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Abstract. In the field of digital image and speech signal processing, orthogonal poly-
nomials play a significant role in characterizing, processing, and analyzing signals due
to their unique properties. This paper introduces three new hybrid forms of orthog-
onal polynomials: Discrete Cosine Krawtchouk Tchebichef transform (DCKTT), Dis-
crete Cosine Krawtchouk Tchebichef Krawtchouk transform (DCKTKT), and Discrete
Krawtchouk Tchebichef Krawtchouk Cosine transform (DKTKCT). These forms com-
bine Discrete Cosine Transform (DCT), Discrete Krawtchouk Polynomials (KrP), and
Discrete Tchebichef Polynomials (TcP) to enhance signal processing capabilities. We
provide the mathematical and theoretical frameworks for these hybrid forms and conduct
a comparative study using a well-known database to evaluate their performance. The
evaluation focuses on key properties such as energy compaction, localization, and fea-
ture extraction. Experimental results demonstrate that DCKTT achieves superior energy
compaction, while DCKTKT and DKTKCT excel in localization. Additionally, we apply
the proposed forms to steganography and numerical recognition, showing significant im-
provements in embedding capacity and feature extraction accuracy. This work advances
the state-of-the-art in signal processing and opens new avenues for applications in image
compression, speech recognition, and secure data embedding.
Keywords: Discrete Cosine Transform, Discrete orthogonal polynomial, hybrid form,
steganography, numerical recognition.

1. Introduction. The innovative technologies in the different fields of recent life, such as
the Internet of Things (IoT), digital signal processing, information analysis and security.
These have led to an increase demand for extracting valuable information or enhance the
quality of the signal (audio, image and video). For example, Images become digital and
enter into many fields prompting researchers to make great efforts in the field of image
signal processing by focusing on considerable areas such as analysis and enhancement
of visual information for human interpretation and processing of image data for tasks
such as storage, transmission, and extraction of visual features. Moreover, speech signal
processing emerged and received the attention of many researchers in terms of speech
analysis, noise removal, and ensuring the accuracy of the recording and reception of
speech signals. Various methods have been used to analyze, process and interpret signals
such as: filtering [1], spectral analysis [2], time-frequency analysis [3], machine learning
and deep learning [4].
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Discrete Transforms are considered one of the methods for signal processing and anal-
ysis. They play an essential role in facilitating the processing of signals by presenting
them in different representations and domains to perform specific operations more effi-
ciently. There are different types of discrete transforms depend on numerous types of
orthogonal polynomials such as Tchebichef polynomial (TcP) [5], Krawtchouk polyno-
mial (KrP) [6,7], Charlier polynomial (ChP) [8], wavelet polynomial (WaP) [9] and Hahn
polynomial (HaP) [10].

The performance of each polynomial depends mainly on its characteristics that make
it distinct from others and enable it to be used in specific applications. Basically, the
robustness of any type of discrete transform is characterized by different properties like
data compression, localization, numerical stability, strength against noise, effective data
processing, and feature extraction [11].

Energy compaction (EC) is considered one of the most significant property of the trans-
formation method. It concentrates the signal’s energy in a smaller subset of transforma-
tion coefficients [12] and can be measured through the calculation of the proportion of
the number of coefficients that contains most of the signal energy to the total number of
coefficients. Energy compaction is the key principle behind data compression that needs
to be stored or transmitted without significant loss of information. DCT is an example
of a transform with a good energy compaction as it has a high energy compaction that
makes it more significant in video and audio compression applications [12].

Whilst DCT lacks localization in space which means that the basis functions of DCT do
not provide information about where a particular frequency is present in the signal [11].
In other words, its basis functions depict the spatial frequency resolution and lacks the
ability to represent the time event. In such cases, localization is a fundamental property
of a transformation. Localization reveals a close relationship between the transformed
signal and the original signal’s structure. This means that the localization property
implies detailed information within the region of interest (ROI) of the desired features
within a signal. In other words, the location of te ROI in the original and transformed
domains [11].

