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Abstract. Multimodal medical image fusion plays a vital role in clinical diagnosis and
treatment planning. In the image fusion methods based on nonsubsampled contourlet
transform (NSCT) and pulse coupled neural network (PCNN), authors have used nor-
malized coefficient value to motivate the PCNN-processing, which makes the fused image
blurred, detail loss and decrease in contrast. In this paper, we present a novel multi-
modal medical image fusion method by combining sparse representation (SR) and pulse
coupled neural network (PCNN) in nonsubsampled contourlet transform (NSCT) domain.
Firstly, the source images are decomposed into low- and high-frequency bands in NSCT
domain, which are sparsely represented with learned dictionaries. Then `1-norm matrix
is used to motivate the PCNN-processing both in low- and high-frequency bands, and large
firing times are selected as coefficients of the fused image. Finally, the fused image is
reconstructed by performing inverse NSCT. Experimental results show that the proposed
scheme outperforms the state-of-the-art methods in subjective quality and objective eval-
uation criteria.
Keywords: Multimodal medical image fusion, Sparse representation, Pulse coupled
neural network, Nonsubsampled contourlet transform.

1. Introduction. To provide more accurate comprehensive pathological information to
doctors for better diagnosis and treatment, multimodal medical image fusion has become
an important issue in medical image analysis. There are various modalities such as X-ray
Computed Tomography (CT), Magnetic Resonance Imaging (MRI) T1, T2 sequences, Ul-
trasonography, Positron Emission Tomography (PET) and Single Photon Emission Com-
puted Tomography (SPECT). Different imaging modalities reflect different aspects of
human body information. For example, CT images can show dense structures like bones
and implants with less distortion, but cannot detect physiological changes, while MR im-
ages can provide normal and pathological soft tissues information, but cannot provide the
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bones information [1]. Multimodal medical image fusion offers an important approach to
solve this problem by integrating complimentary features of different imaging modalities
into one fused image. In the past few years, various multimodal medical image fusion
algorithms have been addressed in the literature. These approaches can be classified into
spatial and transform domain [2]. Spatial domain algorithms include average, variance,
energy of image gradient, sum modified Laplacian and spatial frequency [3]. The trans-
form domain fusion methods use a decomposition-fusion-reconstruction framework [4].
Classical transform domain fusion methods include principal component analysis (PCA)
[5], gradient pyramid (GP) [6], discrete wavelet transform (DWT), dual-tree complex
wavelet transform (DTCWT) [7-8], and multi-scale geometric analysis like curvelet trans-
form (CVT) [9] and nonsubsampled contourlet transform (NSCT) [10]. Among these
transforms, NSCT is shift-invariant and can suppress pseudo-Gibbs phenomena during
fusion, so it is more suitable for image fusion. However, how to measure the impor-
tance/contribution of individual source image in the fused image, and to find a more
effective way of combination is still an open problem [11]. Recently, attempts have been
made to integrate NSCT with other techniques for more effective medical image fusion [1,
12]. Pulse coupled neural network (PCNN), which is a biologically inspired spiking neural
network based on cats visual cortex has been utilized in image fusion [13-14]. The ba-
sic PCNN model is utilized in NSCT domain [15]. Modified spatial frequency-motivated
PCNN has been adapted in NSCT domain [16]. Among these methods, external stimulus
to PCNN for approximate and detail sub-bands is normalized coefficient value. In fact,
the information present in approximate and detail sub-bands are different, the normal-
ized coefficient value used to motivate PCNN leads to blur and loss of details in the fused
image, moreover the parameters of PCNN are fixed, which are not applicable to different
medical image modalities. Medical images of different modalities contain large amount
of edges and directional features, which are quite often very subtle in nature. NSCT is a
shift invariant MSD transform that has high directional sensitivity, which is able to rep-
resent the smoothness along the edges or contours properly. These features of NSCT are
suitable for medical image fusion application. The parameters of PCNN play important
roles in the model. Once the input images are changed, the defined parameters may no
longer be suitable for the new images. To make full use of the biological characteristics
of PCNN, we combine the PCNN properties and the image characteristics to adaptively
determine the linking strength. This inspired us to propose a new image fusion method-
ology in NSCT domain that is superior to the current methods which do not capture
edges spectral information and detail features in a satisfactory manner for multimodality
medical images.

