway to gather
things from a certain location, resulting in a limited selection of routes. When many
mobile robots are working concurrently, there is a possibility of different types of accidents
or incidents occurring among them. Hence, more investigation is important to examine
the act of evading impediments between them. Path planning technology is an essential
and vital technology for mobile robots, since it serves as the foundation and need for
performing the following actions. By optimizing the robot’s route, we may limit the
distance it has to go and enhance the smoothness of its trajectory. This optimization
can lead to increased efficiency, safer navigation, less mechanical stress on the robot, a
longer lifespan, and lower energy consumption. Hence, the investigation of the global
route planning issue has significant economic and practical importance [8].

For robots to effectively navigate their paths, path planning is essential. It uses two
primary approaches: local route planning, which adapts dynamically to real-time sensor
inputs, and global route planning, which depends on pre-existing environmental data.
Path-planning strategies find the best route while lowering the chance of collisions by
combining obstacle avoidance algorithms with the robot’s current position and map data
[9]. Local route planning is the process of creating a path that avoids collisions, even
when there is little or no knowledge about the surroundings. The sensors on the mobile
robot must provide real-time updates on the size, shape, and placement of impediments.
Otherwise, acquiring the barrier distribution in the vicinity would be unattainable. Global
route planning involves using known environmental information, such as the beginning
posture and goal location, to repeatedly compute and determine the ideal collision-free
path from the starting node to the target node. The assessment of route quality should
be conducted based on certain parameters, including distance, duration, smoothness, and
energy. Distance and time are the predominant characteristics among them [10].

Two major issues in mobile robot route planning are collision avoidance and deter-
mining the most effective and seamless route from the starting point to the destination.
The current work uses a hybrid technique to address these issues. The River Formation
Dynamic (RFD) method and Particle Swarm Optimization (PSO) are combined in the
suggested hybrid approach, RFD-PSO. The dynamic window technique is used to manage
moving barriers and reroute the robot to the destination.

This organization of this paper is as follows: Section 2 describes the hybrid methods.
Section 3 describes the proposed dynamic window approach. In Section 4, Simulations
are performed, and the outcome is displayed. Section 5 addresses the conclusion.

2. Algorithms.

2.1. River Formation Dynamic Algorithm. One metaheuristic method that draws
inspiration from nature is the River Formation Dynamics (RFD) algorithm. Its main
idea is to replicate the movement of water droplets from higher altitudes to lower ones,
which is how riverbeds naturally form. Both erosion, which lowers ground levels, and
sedimentation, which increases them, are effects of this process on the environment [11].
The RFD algorithm’s steps are described as follows:

initializeNodes ()

initializeDrops ()

while (not endConditionMet ())

moveDrops ()
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analyzePaths ()

erodePaths ()

depositSediments ()

end while

Drops are initially dispersed around the surroundings at random. Additionally, nodes
are started in two steps: all other nodes are given the same initial altitude, and the
target node’s height is set to 0 (signaling the sea, which is the final destination for all
drops). The algorithm runs in a while loop that keeps going until either an alternative
stopping requirement is satisfied or all drops follow the same collection of nodes. If, after
n iterations, the optimal solution is still the same, this criterion may restrict the number
of iterations, execution duration, or end the loop [12]. the probability that drops k at
node i selects the next node j as defined in Eq. (1) is:

P (µi,j) =

{ ∇µi,j∑
l∈V k(N(i)) ∇µi,l

if j ∈ (N(i))

0 if j /∈ (N(i))
(1)

(i) represents the collection of neighboring nodes that a drop may traverse from node
i. Diminishing the negative gradient of nodes i and j is represented by the term decreas-
ingGradient(i, j). The equation for the negative gradient is shown in Eq. (2) [13]:

∇µi,j
=

altitude(i)− altitude(j)

distance(µi,j)
(2)

Node x’s height is represented by the function altitude(x), while the length of the edge
connecting nodes I and J is shown by the function distance(i, j). The altered paths
are subjected to an erosion process once every droplet has been moved. A node’s height
is lowered by this erosion in direct proportion to its gradient with respect to the node
next to it. Erosion occurs at node A specifically when a droplet travels from node A to
node B. Each node in the graph has a modest rise in height when the erosion process is
finished [14].

