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ABSTRACT. In this paper, a model combining convolutional neural network (CNN) and
support vector machine (SVM) as a classifier is studied. A traditional CNN model is
used to train a dataset, which is then regarded as a pre-trained model. We then extract
the feature vectors from the outputs of different layers and feed them to SVM to perform
the classification task. The main issue of this study is to examine which layers of a
traditional CNN are more suitable for SVM in terms of recognition accuracy, generaliza-
tion ability, and computation complexity. Experimental results, tested on the well-known
datasets MNIST, Fashion-MNIST, and CIFAR-10, demonstrate that feature maps ex-
tracted from the last convolution layer produce the best performances in both accuracy
and generalization.

Keywords: Convolutional Neural Network (CNN), Support Vector Machine (SVM),
MNIST, Fashion-MNIST, CIFAR-10.

1. Introduction. Visual object recognition is a challenging work in the field of computer
vision for many years, which can be applied to various fields such as automated image
organization [1], visual search [2], and image recognition and classification [3, 4]. It is still
an interesting and commercially valuable area. Various methods for recognition have been
intensively studied, e.g., K-nearest-neighbors (KNN) [5], Deep Neural Network (DNN) [6],
Support Vector Machine (SVM) [7], Convolutional Neural Network (CNN) [8], and etc.
Among the methods, CNN is one of the most encouraging techniques.

Inspired by the biology of a special part of the retinal cells which are sensitive to light,
David H. Hubels team published a study of the visual cortex in cats. In 1980, based on
this concept of receiving light areas, Kunihiko Fukushima et al [9] proposed a perceptron
model with different architecture which can be regarded as the original model of CNN. The
earliest CNN model employed in image recognition is developed by LeCun in 1998 [10].
Until 2012, Alex Krizhevsky designed a CNN model, namely AlexNet [11], to take part
in a competition and defeat SVM by great advantage.
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SVM can be used as a learning machine based on novel statistical learning techniques,
which was developed mainly by Vapnik [12]. It is one of the most robust and reliable
algorithm for classification and regression tasks. Real world applications include face
detection [13], handwriting recognition [14], image classification [15], bio-information [16],
and etc. One of typical CNN applications is classification. The ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [17] evaluates algorithms for object detection
and image classification at large scale.

To improve the performance of CNN models, some researchers used CNN as a feature
extractor and adopt SVM as the classifier [18]. This model is referred to as CNN-SVM
model. Such models do exhibit higher recognition accuracy in digital handwritten im-
ages [19, 20, 21]. In their study, the features are all extracted from the dense (fully
connected) layer which is located right before the output layer. One example was de-
scribed in [19] in which experiments on the MNIST datasets with distortions achieved the
accuracy of 99.81%. However, the outputs of the dense layer are not a proper candidate
for the purpose of visual object recognition.

In this paper, we propose that the CNN-SVM model with features extracted from
the last convolution layer performs the best. Experiments are conducted on MNIST,
Fashion-MNIST, and CIFAR-10 datasets. The results demonstrate that the proposed
model exhibits higher accuracy and better generalization ability.

2. CNN and SVM Models.

2.1. CNN model. CNN is a multi-layer neuron network which can be used as a super-
vised learning machine. The key layer type is the convolutional layer (conv layer), usually
followed by a pooling layer, which may be regarded as a feature extractor. The convolu-
tion algorithm uses the kernel to scan the two-dimensional images or feature maps and
extract the features. The operation is exactly the same as filtering process in image pro-
cessing where the kernel is the filter or mask. The outputs of conv layer are a sequence
of feature maps, which are presented in a two-dimensional way. The conv layer is not
fully connected to the previous layer, which is intentionally designed to mimic the image
filtering operation.

The difference among CNNs is in their structures such as number of layers and number
of feature maps. A typical structure of CNN is shown in Figure 1, where ‘C’ stands for a
conv layer, ‘P’ stands for pooling layer, ‘F stands for flatten layer, and ‘D’ stands for dense
layer. In this model, there are 2 conv-pooling pairs. The following flatten layer rearrange
the 2-dim feature maps into 1-dim vector. And finally, a fully connected (dense) layer
and a output layer are connected to the flatten layer.

2.2. SVM model. SVM is also a supervised learning machine that usually performs
classification (SVC) or regression (SVR) tasks. In this study, we only consider SVC.

