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Abstract. In this paper, a recently proposed model which is called Mean-variance-
skewness for fuzzy portfolio selection is studied. Both the multidimensional nature of the
portfolio selection problems and the requirements of the investor are considered in this
model. The weighted possibilistic moments are used to approximate the quantification of
the fuzzy variables. Then, an adaptive decomposition-based multi-objective evolutionary
algorithm (AMOEA/D) is designed to solve this model which is considered as a con-
strained three-objective optimization problem. In this algorithm, this problem is firstly
decomposed into a number of sub-problems through a set of weight vectors with good
uniformly and aggregate functions, and these sub-problems are simultaneously optimized
in a run; secondly, according to the distances of obtained non-dominated solutions, an
adaptive weight vector adjustment strategy is proposed to redistribute the weight vectors
of sub-objective spaces; thirdly, a crossover based uniform design is specially designed for
portfolio selection problems; fourthly, an external elite population is introduced to help
maintaining the diversity of obtained non-dominated solutions. Moreover, comparing
with some efficient state-of-the-art algorithms NSGAII and MOEA/D on the Shanghai
Stock Exchange, the results indicate the efficiency and effectiveness of the proposed algo-
rithm.
Keywords: Portfolio selection; Fuzzy variable; Possibilistic moments; Multi-objective
evolutionary algorithm; Decomposition; Uniform design

1. Introduction. Portfolio selection theory is derived from the mean-variance (MV)
model proposed by Markowitz [1]. MV model considers trade-off between return and risk.
Due to the non-linear programming problem contained in this approach, portfolio selec-
tion problem has become a classical optimization problem. Since from Markowitz, several
researchers have done some studies by using various approximation schemes. However, in
recent years, many empirical studies think that the distributions of asset returns usually
tend to be of asymmetric leptokurtic and heavy-tailed features, and are not normally
distributed [2]. This indicates that an effective model should consider the higher order
moments. The three or four moment’s framework has been considered in the portfo-
lio problems to solve this problem. Campbell [3] proposed the mean-variance-skewness
framework with the skew normal distribution to incorporate higher order moments in
portfolio selection; Adcock [4] studied the performance of the mean-variance- skewness
portfolio model under the multivariate extended skew-Student distribution.

Besides the higher order moments, uncertainty is another important factor in portfo-
lio model because investors may face uncertain, imprecise and vague data. If there is
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not enough historical data, the model is difficulty described by the statistical variable.
This problem can be solved by using fuzzy variables. Moreover, many researchers [5-6]
have studied the portfolio selection models with fuzzy variables. In this paper, a recently
proposed model which is called Mean-varianceVskewness (MVS) for fuzzy portfolio selec-
tion is studied. Both the multidimensional nature of the portfolio selection problems and
the requirements of the investor are considered in this model. The weighted possibilistic
moments are used to approximate the quantification of the fuzzy variables.

This Mean-variance-skewness model is a constrained multi-objective problem (MOP),
and it cannot be found efficient portfolios by using traditional optimization methods.
To solve this problem, multi-objective evolutionary algorithms (MOEAs) are an effective
method to solve this model because they can handle a set of solutions in parallel. Many
MOEAs have been successfully used to solve many portfolio selection models [7]. Among
these MOEAs, multi-objective evolutionary algorithms based on decomposition [8] have
a good performance on searching a diversity of non-dominated solutions for various kinds
of MOPs [9-10]. They make use of traditional aggregation methods and weight vectors
to transform the task of approximating the Pareto front (PF) into a number of single ob-
jective optimization sub-problems which are simultaneously optimized in a run. Because
the Pareto optimal fronts of MVS are unknown, multi-objective evolutionary algorithms
based on decomposition should have adaptive weight adjustment strategy to set the weight
vectors.

In this paper, a decomposition-based multi-objective evolutionary algorithm with adap-
tive weight vector adjustment (MOEA/DA) is especially designed to solve MVS. The main
contributions of this work are that an adaptive weight vector adjustment strategy which
some weight vectors are adaptively deleted or added according to the distances of obtained
non-dominated solutions is proposed to solve this MVS with complex PF, a crossover op-
erator based on uniform design is designed for portfolio selection problems, and a selection
strategy is used to help crossover operators to improve the search efficiency.

The rest of this paper is organized as follows. Section 2 introduces the main concepts
of the multi-objective optimization and the weighted possibilistic MVS portfolio selection
problem. Section 3 presents a detailed description of our designed multi-objective evolu-
tion algorithm. Section 4 shows the experiment results of the proposed algorithm and the
related analysis on the data of the Shanghai Stock Exchange Market. Finally, conclusion
and future directions are drawn in Section 5.