Electrophysiological experiments on the primate temporal visual cortex and catvisual
cortex [17-19] have shown that the neuronal representation of complex stimulus in visual
cortex is based on sparse coding. Sparse representation (SR) addresses signals natural
sparsity, which is consistent with the physiological characteristics of the human visual sys-
tem. SR can extract more effective features for image analysis. In this paper, an efficient
multimodal medical image fusion algorithm combining SR and PCNN in NSCT domain
is proposed. Firstly, the source images are decomposed into low frequency bands (LFS)
and high frequency bands (HFS) in NSCT domain, which are then sparsely represented
with learned dictionary. Then `1 -norm matrix is used to motivate the PCNN-processing
both in low- and high- frequency bands with adaptive linking strength, and large firing
times are selected as fusion rule. Finally, inverse NSCT is conducted to obtain the fused
image.

2. Related Works.
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2.1. NonSubsampled Contourlet Transform. NSCT is a shift-invariant, multiscale,
and multidirection image decomposition transform. It is based on the non-subsampled
pyramid filter bank (NSP or NSPFB) and the non-subsampled DFB (NSDFB) [20]. The
NSP performs multiscale decomposition, which divides an image into a low frequency sub-
band and a high frequency sub-band at each NSP decomposition by using two-channel
non-subsampled filter bank, as a result, NSP generates k+1 sub-images, which consist
of one low frequency image and k high frequency images having the same size as source
image, where k denotes the number of decomposition levels. NSDFB provides direction
decomposition, which decomposes the high frequency sub-bands from NSP in each level
and 2l directional sub-images with the same size as the source image are obtained, where
l is the number of decomposition directions. Therefore, NSDFB offers the NSCT with
more precise directional detail information.

2.2. Sparse Representation. The basic principle of sparse representation is that a
signal can be expressed as a sparse linear combination of a few atoms from an overcomplete
dictionary. In the sparse linear model, one patch of an image can be represented as
a column vector v in the dictionary D. That is v=Dx, where x ∈ Rm is the sparse
coefficients of v. Let D=(d1,d2,. . . ,dm) ∈ Rn×m, each column of D is an atom, we
say that the dictionary D is redundant when the number of atom m is much larger
than the dimension of an atom n. The dictionary D can be obtained using dictionary
learning methods, such as K-SVD [21] and MOD [22]. The target of SR is to calculate the
representation vector x which contains the fewest nonzero entries. Let denote the number
of the nonzero entries in x, the above discussion can be formulated as follows:

min
x
‖ x ‖0, s.t. ‖ v−Dx ‖22< ε (1)

where ε > 0 is the error tolerance parameter. Solving the sparse representation problems
(1) is generally NP-hard. Some effective pursuit methods, such as Orthogonal Matching
Pursuit (OMP) [23] and Basis Pursuit (BP) [24] have been proposed to solve this problem.
In this paper, we employ BP to do the sparse representation. BP is a convex relaxation
algorithm defined as

min
x
‖ x ‖1, s.t. ‖ v−Dx ‖22< ε (2)

where ‖ . ‖1 denotes `1 -norm of vectors, which is the sum of absolute values of all
elements.

Figure 1. Structure of the PCNN neuron model
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2.3. Pulse Coupled Neural Network. PCNN is a biologically inspired neural network,
which is similar with the mode of human visual processing, so PCNN fusion rule is ex-
ploited to fuse the sparse coefficients of source images. The structure of a PCNN neuron
model is shown in Fig. 1. It consists of three modules [14]: the dendritic tree, the linking
modulation and the pulse generator, the dendritic module comprises of two input parts:
feeding input and linking input, the feeding receives external stimulus and local stimulus,
while the linking receives external stimulus from the output of surrounding neurons, as
represented as Eq.(3) and (4):