In the following development, let K (x,z’) be a kernel defined on X x X. In this study,
we adopt the following two kernels:

Euclidean inner product: K(x,z') = (z,z’)

Gaussian kernel: K(z,2') := exp(—v || z — 2" ||?), v > 0.

Consider first the binary classification problems. Let X C R" and Y := {1,—1}.
Suppose we are given the training dataset

S = {(zi,y)}_, CX xY CR" x {1,-1}. (1)
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Ficure 1. Typical structure of CNN model

Given the training dataset (1), the SVC can be obtained by solving the following
optimization problem:

l
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maximize E zi—§§ g Zizjyz'yjK(fUz‘,xj) (2a)
J=1

i=1 =1 j
I
subject to Zz,-yi =0and 0< z; <Cforalli=1,2,..,1. (2b)
i=1

In (2), the regularization (or smoothing) parameter C' > 0 controls the tradeoff between
complexity of the machine and the number of non-separable points.
Suppose z} solves the problem (2). Then the optimal discriminant function is given by

(3):
fiz) = Z 2y K (23, 7) 4 b, (3)

where b* is the optimal bias term.

The simulation examples to be presented are all multi-class classification problems.
A natural approach to a multi-class classification problem is to reduce this multi-class
classification problem to several binary classification problems. To this end, there are two
popular methods for multi-class classification problems using SVC. These are one-versus-
rest (OVR) method and one-versus-one (OVO) method. In this study, we simply choose
one of them, namely the OVR method. Similar results can be obtained using the OVO
method.

Consider the m-class classification problem with label set Y := m := {1,2,...,m}. In
the OVR method, it is required to design m binary classifiers. For each j € m, we label
all training examples having y; = j with 1 and y; # 7 with -1 during the training of the
jth classifier. The final decision is to assign x € X with class j if the following equation
(4) is satisfied:

j(w) = arg max fi (z). (4)
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2.3. Combined CNN-SVM model. In the combined model, we first train a traditional
CNN and regard it as a pre-trained model. We then extract features from the outputs of
certain layer for the following SVM to perform the classification. Given a pair of training
set and testing set, the training and testing steps for the combined model are given as
follows:

(1) Train the CNN using the training set and regard it as a pre-trained model;

(2) Feed the training set to the CNN model and take the outputs of some layer with
the corresponding labels to form the new training set;

(3) Feed the testing set to the CNN model and take the outputs of same layer with the
corresponding to labels form new testing set;

(4) Use the new sets to train and test the SVM.

For the architecture shown in Figure 1, we could take the outputs as features from C1-
layer. However, P1-layer is the subsampling of Cl-layer, thus it has same visual structures.
Therefore we extract the features from P1-layer and identify this model as P1-SVM. Since
P2-layer also has the same visual structures as C2-layer and F-layer is just the flattened
vector of P2-layer, we extract the features from F-layer and identify this model as F-SVM.

3. Analyzing the Features from Different Layers. As mentioned, the features can
be extracted from the outputs of Pl-layer, F-layer, or D-layer as illustrated in Figure 1.
In this section, we will provide a comprehensive comparison among these layers.

In image processing, filtering operation is one of the most commonly used techniques
to extract specific features such as edges, corners, low/high frequency information, and
etc. The operation is illustrated in Figure 2, where f is the input and g is the output
image. The 3 x 3 (or m x m) block is usually referred to as the mask, kernel or filter.

kernel w

FIGURE 2. Filtering operation (convolution) of an image f and the kernel w

The resulting value of g(i,7) can be obtained by (5):

11
9(i,5) = > > fli+s,5+1t) x w(s,1). (5)
s=—1t=-1
As the indices ¢ and j traverse the whole image, the operation is done. This operation is
just similar to the traditional convolution operation.

In this convolution operation, there are two very important characteristics. One is that
only nearby neighbors corresponding to f(i, j) are considered. This is because neighboring
pixels provide spatial correlation and visual effects. The other one characteristic is that
the weights (values) in the filter are fixed throughout the whole image. This means
same measurements are considered for the whole image. Therefore filtering can extract
important information or change the appearance but it still preserves the main structure
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and visual effects of the original image. These characteristics are very suitably served
as “feature vectors” for visual object recognition.

In terms of the neural network architecture, the filtering operation can be depicted
similar to Cl-layer in Figure 1. Note that there is one more bias connection which is
required for traditional network architecture. Here, the kernel can be regarded as the
weights of Cl-layer. This is exactly the same as the so-called conv layers in a CNN.