2. Preliminaries. This section introduces some concepts and preliminary.

2.1. Multi-objective optimization. A continuous optimization problem is a math-
ematical programming problem with a vector-valued objective function, which can be
formulated as follows [11]: minF (x) = (f1(x), f2(x), ..., fm(x))

s.t.gi(x) ≤ 0, i = 1, 2, ...q
hj(x) = 0, j = 1, 2, ..., p

(1)

where x = (x1, ..., xn) ∈ X ⊂ Rn is a n-dimensional decision variable bounded in the
decision space X, m is the number of objective functions. fi(x)(i = 1, ...,m) is the i-th
objective function to be minimized, gi(x)(i = 1, 2...q) defines the i-th inequality constraint
and hj(x)(j = 1, 2...p) defines the j-th equality constraint. Moreover, all the inequality
and equality constraints determine a set of feasible solutions which is denoted by Ω and
Y = {F (x)|x ∈ Ω} ⊂ Rm is denoted as the objective space. Because the objectives often
contradict each other, the improvement of one objective may cause to the deterioration
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of other objectives. So, MOPs have many optimal solutions which can be called non-
dominated solutions [12]. A few important definitions are introduced as follows. Let
x, z ∈ Ω , x is said to be better than z, if F (x) 6= F (z) and fi(x) ≤ fi(z) for i = 1, 2...m.
If there is no other x such that x is better than x∗, x∗ is called Pareto optimal. The set
of all the Pareto optimal solutions is defined as the Pareto set (PS). The image of the PS
(PF = {F (x)|x ∈ PS}), is called the Pareto optimal front (PF) [12].

2.2. Mean-variance-skewness model. In this section, some defines of mean-variance-
skewness model are introduced and more details can refer to the literature [13]. Firstly,
the concept of skewness for fuzzy variables is defined as follow:

s[ξ] = E[(ξ − E[ξ])3] (2)

where ξ is a fuzzy variable with finite expected value, and E[ξ] is the expected value of
the fuzzy variable ξ.

Let ξi be a fuzzy variable representing the return of the ith security, and let xi be the
proportion of the total capital invested in security i. The Mean-variance-skewness model
which maximizes the expected return and the skewness, minimizes the risk is defined as
follow: 

maxS

[
n∑
i=1

ξixi

]
maxE

[
n∑
i=1

ξixi

]
maxV

[
n∑
i=1

ξixi

]
s.t.,

n∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, ...n

(3)

where V [ξ] = (ξ − E[ξ])2 is the variance of the fuzzy variable ξ.
In this paper, the weighted possibilistic moments are used to approximate the quantifi-

cation of the fuzzy variables. The possibilistic skewness [14] of
∑n

i=1 ξixi is

S

[
n∑
i=1

ξixi

]
= 19

1080

[(
n∑
i=1

xiθi

)3

−
(

n∑
i=1

xiδi

)3
]

+ 1
24

[
n∑
i=1

xi(di − ci)
][(

n∑
i=1

xiθi

)2

−
(

n∑
i=2

xiδi

)2
]

+ 1
72

[(
n∑
i=1

xiδi

)(
n∑
i=1

xiθi

)2

−
(

n∑
i=1

xiθi

)(
n∑
i=1

xiδi

)2
] (4)

where [ci, di] is the core of the fuzzy variable ξi, δi > 0 is the left width, θi > 0 is the right
width. The weighted possibilistic variance of

∑n
i=1 ξixi is

V

[
n∑
i=1

ξixi

]
=

[
∑n

i=1 xi(θi + δi)]
2

+ [
∑n

i=1 xi(θi − δi)]2

72
+

[
n∑
i=1

xi

(
di − ci

2
+
θi + δi

6

)]2
(5)

The weighted possibilistic expected value of
∑n

i=1 ξixi is
∑n

i=1 xi
(
di−ci

2
+ θi+δi

6

)
3. A New Evolutionary Algorithm for the MVS. For the MVS with unknown
Pareto optimal fronts, a multi-objective evolutionary algorithms based on decomposition
with adaptive weight adjustment strategy is designed to solve this problem. This proposed
algorithm mainly consists of three parts: adaptive weight vector adjustment strategy,
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a crossover operator based on uniform design and a selection strategy, which will be
introduced in this section.

