
Journal of Information Hiding and Multimedia Signal Processing ©2014 ISSN 2073-4212

Ubiquitous International Volume 5, Number 1, January 2014

A Fast Algorithm of Temporal Median Filter for
Background Subtraction

Mao-Hsiung Hung1,Jeng-Shyang Pan1,2and Chaur-Heh Hsieh3

1Dept. of Electronic Engineering, National Kaohsiung University of Applied Sciences
2Innovative Information Industry Research Center (IIIRC), Shenzhen Graduate School,

Harbin Institute of Technology
3Dept. of Computer and Communication Engineering, Ming Chuan University

*: Corresponding author
E-mail: hsiehch@mail.mcu.edu.tw

Received February, 2013; revised June, 2013

Abstract. Temporal median filter is one of most popular background subtraction meth-
ods. However, median operation is very time-consuming which limits its applications.
This paper presents a fast algorithm to reduce the computation time of the temporal me-
dian operation. By utilizing the characteristics of high correlation of adjacent frames,
the fast algorithm designs simple mechanism to check whether the median of the current
frame is equal to that of the previous frame. The proposed algorithm reduces the comput-
ing frequency of median operations significantly, and the experimental results indicate it
is much faster than the existing algorithms.
Keywords: background subtraction, temporal median filter, fast algorithm

1. Introduction. Background subtraction is an important step in many computer vision
applications such as video surveillance, people counting, human gesture recognition, mov-
ing object detection and tracking, traffic monitoring, and video indexing and retrieval.
Background subtraction detects moving objects from the difference between the current
frame and a background image. To obtain accurate detection of moving objects, the back-
ground image must be a representation of the scene with no moving objects and must be
updated regularly so as to adapt to the varying lighting conditions and geometry settings
[1]. Many background subtraction methods have been proposed in the literatures such as
running Gaussian average, temporal median filter, mixture of Gaussians, kernel density
estimation, etc. The major problems exist in these methods are either computation ex-
pensive or memory expensive[1].With the rapid advance of memory technology, memory
cost is getting less critical in recent years.

Temporal median refers the median of previous frames in a video sequence to establish
a statistical background model for background subtraction. Lo and Velast in [2] first
presented the temporal median background update technique for congestion detection
system of underground platform. Cucchiara et al. [3] pointed out that emporal median
filter provides an adequate background model which immediately reflects sudden scene
change. Temporal median filter offers acceptable accuracy while achieving a high frame
rate and having limited memory requirements [1].Therefore, it has become one of most
popular background subtraction methods applied by many computer vision systems [4-8].

The temporal median of the k-th frame, IMed(x, y, k), is obtained by

33



34 M. H. Hung, J. S. Pan, and C. H. Hsieh

IMed(x, y, k) = Med(I(x, y, k − 1), I(x, y, k − 2), . . . , I(x, y, k −N)), (1)

where I(x, y, k−1), . . . , I(x, y, k−N), denote pixel values located at (x,y) over the previous
N frames of the k-th frame and Med(.) means the median operation. The methods of the
median operation are categorized into sort-based and selection-based. Sort-based median
operation isthe simplest method. It sorts input data and then picks the middle-order
element from the sorted sequence, which requires significant computational complexity.
Selection-based median methods do not need to sort input data to determine the median,
so they are more efficient than sort-based. Histogram method [9-10] and divide-and-quer
method [11] are good examples of the selection-based median methods.
However, the selection-based method still consumes considerable time, so that it is hard

to satisfy real-time requirement for some applications, especially for high video quality
applications. This paper presents a fast algorithm to further speed up the temporal me-
dian operation, which is based on histogram. Because pixel data are very high correlated
frame by frame, it has high possibility that the two medians of the consecutive frames
are equal. We present a scheme to check the median repetition between two consecutive
frames. The experimental results indicate our proposed method reduces the computation
significantly, and it far exceeds the real-time requirement.

2. Proposed Method.

2.1. Median selection based on histogram. For the convenience of the representa-
tion, we redefine the temporal neighborhood of the pixel at (x,y) of the k-th frame as

Dk = {dk−1, dk−2, . . . , dk−N}, (2)

Where the data set Dkstores the previous N pixel data(dk1,dk−2, . . . , dk−N) located at
(x, y). Here we assume that the pixel value is in the range of 0 and 255. OMid means the
middle order of the N data, i.e. OMid = (N − 1)/2 (N must be odd). Then, the median
selection based on the histogram is described as the following function.