Consider the conv layer C1 in Figure 1. There are 6 feature maps as the outputs of C1-
layer where each one is obtained from the filtering operation. Therefore each one preserves
the visual structures of the original image. The successive layer to P1 is the subsampling
operation which reduces the dimensionality but still preserves the main visual structure.
It is important to mention that these 6 maps possess different features or information
but still possess similar visual structure of the original image. Therefore they are more
suitable to serve as the feature vectors for later classification tasks such as visual object
recognition.

Next in the conv layer C2, there are there are 6 maps as the inputs and 12 maps as
the outputs. We observe one“pixel” of one output map. For each input map, there is
one filter operation, each corresponding to one kernel. Adding up the 6 filtering results,
together with one bias, results in that “pixel” value in the observed output map. As
shown, the 6 filters operate on the 6 different input maps on the same position with
neighbors corresponding to the same “pixe” position in the observed output map. Since
the each input map possess similar visual structure to the original image, the observed
resulting output map also possesses similar visual structure. And thus, all the 12 output
maps all possess similar visual structure. As a consequence, the outputs of conv layers
are more suitable to serve as the feature vectors for visual object recognition, although
the outputs may exhibit higher level, lower level, or even abstract visual effects.

In contrast to conv layers, features extracted from dense layer (hidden layer) will not be
good candidates for visual object recognition. As shown in Figure 1, F-layer rearranges
the outputs of P2-layer to a 1-dim vector which is then fed to the fully connected layer D.
Such a setup first breaks up the structure of the 12 individual yet highly correlated maps
from P2-layer. Second, due to the fully connection mixing the whole features together,
all the meaningful visual properties are corrupted. They are just signals rather than
meaningful 2-dim features with spatial correlations. So, features extracted from dense
layer will not be a good candidate to serve as feature vectors for visual object recognition.

Since the original CNN is already well trained, we assert that, for following classification
tasks, features extracted from F-layer should outperform those extracted from D-layer in
terms of recognition accuracy and generalization ability. Moreover, the proposed idea also
saves a lot of computations due to the lack of the full connection computation.

4. Experimental Results. In this study, the simulations are conducted using the plat-
form consisting of Windows10 and Intel(R) Core (TM) 15-8265 @1.6GHz1.8 CPU with 8
GB RAM. The software programming environment is Python 3.5 and the deep learning
framework is Keras with TensorFlow as the backend.

The experimental results are evaluated using recognition accuracy and generalization
ability. The accuracy is defined as the ratio of the number of examples correctly classified
to the total number of examples. The standard deviation of the accuracies from cross
validation is strongly related to the generalization ability, which is defined as (6):

7=\ =P, )
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where N is the number of folds for cross validation, z; is the accuracy of the ith accuracy,
and g is the average of the N accuracies.

In the study, we compare the three models F-SVM, D-SVM, and P1-SVM together
with the original CNN model. Three datasets with different style, i.e., MNIST, Fashion-
MNIST, and CIFAR-10, are used to compare the performances.

4.1. Experiments on MINIST. MNIST is a dataset of handwritten digits consisting of
a training set of 60,000 examples and a testing set of 10,000 examples. Each example is
a 28x28 grayscale image, associated with a label from 10 classes. It is a commonly used
dataset established by Yann LeCun et al in 1998. In the experiments, we adopt 7-fold
cross validation. That is the total 70,000 images are divided into 7 groups, 6 for training
and the remaining for testing adding up to 7 experiments. The recognition accuracy or
accuracy for short used in the experiments is calculated from the testing results.
The network structure of CNN is shown in Figure 1 with following details:

(0) Input image: 28x28x1

(1) C1: conv layer, kernel size 5x5, 6 filters, stride 1
(2) P1: pool layer, size 2x2, max pooling

(3) C2: conv layer, kernel size 5x5, 12 filters, stride 1
(4) P2: pool layer, size 2x2, max pooling

(5) F: flatten to a vector, 192-dim

(6) D: dense layer, 64 hidden neurons

(7) O: output layer, 10 neurons

In the CNN training, we use categorical cross-entropy as the objective function. The
training epoch is set to 100. For the first pair of training and testing sets, i.e., the first-
fold data, after the CNN is trained we test the CNN and report the accuracy. Then we
regard this CNN as a pre-trained model. For the SVM, we select the RBF as the kernel
function. The regularization parameter C is set to 10 and the kernel parameter v is set
to the reciprocal of the dimension of the feature vectors.