3.1. Adaptive Weight Vector Adjustment. In the subsection, an adaptive weight
vector adjustment is presented. This adjustment strategy uses the distances of obtained
non-dominated solutions to delete or add some weight vectors solve the problems with un-
known PF and maintain relative stability of weight vectors. The details of the adjustment
are as follows.

For the current weight vectors W = (W1,W2, ...,WH) and current population POP =
(x1, x2, ..., xH), where H is the number of solutions or weight vectors and xi(i = 1 ∼ H)
is the current optimal solution of the corresponding sub-problem of the weigh vector
Wi. The non-dominated solutions of POP are firstly found. For convenience, we suggest
that (x1, x2, ..., xK)(K ≤ H) are the non-dominated solutions of POP and denote WW =
(W1+K ,W2+K , ...,WH). The distancesNDi of obtained non-dominated solutions ofWi(i =
1 ∼ H) is calculated as NDi = max{|fj(xj1)−fj(xi)|, |fj(xi)−fj(xj2)|, j = 1 ∼ m}, where
Wj1,j and Wj2,j are the supremum and infimum of Wi,j among {W1,j,W2,j, ...,WK,j}. The
values of NDi are mainly used to delete some weight vectors. In addition, all |fj(xj1) −
fj(x

i)| and |fj(xi)−fj(xj2)| are sorted to add the weight vectors. For convenience, we use
PDi,u = |fj(xui)− fj(xi)|(j = 1 ∼ m, 1 ≤ u ≤ 2 ∗K ∗m) and Wui to denote the distance
of obtained non-dominated solutions of Wui and Wi and the corresponding weight vector,
respectively, where Wui,j is the supremum or infimum of Wi,j among {W1,j,W2,j, ...,WK,j}.

The deleting strategy is as follows. If K > N (where N is the size of the initial
population), N −K weight vectors with the minimum NDi are deleted from W . Then, if
max{NDi, i = 1 ∼ N}/min{NDi, i = 1 ∼ N} > 2, the corresponding weight vector with
the minimum NDi is deleted from W . After some weight vectors are deleted from W ,
the adding strategy is that, if the size of the current W is smaller than H −K +N,H −
K +N − |W | new weight vectors are generated as follows:

Wnew =

{
(0.25 ∗Wui + 0.75 ∗Wi)/yy if∃Wk ∈ WW,Wi ∗ tt′ < Wk ∗ tt′)

tt else
(6)

Where yy = ||0.25 ∗Wui + 0.75 ∗Wi||2, tt = (0.5 ∗Wui + 0.5 ∗Wi)/||0.5 ∗Wui + 0.5 ∗Wi||2,
and the distances PDi,u of obtained non-dominated solutions of Wui and Wi are the
H−K+N−|W | maximum, where |W | is the size of W . The condition ∃Wk ∈ WW,Wi ∗
tt′ < Wk ∗ tt′ makes the optimal solution of the new sub-problem generated by the weigh
vector Wnew to be non-dominated solution. In other word, we don’t want that the generate
weight vectors locate these space which have no nod-dominated solution. The role of the
deleting strategy and the adding strategy are to delete the sub-problems from the crowded
regions and add the sub-problems into the sparse regions. The adaptive weight vector
adjustment is summarized in Algorithm 1.

In the step 4, some weight vectors of WW are kept, which is to record these regions with
no non-dominated solution and make these sub-problems to quickly find non-dominated
solutions (if have).

3.2. Crossover operator based on uniform design. For the MVS problem, its opti-
mal solutions should subject to

∑n
i=1 xi = 1, xi ≥ 0, i = 1, 2, ...n. In this paper, a crossover

operator based on uniform design is designed to satisfy this constraint condition. The main
idea of this crossover operator is that, some vectors are firstly generated by the uniform
design which can sample a small set of points from a given closed and bounded set such
that the sampled points are uniformly scattered on the set, a special method is used to
transfer those vectors into offspring which satisfy the constraint condition. The details of
this crossover operator are as follows.
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Algorithm 1 Adaptive Weight Vector Adjustment

Require: the size of the initial population N , the current weight vectors W =
(W1,W2, ...,WH) and current population POP = (x1, x2, ..., xH)

Output: the weight vectors W
Step 1: Find the non-dominated solutions (x1, x2, ..., xK) of POP and denote WW =
(W1+K ,W2+K , ...,WH). Calculate the NDi and Wui,j.
Step 2: Deleting weight vectors:

If K > N , then N −K weight vectors with the minimum NDi are deleted
from W .