Function: m=medhist(D)
// Input: D stores the previous N pixel data
// Output: m returns the median of D

hn=hist(D) // hist(.) returns the histogram of the data set
csum=0 //csum means the cumulative function of the histogram
for i=0 to 255

if hn[i] > 0 then
csum+=hn[i]
if csum ≥ OMid then break

end if
end for
return i

The above median determination first calculates the histogram of the input data set.
Then, the cumulative function of the histogram is evaluated by incrementing index from
0 to 255. When the cumulative function reaches the middle order, the current index is
the median of the data set required.



A Fast Algorithm of Temporal Median Filter for Background Subtraction 35

2.2. Median selection based on histogram and repetition checking. To develop
the fast algorithm of the median determination, we first design a lower bound and anupper
bound of the cumulative function at the median, denoted by lb and ub. By slightly
modifying the above histogram method, we obtain the following function to evaluate the
median as well as the two bounds of a data set.

Function:{m,lb, ub} =medhist bnd(D)
//Input:D stores the previous N pixel data
/* Ouput: m returns the median of D. lb and ub respectively returns the lower bound
and upper bound of the cumulative function at the median. */

hn=hist(D) // hist(.) returns the histogram of the data set
csum= 0 // csum is the cumulative function of the histogram
for i=0 to 255

if hn[i] > 0
csum+=hn[i]
if csum ≥ OMid then

lb = csum− hn[i]+1, ub = csum
break

endif
end if

end for
return i,lb,ub

Similar to the original histogram method, when the cumulative function of the his-
togram (csum) reaches the middle order, lb can be obtained by lb = csum − hn[i]+1,
where hn[i] is the value of the indexed histogram and ub is equal to (csum). Fig. 1 shows
an example of cumulative function of histogram, and obviously the middle order satisfies
the relation of lb ≤ Omid ≤ ub. We apply the relation to develop the repetition checking
scheme.

Figure 1. An example of cumulative function of histogram

The data set of Dk contains pixel data within the previous N frames of the k-th frame,
as shown in Eq.(2). The next data set of Dk+1for (k+1)-th frame is as

Dk+1 = {dk, dk−1, . . . , dk−N+1}, (3)

where dk is the pixel data of the k-th frame. The difference of Dk+1 and Dk is just dkand
dk−N , which implies Dk+1 and Dk are highly correlated. Thus, it has high possibility that



36 M. H. Hung, J. S. Pan, and C. H. Hsieh

the medians of the two data sets are equal, which we call median repetition. Consequently,
the proposed repetition checking of the median between the two consecutive frames has
promise to greatly reduce the median operation in temporal direction.
The temporal median filter with histogram method and repetition checking is imple-

mented by the following function.

Function: {mk+1,lbk+1, ubk+1}=medhist repchk(Dk, dk,mk,lbk,ubk)
/* Input: Dk stores the previous N pixel data of the k-th frame. dk is the pixel data of
the k-th frame. mk, lbk and ubk are respectively the median, lb and ub of Dk. */
/*Ouput: mk+1returns the median of Dk+1. lbk+1 and ubk+1 respectively return lb and
ub of Dk+1.*/

insert dk into Dk and delete dk−N from Dk to obtain Dk+1

{tf,lbk+1, ubk+1} =repchk(dktN ,dk, mk,lbk,ubk)//call function repchk(.) for repetition
checking
if tf then

mk+1 = mk// if repchk(.) returns tf=1
else

{mk+1,lbk+1, ubk+1} =medhist bnd(Dk+1) // if repchk(.) returns tf=0
end if
return mk+1,lbk+1, ubk+1

Given the data and parameters of the k-th frame, dk−N , dk, mk, lbk and ubk, the repeti-
tion checking algorithm first calculate the parameter of the next frame, lbk+1 and ubk+1,
according to the relations of the values of dk−N , dk and mk. The relation of dk−N and
mk contains three cases:“less than”, “equal to” and “greater than”. The relation of dk
and mk also include the same three cases. Thus, the two relations generate nine permu-
tations, which can be utilized tocalculatelbk+1 and ubk+1 from lbk and ubk. For examples,
when the deleted element dk−N and the inserted element dk are less than the previous
median of mk, lb and ub are unchanged, i.e. lbk+1=lbk and ubk+1=ubk. When dk−N is
less than mk and the dk is equal to mk, lb is decreased by 1 but ub is unchanged, i.e.
lbk+1 = lbk − 1 and ubk+1 = ubk. Similarly, the other seven conditions are used to update
the next lower bound and upper bound. Finally, if lbk+1 ≤ OMid ≤ubk+1, the median of
the next frame is equal to that of the current frame; i.e., mk+1 = mk. The repetition
checking is implemented by the following function.