The results of the first pair of training and testing sets are listed in the first column of
Table 1, i.e., cvl field. As shown, the proposed F-SVM achieves 99.25% accuracy which
is much better than that of the original CNN, 98.86%. Also, F-SVM outperforms D-SVM
and P1-SVM with accuracy of 90.39% and 99.05%, respectively. It means that among the
CNN-SVM models, features extracted from the F-layer performs the best.

The results of all the 7 folds are listed in Table 1 (cv1-cv7). The mean value (mean) and
the standard deviation (o) are also presented. It can be seen that F-SVM produces higher
accuracy than the traditional CNN, D-SVM, and P1-SVM in all the 7 folds. Moreover,
F-SVM also exhibits lowest standard deviation of the 7-fold cross validation. This reveals
that F-SVM tends to have better generalization ability.

The misclassified count of CNN and CNN-SVMs out of 10,000 testing data is shown in
Table 2.

TABLE 1. Accuracy of CNN and CNN-SVMs on MNIST

L acc(%) | evl | ev2 | ev3 [ evd | b | ev6 [ ov7 [mean| o |

CNN | 98.86 | 98.95 | 98.74 | 98.70 | 98.71 | 98.73 | 98.91 | 98.80 | 0.0962
F-SVM [99.25|99.17 | 99.17 | 99.08 | 99.19 | 99.26 | 99.17 | 99.18 | 0.0555
D-SVM | 90.39 | 93.34 | 93.87 | 92.76 | 93.48 | 96.13 | 92.30 | 93.18 | 1.6049
P1-SVM | 99.05 | 99.18 | 98.87 | 98.85 | 98.82 | 99.00 | 99.06 | 98.98 | 0.1231
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TABLE 2. Misclassified count of CNN and CNN-SVMs on MNIST

] count \ cvl \ cv2 \ cv3 \ cvd \ cvd \ cvb \ cv7 \ mean \ o \

CNN | 114 105|126 | 130|129 | 127|109 | 120.00 | 114
F-SVM | 75 | 83 | 83 | 92 | 81 | 74 | 83 | 81.57 | 75
D-SVM | 961 | 666 | 613 | 724 | 652 | 387 | 770 | 681.86 | 961
P1-SVM | 95 | 82 | 113|115 |118|100| 94 |102.43 | 95

Among the 3 CNN-SVM models, D-SVM performs the worst, even worse than the
traditional CNN. This is because we set the same parameters for the 3 SVMs. For the
sake of fair comparison, we try to seek a set of parameters that is most suitable for D-
SVM. Out of many trial and error, we found that linear kernel and C=0.1 is the best
combination for D-SVM and it produces the best results which are shown in Table 3, the
2nd record. However, the results are still inferior to those of the proposed F-SVM.

TABLE 3. D-SVM results using different parameter settings

| acc(%) | evl | ev2 [ ev3 | evd | evb [ ev6 | ov7 |mean| o |
F-SVM RBF, C=1 99.25199.17{99.17 1 99.08 | 99.19 | 99.26 | 99.17 | 99.18 | 0.0555
D-SVM RBF, C=10 90.39 | 93.34 | 93.87 | 92.76 | 93.48 | 96.13 | 92.30 | 93.18 | 1.6049

D-SVM LINEAR, C=0.1 | 98.91 | 98.97 | 98.77 | 98.90 | 98.72 | 98.91 | 98.95 | 98.88 | 0.0868

4.2. Experiments on Fashion-MNIST. Fashion-MNIST, provided by a Germany com-
pany fashion Zalando, is a dataset of fashion objects consisting of a training set of 60,000
examples and a testing set of 10,000 examples, same as MNIST. Each example is a 28 x28
gray scale image, associated with a label from 10 classes. In this experiment, we adopt
7-fold cross validation. The SVM parameter settings are all the same as in section 4.1.
The accuracy and misclassified count out of 10,000 examples are shown in Table 4 and
Table 5, respectively. Again, the proposed F-SVM is superior to the other 2 CNN-SVM
models.