Fi,j(n) = e−αFFi,j(n− 1) + VF
∑
k,l

Wi,j,k,lYi,j(n− 1) + Ci,j (3)

Li,j(n) = e−αLLi,j(n− 1) + VL
∑
k,l

Mi,j,k,lYi,j(n− 1) (4)

where W and M are the synaptic weight matrices and Ci,j(n) is the external stimulus.
VF and VL are normalizing constants, αF and αL are the time constants (αF<αF ). The
linking modulation is given by:

Ui,j(n) = Fi,j(n)[1 + βLi,j(n)] (5)

In Eq.(5), Ui,j(n) is total internal activity of the neuron. β is the linking parameter and
the pulse generator determines the firing events in the model in Eq.(6). Yi,j(n) depends
on the internal state and threshold.

Yi,j(n) =

{
1, Ui,j(n) > Ti,j(n)

0, Ui,j(n) ≤ Ti,j(n)
(6)

The dynamic threshold of the neuron is formulated as Eq.(7).

Ti,j(n) = e−αTTi,j(n− 1) + VTYi,j(n) (7)

where VT is normalized constant and αT is time constant.

3. Proposed Fusion Rule. An efficient NSCT-domain image fusion algorithm combin-
ing SR and PCNN named NSCT-SR-PCNN, is presented. The source images are firstly
decomposed into low and high frequency bands by NSCT. Each subband is subsequently
sparsely represented with learned dictionary, and `1-norm matrix is used to motivate the
PCNN-processing both in low and high frequency bands, large firing times are selected
as coefficients of the fused image. Finally, the fused image is obtained by performing the
INSCT over the merged coefficients. The schematic diagram of the proposed image fusion
framework is depicted in Fig. 2.

3.1. Definition of `1-norm Matrix. The source images are firstly decomposed into
low and high frequency bands by NSCT, applying the sliding window technique to divide
every sub-band into image patches of size n × n from upper left to lower right with a
step length of s pixels. For each position p of patches, the pixel values of every patch
are lexicographic ordered into a column vector {Vp} , Calculating the sparse coefficient
vectors {Qp} of {Vp} using BP algorithm by

Qp = min
x
‖ Q ‖1, s.t. ‖ Vp −Dx ‖22< ε (8)

the dictionaries D both are used for (LFS) and (HFS). ‖ . ‖1 denotes `1-norm, which
is the sum of absolute values of all elements. Supposing source image size l × w, center
coordinate of patch p(xp , yp), which is defined as:
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Figure 2. Schematic diagram of the proposed image fusion framework

{
xp = [(p− 1)mod(bw/sc)]× s+ dn/2e
yp = [b(p− 1)/(bw/sc)c]× s+ dn/2e

(9)

From `1-norm, we can compute `1-norm matrix, which is defined as:

`1 (i, j) =

{
‖ Qp ‖1 if i = xp and j = yp

0 otherwise
(10)

3.2. Definition of Directional Gradient Feature. The linking parameter β is an im-
portant parameter which varies the weightage of linking field. Sum of directional gradients
feature (SDG) at each location in contourlet domain is considered as the linking strength
of the neuron present in the corresponding location. The sum of directional gradients of
a function I (x, y) is defined as:

β = SDG[I(x, y)] =
√

[I(x, y)− I(x− 1, y)]2 + [I(x, y)− I(x+ 1, y)]2

+
√

[I(x, y)− I(x, y − 1)]2 + [I(x, y)− I(x, y + 1)]2

+
√

[I(x, y)− I(x− 1, y − 1)]2 + [I(x, y)− I(x+ 1, y + 1)]/2

+
√

[I(x, y)− I(x− 1, y + 1)]2 + [I(x, y)− I(x+ 1, y − 1)]/2

(11)

3.3. NSCT-SR-PCNN. The detailed fusion scheme is summarized as follows: The two
source images A and B are represented in low-frequency sub-bands (LFS) {AL,BL} and
high-frequency (HF) sub-bands {AH,BH} by using NSCT. Applying the sliding window
technique to divide AL, BL, AH, BH into image patches, For each position p of patches,
the pixel values of every patch are lexicographic ordered into a column vector {Vp