After many repetitions, the erosion function generates a scenario with an almost neg-
ligible height (nearly zero). Consequently, this leads to a minimal gradient and disrupts
all established pathways. In the last stage, it is necessary to thoroughly examine all the
solutions obtained from the drop and retain the most optimal solution found so far.

The RFD method has various limitations that hinder its performance in the specified
route creation issue [15]. Due to the abundance of coefficients, fine-tuning the method for
a specific scenario is very counterintuitive. Furthermore, its convergence rate is low when
dealing with more complex settings.

2.2. Particle Swarm Optimization (PSO):. The optimization method known as Par-
ticle Swarm Optimization (PSO) [16, 17] was motivated by the collective behavior seen in
social groups such as schools of fish or flocks of birds. PSO seeks to emulate these social
animals’ behavior, in which there is no central leader and people are able to accomplish
their objectives by effectively communicating with one another. This method makes it
easier to explore the solution space by representing each ”swarm particle” as a possible
solution to an optimization problem. The particles are a collection of potential solutions
that PSO looks for in the specified area. The dynamic velocity of each particle dictates
how far it can travel in the search space. Each particle also possesses memory, which
allows it to save the best answer it finds while exploring the space [18].

The method may be succinctly outlined in four primary stages, which are iterated until
the termination criterion is met as follows [19]: (1) Allocate initial random locations and
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velocities to all particles inside the search space.
(2) Assess the level of fitness for each particle.
(3) Modify both the individual and global best.
(4) Modify the velocity and position of every particle.

The Eq.3 (3) and Eq. (4) [19] are used to determine the velocity and position update
of particle i at the t+ 1 iteration.

V i(t+ 1) = ω ∗ V i(t) + C1 ∗R1 ∗ (Pbest−Xt(i)) + C2 ∗R2 ∗ (Gbest−Xi(t)) (3)

Xi(t+ 1) = Xi(t) + V i(t+ 1) (4)

The inertia weight is represented by the symbol ω. The self-learning component, de-
noted by C1, is the weight coefficient for learning from the historical best location of a
particle. As the weight coefficient for learning from the global best position, C2 is the
global learning factor. Values between 0 and 1 are produced at random for R1 and R2.
Particle I’s historical best position is called Pbest, while its present global best position
is called Gbest. V i(t) represents the particle i’s velocity at time t, while Xi(t) indicates
its position at that time.

Although the PSO method is proficient at properly solving the route planning problem
and generating a seamless path, it often encounters the issue of rapidly converging to local
optima in various optimization issues. Furthermore, the convergence rate for multidimen-
sional problems is frequently unpredictable, and there is no generally applicable conver-
gence criterion for Particle Swarm Optimization (PSO) in real-world applications [20].
Furthermore, in complex cases, this algorithm does not ensure an ideal answer.

2.3. Hybrid Method: Finding the optimal route between the beginning node and the
destination node is the primary objective of this approach. The RFD and PSO algorithms
serve as the foundation for the suggested hybrid path-planning method. The RFD-PSO
algorithm is a hybrid algorithm created in this thesis by combining two methods. The
suggested hybrid RFD-PSO method produces a low path distance, a smooth path, and
no collisions with barriers in settings with stationary and moving obstacles.

The River Formation Dynamic algorithm can find an optimal path, but sometimes it
gives a sub-optimal path because the algorithm depends on the gradient. When rivers
pass through semi-flat areas, this leads to a sinuosity in the path, and thus a sinuosity in
the path, the path is relatively long, and the gradient is low.

Also, the particle swarm optimization algorithm is easy to fall into the local optimum
and it produces an ineffective solution in the narrow paths. A hybrid algorithm (RFD-
PSO) that combines the two methods is used to find the shortest path with collision
avoidance.