Orthogonal moments are generated using orthogonal polynomials and they are widely
used in the field of speech and image applications, such as data compression [13–16],
speech enhancement [17], face recognition [18], pattern recognition [19], watermarking
and encryption [20–23], edge detection [24], and classification and detection [25–27]. They
provide a good performance in different fields. To increase the efficacy of these functions
by enhancing the different properties such as localization in space and to provide robust
feature extraction, a new set of orthogonal functions has been presented by different
researchers as in [17,28,29].

These functions are presented based on the idea of fusing multiple orthogonal polyno-
mials to develop a new hybrid forms which widely used in recent and various fields of
signal processing. Both Discrete Tchebichef Transform (DTcT) and Discrete Krawtchouk
Transform (DKrT) are deemed as the most significant discrete orthogonal polynomials
that are used in the hybrid forms combinations and have different characteristics in term
of Energy Compaction and Localizations Property. DTcT has superior energy compaction
compared to DCT [5]. This is the main reason why it is used in the compression of video
and audio [30]. On the other hand, DKrT has high localization property [6]; therefore, it
is known for its ability in extracting features from signals effectively.

Motivated by the idea of fusing multiple orthogonal polynomials (OPs) provides higher
performance and based on the concept that the combination of multiple OPs also generates
an orthogonal polynomial [31], this paper proposed a new sets of functions using a powerful
set of orthogonal functions with enhanced capabilities. As far as we know, no previous
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study has utilized DCT in the combination with other OPs. Therefore, in this work,
we concentrate on establishing the new OPs by combining DCT with other powerful
transforms since they already approved advantageous properties. The main contributions
of the proposed work are listed as follows:

• A mathematical formulas have been conducted to investigate the use of DCT trans-
formation as an intrinsic parameter in the different hybrid OP.

• A mathematical analysis of the proposed hybrid OPs is performed to examine the
localization and energy compaction properties.

• A comparison between the proposed hybrid forms and the recent hybrid form of OP
called SKTP in terms of the significant properties is implemented.

• The capability of the proposed OPs is evaluated by utilizing them in two applications:
numerical recognition and steganography.

The structure of this paper is as follows: In Section 2, the mathematical forms of
OPs (TcP, KrP and DCT) with the orthogonal moments’ computation is provided. In
Section 3, the proposed OPs are presented. In Section 4, the performance evaluation of
the proposed OPs and a comparison to existing hybrid OPs are introduced. In Section
5, numerical recognition and steganography applications are used to assess the proposed
polynomials. Finally, Section 6 presents the conclusion of this paper.

2. Fundamental Concepts of Orthogonal Polynomials (OPs) and Moments.
This section provides the mathematical foundations and fundamental concepts of the OPs
utilized in this paper. It includes the preliminaries of discrete orthogonal polynomials and
the definitions of orthogonal moments.

2.1. Tchebichef Polynomials. The definition of the classical and scaled Tchebichef
polynomial (TcP) of nth order is determined by [32]:

Tn(x) =

√
ωT (x)

ρT (n)
(1−N)n 3F2(−n,−x, 1 + n; 1, 1−N ; 1), (1)

n, x = 0, 1, · · · , N − 1,

where ωT (x) is the weight function and ρT (n) is the squared norm of the TcP. Mathe-
matically, they are expressed as follows [33]:

ωT (x) = 1, (2)

ρT (n) = (2n)!

(
N + n

2n+ 1

)
, (3)

therefore, 1 can be rewritten as follows:

Tn(x) = (1−N)n 3F2(−n,−x, 1 + n; 1, 1−N ; 1)
1√

(2n)!
(
N+n
2n+1

) , (4)

where
(
a
b

)
is the binomial coefficients and equal to a!

b!(a−b)!
, 3F2 is the hypergeometric

function determined by [34]:

3F2(−n,−x, 1 + n; 1, 1−N ; 1) =
∞∑
k=0

(−n)k (−x)k (1 + n)k
(1)k (1−N)k k!