AL,
Vp
BL, Vp

AH , Vp
BH}. Calculate the sparse coefficient vectors {Qp

AL, Qp
BL, Qp

AH , Qp
BH} of

{Vp
AL, Vp

BL, Vp
AH , Vp

BH}using Eq.(8), get {`AL1 , `BL1 , `AH1 , `BH1 } using Eq.(9)-(10). Input
`1-norm matrix of each LFS and HFS to motivate the PCNN-processing, that is `1 (i, j)
=Ci,j, and generate pulse of neurons with Eq.(3)-(6), Calculate {βAL, βBL, βAH , βBL
}using Eq.(11), on the basis of the firing time that is evaluated in Eq.(7), we can compute
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the time matrices of PCNN-processing LF sub-bands AL, BL as TAL, TBL, respectively.
Similarly, we can get TAH and TBH . Fuse the coefficients of the LFS by the following
fusion rule:

FL =


max(AL,BL) TAL = TBL

AL TAL > TBL

BL TAL < TBL

(12)

from Eq.(12), we can get FH , where FL and FH are the fused image of LFS and HFS,
respectively. Perform the inverse NSCT over FL and FH to reconstruct the final fused
image F.

4. Experiments Result Analysis. To evaluate the performance of the proposed ap-
proach, the experiments on four pairs of multimodal medical images are conducted in Fig.
3, which can be downloaded from http://www.imagefusion.org and http://www.med.h-
arvard.edu/aanlib/home.html. All images have the same size of 256 × 256 pixels, with
256-level gray scale. These pair images are divided into four groups. (A): MRI-T1 and
Gd-DTPA-MRI-T2, (B): B ultrasound and SPECT, (C): CT and MRI, (D): MRI-T1 and
MRI-T2. In the experiments, the proposed method is compared with following five fusion
algorithms, including image fusion with guided filtering (GFF) [25], a general framework
for image fusion based on multi-scale transform and sparse representation (LP-SR) [26],
nsct-based multimodal medical image fusion using pulse-coupled neural network and mod-
ified spatial frequency (NSCT-PCNN-SF) [16], image fusion algorithm based on spatial
frequency-motivated pulse coupled neural networks in nonsubsampled contourlet trans-
form domain (NSCT-SF-PCNN) [15], medical image fusion by combining nonsubsampled
contourlet transform and sparse representation (NSCT-SR) [27]. For fair comparison, we
use the parameters that were reported by the authors to yield the best fusion results.

Figure 3. Source multimodal medical images for fusion experiments

Figs. 4-7 show the fused images by the proposed method and the other five methods.
From the fusion results in Fig. 4(a)-4(f), it is clear that the image fused by our method
reaches a higher contrast among all the fused images, which cannot be seen in the original
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MRI-T1 or Gd-DTPA-MRI-T2 image. Fig. 4 show two source medical images captured
using T1-weighted MR and T2-weighted MR-GAD image of several focal lesions involving
basal ganglia (Gd-DTPA-MRI-T2) respectively. From Fig. 4(a), (c) and (d), it can be
seen that in the results produced by the GFF, NSCT-PCNN-SF and NSCT-SF-PCNN
method, some edge detail structures are invisible, some details blur in Fig. 4(b) and (e),
the results of above five method may decrease the brightness of soft-tissue structures,
thus make some details blur and several focal lesions are not clear (highlighted by white
arrows). From the fusion results in Fig. 4(a)-4(f), it is clear that the image fused by our
proposed algorithm not only preserves edge spectral information but also improves the
spatial detail information (highlighted by red arrows). At the same time, the pathology
of brain which is lacunar infarction in this case is presented clearly over all existing
algorithms.