While max{NDi, i = 1 ∼ N}/min{NDi, i = 1 ∼ N} > 2 do
The corresponding weight vector with the minimum NDi is deleted from
W and recalculate the NDi and Wui,j.

Step 3: Adding weight vectors:
If H −K +N > |W | then
Find the H −K +N − |W | maximum distances PDi,u of obtained
non-dominated solutions of Wui and Wi, and use Eq.(5) to generate
the new weight vectors.

Step 4: Deleting some weight vectors of WW from W
If |WW | > 0.5N then
Use the crowding distance to delete |WW | − 0.5N weight vectors of WW
from W .

The uniform design method is briefly shown. For a given bounded and closed set
G ⊂ RM (where M is the dimension of the set G), the uniform design was developed
to sample some points which have a small number and are uniformly scattered on G.
The Good-Lattice-Point method (GLP) [15] is a simple and efficient method. And it
can generate a set of uniformly scattered points on a given set C = {(θ1, θ2, ..., θM)|0 ≤
θi ≤ 1, i = 0, ...M}. The details of GLP are as follows. For given integer q, M and
µ, it generates uniform array which is a q ×M integer matrix G(q,M) by the following
expression:

G(q,M) = [Gij]q×M , where Gij = (mod(iµj−1, q)) + 1, i = 1 ∼ q, j = 1 ∼M (7)

where, 2 ≤ µ ≤ q, mod(iµj−1, q) is the remainder of iµj−1/q. Thus, these all µ can
generate q − 1 different integer matrices. So, for given q and M , a number δ [16] is
determined to determine an integer matrix with the smallest discrepancy among these
q − 1 different integer matrices. Each row of matrix G(q,M) determiners a point Ci =
(Ci1, Ci2, ..., CiM) of C(q,M) by

cij =
2Gij − 1

2q
, , i = 1 ∼ q, j = 1 ∼M (8)

C(q,M) is given by C(q,M) = {Ci|i = 1 ∼ q}.
For given two parents y = (y1, ..., yn) and t = (t1, ..., tn), two vectors are defined as

follow:

l = (l1, ..., ln−1) and u = (u1, ..., un−1) (9)

where li = min{ti, yt} and ui = max{ti, yi} for i = 1 ∼ n− 1. These two vectors define a
hyper-rectangle,

[l, u] = {(x1, x2, · · · , xn−1)|li ≤ xi ≤ ui, i = 1, · · ·n− 1} (10)
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Choose two proper integer q and M . Note, in general case, the parameters M and q of the
uniform design should satisfy M ≤ q − 1 [32]. Thus, for given M and q, the q offspring
which are denoted by O (q, n− 1) = {Oi = (oi1, oi2, · · · , oin−1)|i = 1 ∼ q} should be
generated according to two cases: M ≤ q− 1 and M > q− 1. The detail is introduced as
the following algorithm 2.

Algorithm 2 Crossover operator based on uniform design

Require: a proper prime number q, two parents y and t
Output: q feasible solutions of the MVS problem

Step 1: Two vectors l and u are defined by Eq.(9)
Step 2: If n−1 ≤ q−1, set M = n−1. Then, the j-th component of the i-th offspring

Oi = (oi1, oi2, ..., oin−1) is set to oij = lj + cij(uj − lj), i = 1 ∼ q,
j = 1 ∼ n− 1, where cij is generated by according to Eq.(8).
If n− 1 > q − 1, we set M = q1 − 1 and randomly divide l and u
into M blocks of sub-vectors, respectively, in the following way:

l = (A1, A2, ..., Aq−1) and u = (B1, B2, ..., Bq−1) (11)

where Aj and Bj are sub-vectors of l and u with the same dimension.
Then the i-th offspring Oi = (oi1, oi2, ..., oiq−1) can be generated by

oij = Aj +
2Gij − 1

2q

(
Bj − Aj

)
, i = 1 ∼ q, j = 1 ∼ q − 1 (12)

where G(q, q − 1) = [Gij]q×q−1 is defined by (7) with M = q − 1
Step 3: For the MVS problem, the offspring is converted as following expression:

ooi =

 1− oi1, if j = 1
oi1 ∗ oi2 ∗ ... ∗ oij−1 ∗ (1− oij), if 2 ≤ j ≤ n− 1

oi1 ∗ oi2 ∗ ... ∗ oij, if j = n− 1
(13)

Where i = 1 ∼ q and OO(q, n− 1) = {OOi = (ooi1, ooi2, ..., ooin)|i = 1 ∼ q}
is the feasible solutions of the MVS problem.