Function:{tf,lbk+1,ubk+1}=repchk(dktN ,dk,mk,lbk,ubk)
/* Input: dk−N and dk respectively denote the deleted and inserted element for the next
data set.
mk means the previous median. lbk and ubk are the previous bounds of the cumulative
function at the median. */
/* Output: tf returns 1 if the current median is equal to the previous median, otherwise
tf returns 0. */

if dk−N < mk and dk < mk, then lbk+1=lbk, ubk+1=ubk
else if dk−N < mk and dk = mk, then lbk+1=lbk−1, ubk+1=ubk
else if dk−N < mk and dk > mk, then lbk+1=lbk−1, ubk+1=ubk−1
else if dk−N = mk and dk < mk, then lbk+1=lbk+1, ubk+1=ubk
else if dk−N = mk and dk = mk, then lbk+1=lbk, ubk+1=ubk
else if dk−N = mk and dk > mk, then lbk+1=lbk, ubk+1=ubk−1
else if dk−N > mk and dk < mk, then lbk+1=lbk+1, ubk+1=ubk+1



A Fast Algorithm of Temporal Median Filter for Background Subtraction 37

else if dk−N > mk and dk = mk, then lbk+1=lbk, ubk+1=ubk+1
else if dk−N > mk and dk > mk, then lbk+1=lbk, ubk+1=ubk

if lbk+1 ≤ OMid and OMid ≤ubk+1, then tf=1 else tf=0
return tf,lbk+1, ubk+1

To further speed-up the repetition checking above, we design a table look-up scheme
which maps the nine rules above into a table. We define the differential bounds as ∆lb =
lbk+1 − lbk and ∆ub = ubk+1 − ubk. The nine conditions are encoded into the index with
value from 0 to 8, which is calculated by c=3×a+ b. Table 1 lists the relation of ∆lb and
∆ub with the index c. When ∆lb and ∆ub are obtained by looking up the table with the
index c, the new bounds lbk+1 and ubk+1 can be respectively calculated by lbk +∆lb and
ubk +∆ub. The table look-up scheme is listed in the following.

Code:Table look-up scheme to calculate lbk+1 and ubk+1

if dk−N < mk, then a=0 else if dk−N = mk, then a=1 else if dk−N > mk, then a=2
if dk < mk, then b=0 else if dk = mk, then b=1 else if dk > mk, then b=2
c=3×a+ b
lbk+1=lbk +∆lb[c] , ubk+1=ubk +∆ub[c]

Table 1. Lookup table of ∆lb and ∆ub

The cost paid by the proposed fast algorithm is extra memory requirement for the
repetition checking. It needs (2 × [log2N ] + 8) ×H ×W bits to store lbk, ubk and mkin
advance for all pixels in the frame, where H ×W is the frame size. For example, when
N=31, the additional memories are 2.25 frames, where 1.25 frames are used for storing lbk
and ubk, and 1 frame for storing mk. In this case, the extra memory cost is approximate
7% of the previous frame buffer, which is relatively small.

3. Experimental Results. In the experiments, we evaluate our proposed method with
six standard testing videos. Among those videos, “Akiyo” and “news” are with low mo-
tion, “hall monitor” and “container” are with middle motion, and “foreman” and “coast
guard” are of high-motion videos. The formats of the videos consist of CIF (352×288)
and QCIF (176×144)with frame rate of 30 Hz. Each video contains 300 frames. We use
31 previous frames to calculate the temporal median, i.e. N=31.The testing bench uses
Visual C++ with Intel Core2 Duo at 2.53GHz. We compare the processing times of our
method with existing four methods, and the results are listed in Table 2 and Table 3 for
CIF and QCIF, respectively. The methods for comparison contain two sort-based meth-
ods and two selection-based methods. The former are bubble sort and quick sort, and



38 M. H. Hung, J. S. Pan, and C. H. Hsieh

the later are divide-and-conquer and histogram methods. Our proposed method is based
on histogram method and repetition checking. The average processing time of the five
videos is listed in the last second column. The time ratio with respect to the proposed
method is listed in the last column. The time ratio is defined as the average processing
time of a method divided by that of our method.
The experimental results indicate that the proposed method performs significantly

faster than other methods for all cases. Moreover, the proposed fast algorithm can
achieve67.5 fps (=300/4.443) for CIF and 336.7 fps (=300/0.891) for QCIF that greatly
excesses the real-time requirement. The proposed method performs 2.07 times and 2.32
times faster than the histogram method for CIF and QCIF, respectively. The results prove
that the repetition checking effectively reduces the computing frequency of the temporal
median operation.