Figure 4. Fusion results of groups (A)

The fusion results of the six algorithms in Fig. 5(a)-5(f) show that our method has
the best visual effect in all the fusion methods, which cannot be seen in the separate B
ultrasound or SPECT image. Fig. 5(a)-5(d) show that GFF, LP-SR, NSCT-PCNN-SF,
and NSCT-SF-PCNN cannot fuse this type of medical images well; Figure 5(e) shows that
NSCT-SR method can get much better performances. Compared with the fused images
of NSCT-SR, the proposed fusion algorithm preserves the texture information of source
images well. Similar performance is perceived for the remaining two groups (group (C)
and group (D)), which are shown in Fig. 6 and Fig. 7, respectively.

The comparisons show that the proposed scheme is most effective among the six algo-
rithms. For further comparison except for the visual observation above, popular objective
metrics are utilized to evaluate the quality of fused image quantitatively, including mu-
tual information(MI) [1,15], standard deviation(SD) [25], spatial frequency(SF) [1,15],
gradient(QG) [25]. These four performance indexes can effect evaluate the quality of
fused image quantitatively. MI indicates the amount of information contained in the
fused image about the source images. SD is mainly used to measure the overall contrast
of the fused image. SF indicates the overall activity of fused image. QG evaluate the
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Figure 5. Fusion results of groups (B)

Figure 6. Fusion results of groups (C)

success of edge information or gradient information injected into the fused image from
the source images. In general, the larger the values of MI, SD, SF and QG indicate better
fusion quality. Table 1 summarizes the simulation results of the proposed method and five
state-of-the-art methods, where the best result is marked in boldface. It is known from
Table 1 that the proposed method produces the best results in Group (A) and Group
(B). In Group (C), MI and SF values of the proposed algorithm are best. In Group D,
this observation clearly suggests that QG values is only slightly worse than LP-SR, the
MI, SD, SF values of proposed method are superior to all the other methods. From these
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Figure 7. Fusion results of groups (D)

experiments, we may draw the conclusion that the proposed method is better than the
other methods, which should attribute to the saliency medical images which is captured
by sparse representation and `1-norm matrix to activate the PCNN.

Table 1. Objective criteria on the multimodal medical images fusion results

Source Images metric GFF LP-SR
NSCT-

PCNN-SF

NSCT-SF-

PCNN
NSCT-SR proposed

MI 2.8330 2.8899 2.5052 2.9447 2.7265 2.9517

Group (A) MRI-T1, SD 64.9513 67.8278 66.4747 65.4124 66.5807 72.5448

Gd-DTPA-MRI.T2 SF 5.9151 6.6913 6.1888 6.1476 6.4312 6.8566

QG 0.6378 0.7193 0.4752 0.5028 0.6557 0.7222

MI 3.4735 3.5531 2.8597 3.2090 3.7118 4.3099

Group (B) SD 39.7509 44.7922 49.6209 42.0263 50.2828 52.9381

B ultrasound, SPECT SF 6.5647 6.6016 6.5376 6.5959 6.6851 6.6882

QG 0.7300 0.7366 0.5285 0.7225 0.7402 0.7525

MI 3.4307 3.1260 2.2030 1.2819 3.0118 3.5891

Group (C) SD 53.5610 59.9399 55.6074 51.8312 56.3958 58.9436

CT, MRI SF 6.5492 6.7673 6.5828 6.0079 6.7428 6.8128

QG 0.8070 0.7898 0.4970 0.4245 0.7302 0.8066

MI 4.3961 3.8387 3.9109 4.1132 4.3043 4.4155

Group (D) SD 38.7853 40.4644 39.0230 35.5550 40.4137 42.4488

MRI-T1, MRI-T2 SF 5.3905 5.5128 5.4383 5.0013 5.4957 5.6798

QG 0.7694 0.7195 0.6403 0.6840 0.7335 0.7645

5. Conclusion. In this paper, a new multimodal medical image fusion algorithm which
combines SR and PCNN in NSCT domain has been presented. To integrate as much infor-
mation as possible into the fused images, we exploit the multi-scale and multi-directional
properties of NSCT and SR along with `1-norm matrix motivated PCNN to capture the
subtle differences as well as the fine details present in the source multimodal medical
images into the fused image. The experiments have shown that the proposed scheme out-
performs the state-of-the-art fusion methods in terms of both the subjective and objective
performance valuation.
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