3.3. Selection Strategy. A good selection strategy can help crossover operators to carry
out the local search and global search, thus an appropriate selection strategy can improve
the search efficiency of an algorithm. In this paper, a selection strategy based on the
decomposition is designed to improve the performance of the proposed algorithm. Firstly,
the Euclidean distances of any two weight vectors are computed and then the T closet
weight vectors of each weight vector are worked out. For each i = 1, ...N , set B(i) =
i1, ..., iT where λi1 , · · ·λiT are the T closet weight vectors to λi. Then set

P =

{
B (i) , ifrand1 < J
{1, · · · , N} , otherwise (14)

where rand1 and rand2 are two random number and its scope is [0,1], J and p1 are two
parameters. J is set to 0.9 as the same in [15]. For the weight vector λi, when P is
set, randomly select two indexes r2 and r3 from P . For rand1 < J and rand2 < p1,
Algorithm 2 is used to generate some offspring from xr2 and xi , otherwise, a solution is
generated f by the following formula:

xnewj =

{
xij + L

(
xr2j − xr3j

)
, if rand (0, 1) < CR

xij otherwise
(15)
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where L ∈ [0, 2] is a scale factor which controls the length of the exploration vector
(xr2 − xr3); CR is a constant value namely crossover rate; j = 1, ..., n and xr2j indicates

the j-th component of xr2.
If P is set to B(i), the proposed crossover operator based on uniform design and the

formula (15) can carry out the local search. Otherwise, the global search is implemented.

3.4. Steps of the Proposed Algorithm. Based on all above, an adaptive decomposition-
based multi-objective evolutionary algorithm (AMOEA/D) is designed and the pseudo
code of the algorithm AMOEA/D is as follows:

Algorithm 3 The pseudo code of the algorithm AMOEA/D

Require:
MOP (1)
A stopping criterion
N : the number of direction vectors
T the number of weight vectors in the neighborhood of each weight vector, 0 < T < N
λ1, λ2, · · · , λN : a set of N uniformly distributed weight vectors

Output: Approximation to the PF: {F (x1) , F (x2) , · · · , F (xN)}
Step 1: Generate an initial population x1, x2, ..., xN randomly or by a problem-specific

method; determine Z = (z1, ..., zm) by a problem-specific method; determine
B (i) = {i1, · · · , iT} , (i = 1, · · · , N), where λi1 , · · · , λiT are the T

closest weight vectors to λi.
Step 2: Generate offspring and updated

For i = 1, ..., N , do
Generate offspring xnew = (xnew,1, · · · , xnew,n)
Two indexes r2 and r3 are randomly selected from P .
If rand1 < J and rand2 < p1

Offspring is generated by xi, and xr1 according to Algorithm 2.
else

Offspring is generated by xi, xr1 and xr2 according to the formula (15).
end if

For each offspring xnew
Update of Z: For k = 1, ...,m, if zk < fk(xnew), then set zk = fk(xnew)
Update the population by the updated strategy of the literature [27].
end for
end for

Step 3: If gen is a multiple of 50, then, use Algorithm 1 to modify the weight vectors
W , re-determine B(i) = i1, ..., iT , (i = 1, ..., H) (where H is the size of W ),
and randomly select solutions from the current population to allocate the
new sub-problem as their current solution.

Step 4: If the conditions are satisfied, output the {F (x1), F (x2), ..., F (xN)}, or, change
to Step 2.

4. Numerical Examples and Analysis. In this section, to demonstrate the effective-
ness of the proposed algorithm for the MVS, the proposed algorithm compares with two
other classical algorithms which are multiobjective genetic algorithm based on pareto
dominance (NSGAII [17]) and multiobjective evolutionary algorithm based on decom-
position (MOEA/D [8]) on the multi-objective portfolio selection model whose data are
taken from the historical data of the Shanghai Stock Exchange Market.
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Table 1. The metrics C and HV obtained by AMOEA/D, NSGAII and
MOEA/D on MVS (A represents the algorithm AMOEA/D, and B repre-
sents the algorithms NSGAII and MOEA/D)