By directing the mobile robot toward its objective while dodging obstacles, the River
Formation Dynamics (RFD) algorithm makes sure that a path is found from the starting
position to the target point. Following the robot’s arrival at the target, these links are
strengthened using the Particle Swarm Optimization (PSO) method, which optimizes the
route between every pair of important sites. The most effective route from the starting
point to the destination is thus produced by the algorithm.

This technique takes a hybrid approach, with one of the particles in the PSO algorithm
starting at the RFD-determined first predicted path to the target. The PSO method
iteratively optimizes each particle, which represents a possible path the robot could take.
Both the individual best position of each particle and the global best position attained
by the entire swarm are used to update particle positions. Velocity restrictions are used
to avoid too much movement in a single repetition. A particle’s velocity is inverted if
its new position is outside of the predetermined range. The path produced by the RFD
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technique serves as the initial guidance for the PSO algorithm, ultimately determines
the robot’s final path based on the global best solution it finds. Figure (1) illustrates
the steps of the suggested hybrid RFD-PSO algorithm. The red solid line indicates the
optimal path direction from the robot’s starting point (left) to the target point (right),
dynamically avoiding obstacles. A flowchart that shows the mobile robot’s best path is
shown in Figure (2).

Figure 1. Steps of Hybrid RFD-PSO algorithm

FIGURE .2 Flowchart of the RFD-PSO hybrid algorithm

3. Sliding window approach and its application in path planning.

3.1. Algorithms and Implementations. The route design process may use the Sliding
Window Approach, which involves breaking the way into smaller sections or windows and
assessing the viability of each window individually. This strategy is especially beneficial
when dealing with intricate situations, as the route may be improved by simultaneously
examining many windows. The following algorithms use the sliding window technique for
route planning [21]: (1) The Sliding Window Informed RRT method is a technique that
enhances the efficiency of route planning by integrating the Sliding Window Approach
with the Rapidly exploring Random Tree (RRT) algorithm [22]. The method keeps track
of a moving window that represents the current route and utilizes it to guide the RRT
algorithm’s exploration for a viable path.
(2) Enhanced Sliding Window method: This method aims to enhance the effectiveness
of the Sliding Window Approach by optimizing the size of the window and adapting
the sliding window according to the current route [23]. The algorithm’s objective is to
decrease the quantity of windows required to cover the complete route, hence decreasing
the time complexity of the path planning process.
(3) Path Planning using Sliding Window and Variant A: This approach integrates the
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Figure 2. Flowchart of the RFD-PSO hybrid algorithm

Sliding Window Approach with the A* algorithm, a well-known pathfinding technique,
to enhance the efficiency of the path planning process [24]. The technique uses a sliding
window to assess the viability of various route segments and leverages the A* algorithm
to determine the most optimal path via the windows.

3.2. Sliding Window Approach in Path Planning. The Sliding Window Approach is
a method used in route planning for autonomous systems, such as robots and drones. The
process entails partitioning the trajectory into smaller segments (windows) and assessing
the viability of each window. This strategy is especially beneficial when dealing with
intricate environments, as the route may be improved by simultaneously examining many
windows [11].

In Figure (3), two different scenarios showing the movement of obstacles to prevent
entering hazard regions are introduced. The hazard region is shown in Figure (3(a)), with
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an obstacle’s initial and final positions featured according to its directionality. Figure (3,
b) expands on this by detailing the distances relative to the obstacle’s initial position.
This provides a clear view of how the dynamic obstacle navigates around the hazard
region. These representations are essential for understanding the spatial dynamics and
planning necessary for effective obstacle avoidance in dynamic environments.