, (5)

where (a)k is the Pochhammer symbol and it is defined by [32,35]:

(a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1)(a+ 2) · · · (a+ k + 1). (6)
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The computation of the TcP coefficients by utilizing the hypergeometric and gamma
functions suffers from numerical instability. In addition, these functions results in high
execution time. Thus, the three-term recurrence (TTR) relation is applied when comput-
ing the Tchebichef polynomial coefficients [36–38]. Mukundan et al. [32] introduce the
recurrence relation of n-direction TcP coefficients as follows:

Tn(x) = β1 Tn−1(x) + β2 Tn−2(x) (7)

β1 = (2x+ 1−N)/n
√
(4n2 − 1)/(N2 − n2), (8)

β2 = (1− n)/n
√

(2n+ 1)/(2n− 3)
√

(N2 − (n− 1)2)/(N2 − n2), (9)

n = 2, 3, · · · , N − 1, x = 0, 1, · · · , N − 1,

with initial conditions:

T0(x) =
1√
N
, (10)

T1(x) = (2x+ 1−N)

√
3

(N(N2 − 1))
. (11)

This recurrence relation falls short for signals of larger sizes than 81 samples. To tackle
this challenge, the recurrence relation in the x-direction is utilized [39]:

Tn(x) = α1Tn(x− 1) + α2Tn(x− 2), (12)

α1 =
−(2x− 1)(x−N − 1)− x− n(n+ 1)

(N − x)x
, (13)

α2 =
(x−N − 1)(x− 1)

(N − x)x
, (14)

n = 1, 2, · · · , N − 1; x = 2, 3, · · · , N/2− 1

and the initial values [40]:

Tn(0) = −

√
(N − n)

(N + n)

√
(2n+ 1)

(2n− 1)
Tn−1(0), (15)

n = 1, 2, · · · , N − 1

Tn(1) =

(
1 +

(n(1 + n))

(1−N)

)
Tn(0), (16)

n = 0, 1, · · · , N − 1

T0(0) =
1√
N

(17)

It is noteworthy that the recurrence relation in Eq. 12 is applied up to x = N/2 − 1.
Therefore, the TcP coefficients are computed using the symmetry relation:

Tn(N − 1− x) = (−1)nTn(x), (18)

n = 0, 1, · · · , N − 1, x = N/2, N/2 + 1, · · · , N − 1

In this paper, the three-term recurrence relation TTR presented in [5] is utilized to
compute the Tchebichef polynomial as this TTR handles signals with a large size than
6144 samples with less computational complexity.
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2.2. Krawtchouk Polynomials. The definition of Krawtchouk polynomial (KrP) of
nth order, Kn(x; p) is given by [7]:

Kn(x; p,N − 1) =

√
ωK(x)

ρK
2F1(−n,−x;−N + 1;

1

p
), (19)

p ∈ (0, 1)

where ωK(x) and ρK(x) are the weight squared norm functions of the KrP. The defini-
tions of these functions are [41]:

ωK(x) = px
(
N − 1

x

)
(1− p)N−x−1 (20)

ρK(n) = (−1)n
n!

(−N + 1)n

(
1− p

p

)n

(21)

2F1 represents the hypergeometric function of KrP and it is defined by [42]:

2F1(−n,−x;−N + 1;
1

p
) =

∞∑
k=0

(−n)k (−x)k
(−N + 1)k k!

(
1

p

)k

(22)

Figure 1. The four parts of the KrP plane [7].

By adjusting the values of the control parameter (p), the KrP demonstrated its ability
to extract features from different ROIs in the image [43]. Because of utilizing the hyper-
geometric and gamma functions in the KrP coefficients computations, the TTR relation
is employed. Several studies have focused on implementing TTR relation in [38, 43, 44].
In this paper, the TTR algorithm presented in [7] is used. The n-direction recurrence re-
lation is used in bi-directional form (forward and backward). This algorithm partitioned
the KrP plane along with the primary and secondary diagonals into four triangular parts
(R1, R2, R3, and R4), as shown in Figure 1. KrP coefficients are directly computed for
one part, while the other parts are determined by employing the symmetry relations. This
algorithm has demonstrated an improvement for a wide range of the control parameter p
in terms of coefficients accuracy, and computation complexity. In addition, it is capable
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of handling large sized signals. To compute the KrP coefficients, the following steps are
employed [7]:

1. First, Kn(0) and Kn(1) are obtained:

K0(0) =
√

(1− p)(N−1), (23)

Kn(0) =

√
p(N − n)

(1− p)n
Kn−1(0), (24)

n = 1, 2, · · · , N − 1

Kn(1) =
−n+ (N − 1)p

(N − 1)p

√
(N − 1)p

(1− p)
Kn(0), (25)

n = 0, 1, · · · , N − 2

2. The TTR in the n-direction is used to compute the KrP coefficients in part R1 as
follows:

γ1Kn(x+ 1) = γ2Kn(x) + γ3Kn(x− 1), (26)

γ1 =
√

p(1− p)(N − x− 1)(x− 1), (27)

γ2 = −n+ p(N − x− 1) + (1− p)x, (28)

γ3 =
√

p(1− p)x(N − x) (29)

3. The coefficients of R2 is obtained using the symmetry relation about the primary
diagonal (n = x):

Kn(x) = Kx(n) (30)

4. The coefficients of parts R3 and R4 are computed by employing the symmetry rela-
tion of the secondary diagonal ((n = N − x− 1))

KN−x−1(x) = (−1)N−n−x−1Kn(x) (31)

5. For large signal size and to avoid zero initial values, the KrP coefficients for control
parameter p > 0.5 are computed using the relation [7]:

Kn(x; 1− p) = (−1)nKn(N − x− 1; p) (32)

2.3. Discrete cosine transform (DCT). The DCT basis functions is calculated by the
following Eq. given by [12,28,45]:

αn(x) =


√

1
N

for n = 0√
1
N
cos

(
πn
2N

(2x+ 1)
)

for n > 0
(33)

The DCT has distinct properties such as it is a real function of real values of -1 to
1 [12], fast transform and does not require complex mathematics [12], and has excellent
energy compaction for images [12,46–48].

2.4. Orthogonal Moments. Orthogonal moments are defined as scalar quantities ob-
tained from projections of signal onto orthogonal basis functions. These functions are
considered superior in facilitating efficient processing and analysis as well as minimizing
redundancy [3]. Thus, it is employed for approximating solutions for differential equa-
tions [49]. For the one dimension signal f(x) with a length of N samples, the moment Φn
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is computed by the following formula [50]:

Φn =
N−1∑
x=0

Rn(x;N)f(x), (34)

n = 0, 1, · · · , N − 1

where Rn(x;N) represents the OP. To reconstruct the signal f(x), the following equa-
tion is used:

f̂(x) =
N−1∑
n=0

Rn(x;N)Φn, (35)

x = 0, 1, · · · , N − 1

On the other hand, for the two dimension signal of size N × N , the moments are
computed as follows [50]:

Φnm =
N−1∑
y=0

N−1∑
x=0

Rn(x;N)Rm(y;N)f(x, y), (36)

n,m = 0, 1, · · · , N − 1

The 2D signal is reconstructed is carried out using the following formula:

f̂(x, y) =
N−1∑
n=0

N−1∑
m=0

Rn(x;N)Rm(y;N)Φnm, (37)

x = 0, 1, · · · , N − 1

y = 0, 1, · · · , N − 1

3. The Proposed Discrete Hybrid Forms of Orthogonal Polynomials. In general,
to facilitate signal handling and efficient analysis of signal components, orthogonal poly-
nomials are used. The signal can be expressed in the moments domain with less number of
moments that characterize its information, which improves the features extraction and the
processing of the signal [51]. Mathematically, the combination (multiplication) of differ-
ent OP orthogonal polynomials results in a new OP [52]. By conducting various tests and
attempts to obtain new hybrid functions that meet the best improved localization and en-
ergy compaction properties compared to current hybrid forms. This section presents three
different types of proposed OP, namely Discrete Cosine-Krawtchouk-Tchebichef trans-
form (DCKTT), Discrete Cosine-Krawtchouk-Tchebichef-Krawtchouk transform (DCK-
TKT), and Discrete Krawtchouk-Tchebichef-Krawtchouk-Cosine Transform (DKTKCT).
The proposed polynomial is derived from multiplying well-known effective functions to
get the desired properties. These polynomials are defined in the following sections.