TABLE 4. Accuracy of CNN and CNN-SVMs on Fashion-MNIST

| acc(%) | evl | ev2 | ev3 [ evd | ovb | ev6 | o7 |mean| o |
CNN |89.99 | 89.49 | 90.86 | 90.02 | 90.26 | 89.72 | 89.81 | 90.02 | 0.4104
F-SVM | 91.48 | 91.27 | 91.89 | 91.65 | 91.36 | 91.31 | 91.12 | 91.44 | 0.2399
D-SVM | 90.73 | 90.06 | 90.94 | 90.62 | 90.57 | 90.18 | 90.32 | 90.49 | 0.2911
P1-SVM | 91.22 1 90.32 | 90.83 | 90.71 | 90.84 | 90.32 | 90.15 | 90.63 | 0.3507

TABLE 5. Misclassified count of CNN and CNN-SVMs on Fashion-MNIST

] count \ cvl \ cv2 \cv?) \ cvd \ CV5\ cvb \ cv7 \ mean \ o \
CNN | 1001 | 1051 | 914 | 998 | 974 | 1028 | 1019 | 997.86 | 1001
F-SVM | 852 | 873 | 811 | 835 | 864 | 869 | 888 | 856.00 | 852
D-SVM | 927 | 994 | 906 | 938 | 943 | 982 | 968 | 951.14 | 927
P1-SVM | 878 | 968 | 917|929 | 916 | 968 | 985 | 937.29 | 878
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4.3. Experiments on Fashion-MNIST. The CIFAR-10 dataset is collected by Alex
Krizhevsky et al, consisting of a training set of 50,000 examples and a testing set of 10,000
examples. Each image is of size 32x32x3 (3-channel color) in 10 classes. The total 60,000
sets are partitioned into 6 folds for cross validation. The pre-trained CNN model is de-
scribed as follows:

(0) Input image: 32x32x3

(1) C1: conv layer, kernel size 5x5, 6 filters, stride 1d
(2) P1: pool layer, size 2x2, max pooling

(3) C2: conv layer, kernel size 5x5, 12 filters, stride 1
(4) P2: pool layer, size 2x2, max pooling

(5) F: flatten to a vector, 300-dim

(6) D: dense layer, 64 hidden neurons

(7) O: output layer, 10 neurons

The SVM parameter settings are all the same as in section 4.1. The accuracy and
misclassified count out of 10,000 examples are shown in Table 6 and Table 7, respectively.
Again, experimental results on CIFAR-10 further justifies that the proposed F-SVM per-
forms the best in accuracy as well as in generalization ability.

TABLE 6. Accuracy of CNN and CNN-SVMs on CIFAR-10

| ace(%) | evl | ev2 | ev3 | evd | evb | cv6 [mean| o |

CNN | 61.80|62.42 | 64.47 | 62.82 | 63.29 | 61.68 | 62.75 | 0.9497
F-SVM | 66.52 | 66.83 | 68.76 | 67.03 | 68.03 | 67.35 | 67.42 | 0.7619
D-SVM | 63.40 | 63.60 | 65.14 | 63.90 | 64.54 | 63.95 | 64.09 | 0.5883
P1-SVM | 59.17 | 59.41 | 61.66 | 60.36 | 60.94 | 61.37 | 60.48 | 0.9373

TABLE 7. Misclassified count of CNN and CNN-SVMs on CIFAR-10

| count [ cvl [ cev2 [ cev3 [ cvd | evb | cv6 |mean| o |

CNN | 3820 | 3758 | 3553 | 3718 | 3671 | 3832 | 3725 | 94.97
F-SVM | 3348 | 3317 | 3124 | 3297 | 3197 | 3265 | 3258 | 76.19
D-SVM | 3660 | 3640 | 3486 | 3610 | 3546 | 3605 | 3591 | 58.83

P1-SVM | 4083 | 4059 | 3834 | 3964 | 3906 | 3863 | 3952 | 93.73

5. Conclusions. This paper has proposed a combined model in which a well-trained
CNN is used as a pre-trained model and new dataset are extracted from the outputs of
some layer. The new dataset is then used for training the following support vector classi-
fier. We proposed the model with features which are extracted from the last convolution
layer. This model outperforms the other two models which extract the data from the
dense layer and the 1% conv layer, respectively, in terms of accuracy and generalization
ability using cross validation. Experiments were conducted on three real-world datasets:
MNIST, Fashion-MNIST, and CIFAR-10. This comparative study on the combined model
investigates on how the new data extracted from different layers of the CNN affect the
performance of SVM. Our results indicated that for combined model on which the fea-
tures are extracted from the last convolution layer is quite a promising method for image
recognition and classification.
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