Figure 3. Moving Obstacle Representation to Avoid Hazard Region. (a)
Hazard Region Representation, (b) Distances with Respect to Initial Ob-
stacle Position

Figure (4) illustrates a schematic of how to compute time as a function of the shortest
distance from the robot and total path length. The illustration contains a sliding window,
a robot (red), an obstacle, and the original path of the Robot. This schematic shows that
a real-world robot needs to consider the distance of obstacle and path length, which will
decide how quickly it can move around its space efficiently without hitting obstacles. The
present work is crucial when performing real-time path planning and collision avoidance
in robotics.

Figure (5) depicts a slower obstacle moving at constant velocity. It shows the initial
path of the robot, and a new path must be selected through a feathered area where it
came in that hazard region because of the obstacle. This figure shows the decision-making
paradigm of path selection in moving obstacles that reveals how adaptive strategies are
necessary to maintain this robot moving safely and continuously.

Figure (6) addresses a similar scenario, but it involves a fast-moving obstacle this time.
The Figure illustrates the initial path to avoid obstacles and where it deviates due to a
higher velocity of the new object. This scenario illustrates the increased complexity in
path planning required to accommodate faster obstacles, underscoring the necessity for
rapid and efficient algorithmic responses to maintain collision-free navigation.

Figure (7) shows the scenario of moving obstacles with different speeds, indicating
the requirement to rescale the dynamic sliding window. This figure shows the various



728 W. M. Hassen, S. H. Amin

Figure 4. Time Calculation based on Shortest Distance to Obstacle and
Path Length

Figure 5. Slow Moving Obstacle with Constant Speed and Probable Path
Selection

computations, such as for the rear and front-end moving distances (based on minimum
v max or maximum speed). This dynamic tuning is essential for accurately predicting
the obstacles’ future locations and allowing safe navigation around hazard regions. Being
able to resize the window for varying speed of obstacles makes the proposed path-planning
algorithm versatile and robust.

3.3. Sliding Window Approach in Hybrid RFD-PSO Algorithms. The sliding
window technique may be included in a hybrid RFD-PSO algorithm in the following
manner:
(1) Initialization: The particles are initialized by setting their starting location to the
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Figure 6. Fast Moving Obstacle with Constant Speed and Probable Path
Selection

Figure 7. Moving Obstacle with Variable Speed Showing the Need to
Resize the Dynamic Sliding Window, (minimum speed is zero and used
with the calculation of rear end moving distance, maximum speed is known
and is high which is used to calculate the front-end moving distance).

RFD route. Partition the solution area into smaller parts or windows.
(2) The SlidingWindow technique allows for applying Particle Swarm Optimization (PSO)
at each iteration, and updates to a specific segment or window of the particle’s location.
This window may be moved throughout the whole solution space over iterations.
(3) Update and Evaluate: Following the update of positions inside the window, we assess
the effectiveness of the new positions and modify the personal and global bests accord-
ingly.
(4) Integration with RFD involves using RFD to address certain limitations and enhance
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the feasibility of a route by refining the positions acquired by PSO.

The flowchart in Figure (8) outlines the procedural steps a robot follows to travel from
its starting point to its destination. The flowchart starts with the robot detecting an
obstacle and setting a dynamic sliding window. From there, the robot gradually moves
towards locating the hazard region or an obstacle, computing the least distance to reach
the obstacle and identifying feasible paths. This process includes resizing the window
size and then computing the total time to pass through that, which, if it leads to only
inside a hazard region, then the robot must change its path. This detailed sequence
emphasizes the systematic approach required for effective robot navigation in dynamic
and obstacle-rich environments.

Figure 8. Flowchart of the General Sliding Window Approach

4. Methodology. In this paper, two types of hybrid approaches to robot path planning
will be studied under dynamic and obstacle environments, and a performance comparison
will be conducted. The key focus will be to check the path length the robot has cov-
ered from the starting point to the destination point. The performance of the proposed
approaches will be evaluated through two cases.
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4.1. Case No.1. For robot path planning in dynamic, obstacle-filled situations, we em-
ployed two hybrid algorithms in this instance. As seen in Figure (9), the algorithms
are Hybrid PSO-RFD and Sliding Window applied to Map No. 1. Map No. 1 offers
an appropriate test for assessing the algorithms’ performance since it depicts a dynamic
environment with both static and dynamic obstacles.To measure and compare the path
lengths that the robot travels from the beginning point to the destination point while
avoiding the dynamic and static obstacles in the environment, both algorithms are run on
Map No. 1. To provide a pertinent comparison and assess how well the sliding window
method may be included into the hybrid approach, the study uses the same map for both
algorithms.