AMOEA/D NSGAII MOEA/D

C(A,B)
mean NA 0.9333 0.8667
std NA 0.0160 0.0241

C(B,A)
mean NA 0 0
std NA 0 0

HV
mean 0.7483 0.6354 0.5640
std 0.0235 0.0267 0.0258

4.1. Data processing. In the experiments, the 12 candidate assets are chosen from
Shanghai Stock Exchange. The exchange codes of these 12 assets are 601098, 601880,
600563, 600038, 601888, 601377, 600721, 600681, 600571, 600419, 600570, 600201, respec-
tively. The original data of these assets is the weekly sampled in three years from January
2012 to January 2015. Using the simple estimation method in Vercher et al. [18], the sta-
tistics of the historical data of 12 rates are got. The parameters (ci, di, δiθi) of these 12 as-
sets [19] are (0.0416 0.0662 0.0224 0.01315), (0.0434 0.0639 0.0352 0.2148), (0.0526 0.0657
0.0290 0.0599), (0.0508 0.0723 0.0338 0.0994), (0.0220 0.0278 0.0124 0.0571), (0.0449
0.0699 0.0239 0.1900), (0.0723 0.0990 0.0481 0.1264), (0.0708 0.0954 0.0426 0.1297),
(0.0499 0.0820 0.0315 0.0965), (0.0705 0.0970 0.0515 0.2344), (0.0299 0.0503 0.0194 0.0875)
and (0.0290 0.0379 0.0164 0.0590).

4.2. Parameters setting. Real vectors are used to code these three algorithms. The
parameters of NSGAII and MOEA/D are the same as the setting in the original literature
to. The initial population sizes of all algorithms are set to 105 and 105 initial weight
vectors are generated; each algorithm is run 30 times with the maximal number of function
evaluations 100 000 on all test problems. For AMOEA/D, the size of neighborhood list
is set to 0.1N , p1 and CR are set to 0.8 and 0.6, respectively.

4.3. Performance metrics. In this paper, the true Pareto optimal fronts of the MVS
problems are unknown. Therefore, to quantificational compare with the performances of
algorithms hyper-volume indicator (HV) [20] and coverage metric [21] (C metric) are used.
The hyper-volume indicator is used widely in evolutionary multi-objective optimization to
evaluate the performance of algorithms. It computes the volume of the dominated portion
of the objective space relative to a reference point. Higher values of this performance
indicator imply more desirable solutions. The hyper-volume indicator measures both the
convergence and diversity of the obtained solutions.

4.4. Numerical results. Table 1 shows the mean and standard deviation of the C and
HV values obtained by AMOEA/D, NSGAII and MOEA/D in the 30 independent runs.
From Table 2, according to the HV, it can conclude that the final solutions by AMOEA/D
are not dominated those obtained by MOEA/D and NSGAII, and most of final solutions
obtained by NSGAII and MOEA/D are dominated the final solutions by AMOEA/D,
these indicate that the convergence performance of AMOEA/D is better than NSGAII
and MOEA/D; according to the HV, it is obvious that the mean values of HV obtained
by AMOEA/D are larger than those obtained by NSGAII and MOEA/D, which shows
that AMOEA/D performs better than NSGAII and MOEA/D on MVS problem and the
solutions obtained by AMOEA/D has a better diversity than those obtained by NSGAII
and MOEA/D.
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To visually compare the performance of the three algorithms, the solutions obtained
by them on MVS problem are shown in Fig. 1. Obviously, the convergence and diversity
of solutions obtained by AMOEA/D are better than those obtained by NSGAII and
MOEA/D. These compare results illustrate that AMOEA/D performs better than other
two algorithms on MVS problem and the proposed algorithm can well solve the MVS
problem.

Figure 1. Solutions obtained by AMOEA/D, NSGAII and MOEA/D on
MVS problem

5. Conclusions. This work focuses on the study of the fuzzy portfolio selection that ex-
plicitly involves skewness in the multiobjective framework. To solve this multi-objective
portfolio models, a decomposition-based multi-objective evolutionary algorithm with adap-
tive weight vector adjustment (MOEA/DA) is especially designed to solve this problem.
An adaptive weight vector adjustment strategy which some weight vectors are adaptively
deleted or added according to the distances of obtained non-dominated solutions is pro-
posed to solve this problem with unknown PF, a crossover operator based on uniform
design is designed to generate feasible solutions for portfolio selection problems, and a
selection strategy is used to help crossover operators to improve the search efficiency.
Finally, some numerical examples are presented to illustrate the practicality and effec-
tiveness of the proposed algorithm based on the data from Shanghai Stock Exchange. For
the future research, the multi-objective fuzzy portfolio selection problem and MOEAs will
be applied to other asset allocation problems, mutual fund portfolio selection problems,
combinational optimization models and multi-period problems.
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