Table 2. Comparison of processing times of various methods for CIF
videos(in sec)

Table 3. Comparison of processing times of various methods for QCIF
videos (in sec)

To investigate the computational complexity of the five methods, we measure the pro-
cessing times under six different previous frame numbers (N) including 15, 31, 45, 61,
75 and 91. Fig. 2(a) and Fig. 2(b) show the experimental results for hall monitor and
foreman sequences respectively. The results indicate that the processing times of the two
sort-based methods increase approximately linearly with the increase of N , and those of
the other three methods slightly raise with the increase of N . Comparing to the other
four methods, the proposed method provides the least increasing rate over previous frame
numbers.



A Fast Algorithm of Temporal Median Filter for Background Subtraction 39

Table 4 lists the comparison of the computational complexity of the five algorithms in
terms of computation order of best case, worst case and average case. Here we use 50% of
median repetition rate to evaluate the computational complexity of our algorithm in the
average case and obtain O(N). According to our investigation, the median repetition rates
of Akiyo, news, hall monitor, container, foreman and coastguard sequences are respectively
94.72%, 90.52%, 92.53%, 87.6%, 69.1% and 68.12% for QCIF at N=31. Therefore, the
computational complexity of the proposed algorithm would be close to the best case, i.e.
O(1), in practice.

Figure 2. The time complexity analysis of the five algorithms

Table 4. Computational complexity of the five algorithms

4. Conclusion. In this paper, we have presented a fast algorithm to speed up temporal
median filter for background subtraction. This algorithm is mainly based a novel repe-
tition checking scheme. The lower and upper bounds of the cumulative function of the
histogram are developed for the check of median repetition. Due to the high correlation
of the pixel data between consecutive frames, the repetition checking effectively reduces
the computing frequency of the median operation. The results indicate that the proposed
algorithm performs approximate two times faster than histogram method, which is the
state-of-the-art. Because our algorithm far exceeds the real-time requirement, it makes
the temporal median filter much more applicable.



40 M. H. Hung, J. S. Pan, and C. H. Hsieh

Acknowledgement:
This work was supported in part by National Science Counsel Granted NSC
98-2221-E-151-036-MY3 and NSC 98-2811-E-214-151-001.

REFERENCES

[1] M. Piccardi, Background subtraction techniques: a review, Proc. of IEEE International Conference
on Systems, Man and Cybernetics, pp. 3099-3104, 2004.

[2] B. P. L. Lo, and S. A. Velastin, Automatic congestion detection system for underground platforms,
Proc. Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech
Processing, pp. 158-161, 2001.

[3] R. Cucchiara, C. Cranna, M. Piccardi, and A. Prati, Detecting moving objects, ghosts and shadows
in video streams, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1337-
1442, 2003.

[4] S. -C. S. Cheung, and C. Kamath, Robust techniques for background subtraction in urban traffic
video, Proc. of Visual Communications and Image Processing, SPIE 5308, pp. 881-892, 2004.

[5] R. Cutler, and L. Davis, View-based detection and analysis of periodic motion, Proc. of the 14th
International Conference on Pattern Recognition, pp. 495-500, Aug 1998.

[6] Q. Zhou, and J. Aggarwal, Tracking and classifying moving objects from videos, Proc. of IEEE
Workshop on Performance Evaluation of Tracking and Surveillance , pp. 52-59, 2001.

[7] N. J. B. McFarlance, and C. P. Schofield, Segmentation and tracking of piglets in images, Journal
of Machine Vision and Applications, vol. 8, no. 3, pp. 187-193, 1995.

[8] J. Cai, M. Shehata, and W. Badawy, A robust video-based algorithm for detecting snow movement
in traffic scenes, Journal of Signal Processing Systems, vol. 56, no. 2-3, pp. 307-326, 2009.

[9] T. S. Huang, G. J. Yang, and G. Y. Tang, A fast two-dimensional median filtering algorithm, IEEE
Trans. Acoustics, Speech, And Signal Processing, vol. 27, no. 1, pp. 13-18, 1979.

[10] S. Perreault, and P. Hebert, Median filtering in constant time, IEEE Trans Image Processing, vol.
16, no. 9, pp. 2389-2394, 2007.

[11] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, Algorithms, McGraw-Hill, New York, USA,
2008.