Figure 9. Map no.1 with Static and Dynamic Obstacle

Figure (9) illustrates Map 1, a simulated 20Ö20 m dynamic environment containing
each static and moving barriers. Static limitations are represented as black rectangles,
whilst dynamic obstacles are depicted as pink circles. Each dynamic obstacle is annotated
with a directional arrow (e.G., clockwise or counterclockwise) and its pace (e.G., 0.5
m/s), explicitly indicating motion patterns. The robotic’s beginning function (2,2) and
goal (18,18) are marked to contextualize navigation demanding situations. These speed
annotations align with the experimental parameters defined in Section 4.3, providing
readability on how the hybrid RFD-PSO algorithm adapts to limitations with various
speeds. The visible cues enhance reproducibility and directly correlate with performance
metrics together with route period and collision avoidance efficiency.

4.2. Case No.2. In Case 2, the performance of the suggested hybrid algorithms will
be evaluated and illustrated by contrasting them with other current techniques from
the literature [25] that make use of the Dijkstra Algorithm and the Dynamic Window
approach. Map2 (Figure (10)), modified from [25], which incorporates both static and
dynamic barriers, will be used for the comparison. This comparison will make it possible
to assess how well the suggested hybrid approach performs in comparison to the most
advanced methods available today.

Figure (10) showcases Map 2, any other 20Ö20 m takes a look at surroundings present-
ing a distinct arrangement of static obstacles (black rectangles) and dynamic limitations
(crimson circles). Dynamic boundaries on this map exhibit a broader velocity range
(0.3–1.0 m/s), annotated along directional arrows to reflect their movement trajectories.
Unlike Map 1, Map 2 includes denser static boundaries and a better number of dynamic
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Figure 10. Map 2 with Static and Dynamic Obstacles

boundaries, trying out the set of rules’s robustness in complex scenarios. The robotic’s be-
gin and goal positions are in addition marked, emphasizing the want for adaptive direction
making plans. These annotations directly link to the methodology in Section four.Three,
allowing readers to visualize how the sliding window resizing mechanism accommodates
limitations with diverse speeds, as mentioned within the Results (Section 5).

4.3. Experimental Environment and Parameter Settings. The proposed algorithm
was evaluated in a 2D dynamic environment simulated using MATLAB R2023a on a
workstation with an Intel i7-12700K CPU (5.0 GHz) and 32GB RAM. The environment
comprised:

• Map Dimensions: 20 m × 20 m for both Map 1 and Map 2.
• Static Obstacles: 5–10 randomly placed rectangular/circular obstacles with fixed
positions.

• Dynamic Obstacles: 2–4 circular obstacles moving at velocities of 0.3 m/s (slow)
to 1.0 m/s (fast).

• Robot Specifications: Circular footprint (radius = 0.5 m), maximum linear ve-
locity = 1.2 m/s, acceleration limit = 0.3 m/s2.

Algorithm Parameters:

• RFD:
– Initial node altitude = 100 units (target node = 0).
– Erosion rate = 0.1, sedimentation rate = 0.05.
– Gradient threshold for path feasibility = 0.01.

• PSO:
– Swarm size = 50 particles.
– Inertia weight (ω) = 0.7, cognitive/social coefficients (C1,C2 ) = 1.5.
– Velocity limits = ±0.5 m/s.
– Maximum iterations = 200.

• Sliding Window:
– Initial window size = 5% of the solution space.
– Adaptive resizing: ±15% for obstacles with speeds >0.7 m/s.

Stopping Criteria:

• Path convergence: <0.01 m improvement over 20 iterations.
• Maximum computation time per trial = 5 seconds.
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5. Results and Discussion. In Figure 11, the Dynamic obstacle moves up in the en-
vironment; Figure 12 shows the robot’s navigation of a new path around the obstacle.
These results graphically illustrate that the hybrid algorithms can adapt and maneuver
in a dynamic environment.

Table 1 illustrates the best path length score for the proposed hybrid RFD-PSO al-
gorithm and dynamic window approach after skipping the moving obstacle and the time
path length after and before moving the dynamic obstacle.

As for Fig. 13, the performance of the proposed hybrid algorithms was further validated
by comparing them with well-known approaches in the literature, i.e., Dijkstra Algorithm
and Dynamic Window Approach on Map no. 2. In this map, we applied the Hybrid PSO
+ RFD algorithm and the results are shown in Figure 14.

The suggested hybrid technique considerably shortens the path length when compared
to both the Dynamic Window technique method and the Dijkstra Algorithm from earlier
studies, as shown by the comparison of the optimal path lengths in Table 2 [25]. In partic-
ular, the hybrid approach produces a path length of 14.5568 meters, which is significantly
less than the 18.67 meters documented in the literature. This comparison demonstrates
the suggested hybrid approach’s increased efficacy and efficiency in path optimization in
dynamic contexts.

Figure 11. The Dynamic Obstacle Moving Up

Figure 12. The Robot Finds a New Path to Overcome the Dynamic Ob-
stacle
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Table 1. Best score and Execution Time of the path length

Algorithm Best score of path length Execution Time
The Proposed Hybrid and Dynamic Window Approach 606.19 cm 1.26591 s

Figure 13. The Hybrid Algorithm with Dynamic Obstacle Based on Map
2

Figure 14. The Results for the Proposed Hybrid Algorithm Based on
Map 2

Table 2. Comparison between the proposed approach and the Dijkstra
algorithm and dynamic Window Approach

Algorithm Path length
Dijkstra Algorithm and Dynamic Window Approach [25] 18.67 m

The Proposed Hybrid Approach 14.5568

6. Conclusion. This research addresses two critical demanding situations in autonomous
mobile robot navigation—efficient route planning and collision avoidance in dynamic
environments—via the development of the hybrid RFD-PSO algorithm. By synergiz-
ing River Formation Dynamics (RFD), which mimics natural water float to keep away
from limitations thru gradient-based totally navigation, and Particle Swarm Optimization
(PSO), which leverages swarm intelligence to refine route smoothness and optimality, the
proposed technique generates collision-loose trajectories while minimizing path length.
The integration of a dynamic Sliding Window Approach in addition enhances computa-
tional efficiency by way of segmenting the answer area and adaptively resizing windows
to accommodate limitations with varying velocities (0.3–1.0 m/s). Experimental vali-
dation in 20×20 m simulated environments verified a 22.03% discount in path period
and an execution time of 1.26 seconds, outperforming traditional techniques just like the
Dijkstra-Dynamic Window Approach.
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However, the approach faces barriers in extraordinarily restrained environments (>15
static boundaries), where adaptive window resizing struggles to hold optimality, and
in multi-robot scenarios, where uncoordinated navigation risks deadlocks. Additionally,
actual-time performance degrades with ultra-rapid barriers (>2.0 m/s). Future studies
need to extend the framework to 3D environments (e.g., aerial drones), comprise decen-
tralized coordination mechanisms for robot swarms, and integrate gadget mastering for
dynamic parameter tuning. Hardware-in-the-loop validation with physically robots and
sensors (LiDAR/RGB-D) is likewise vital to assess robustness under real-international
noise and latency. These improvements should increase the algorithm’s applicability to
commercial automation, independent motors, and collaborative robotic systems, address-
ing both scalability and real-time adaptability.
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