3.1. Discrete Cosine-Krawtchouk-Tchebichef Transform (DCKTT). This hybrid
form is acquired from the first level combination of a well-known OP and formed from a
Cosine transform multiplied by Krawtchouk [43] and Tchebichef [32] polynomials. The
formula of the hybrid form of the nth order Rn(x) is implemented based on the following
mathematical equation:

Rn(x;N) =
N−1∑
j=0

αj(N) Kj(x;N) Tj(n;N), (38)

n, x = 0, 1, · · · , N − 1
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where Kj(x;N), Tj(n;N), and αj(N) are the mathematical formula of KrP, TcP, and
DCT polynomials respectively.

The matrix form of the DCKTT is written as follows:

R = QT
CQKQT = RDCKT (39)

where QK , QC and QT are the matrix forms of Xn(x;N), Zn(x), and Yn(x;N) polyno-
mials, respectively. Note that (Qc)T represents the matrix transpose for DCT. To clarify
the moment distribution of the proposed OP, Figure2 shows a 3D plot of the DCKTT of
Cameraman test image of size 128× 128 using control parameters p = 0.5, and N = 128.
It can be noted that the high energy moments of DCKTT, which carries the signal infor-
mation are distributed in the range x, n = 0, · · · , N/4, where the highest distribution of
most moments is concentrated in that region. While signal details (low energy moments)
are distributed from the first quarter toward N − 1 for x and n directions; therefore, this
hybrid form has a high level of energy compaction property compared to the original OP
forms.

Figure 2. The 3D plot of moment distribution of the proposed polynomial
in the DCKTT domain.

3.2. Discrete Cosine-Krawtchouk-Tchebichef-Krawtchouk Transform (DCK-
TKT). KrP is considered stellar in terms of extracting local features from any region-
of-interest in the signals [7]. Accordingly, this provides a clear relationship between the
transform coefficients and time function, which improves the polynomial ability of fea-
ture extraction. Therefore, by embedding KrP to the proposed DCKTT, the localization
property will be enhanced. The hybrid form mathematical equation of the nth order of
DCKTKT, Rn(x), is given by:

Rn(x;N) =
N−1∑
j=0

αj(N) Tj(x;N) Kj(n;N), (40)

n, x = 0, 1, · · · , N − 1
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where Kj(x;N), Tj(n;N), and αj(N) are KrP, TcP and DCT, respectively. The matrix
representation of the DCKTKT can be depicted as follows:

R = QT
CQKQ

T
TQK = RDCKTK (41)

Where QK , QC and QT are the matrix form of the Xn(x;N), Zn(x), and Yn(x;N)
polynomials, respectively. Note that QT

C , QT
T represents the matrix transpose for DCT

and DTHT, respectively. To clarify the moment distribution of this OP, Figure 3 shows
the 3D plot of the DCKTKT of Cameraman test image of size 128×128 using the control
parameters of p = 0.5 and N = 128. It is noticed that the moments distribution of the
polynomial are symmetrical and the high order coefficients are distributed across the four
corners. The range of n = 0, 1, · · · , N/2− 1 belongs to the right part of the image, while
the moments in the range n = N/2, N/2+1, · · · , N−1 are linked with the left part of the
image. Thus, moment indicators in the moment domain are related to signal indicators
in the signal domain which provide a good analysis of the desired signal.

Figure 3. The 3D plot of moment distribution of the proposed polynomial
in the DCKTKT domain.

3.3. Discrete Krawtchouk-Tchebichef-Krawtchouk-Cosine Transform (DKTKCT).
Through implementing various tests and attempts to obtain new hybrid functions that
meet the best improved localization and energy compaction properties compared to cur-
rent hybrid forms, the new hybrid form of OP termed as DKTKCT is introduced. The
nth order of DKTKCT, Rn(x), is formed as follows:

Rn(x;N) =
N−1∑
j=0

Kj(x;N) Tj(n;N) Kj(x;N) αj(N), (42)

n, x = 0, 1, · · · , N − 1

where Kj(x;N), Tj(n;N) and αj(N) are orthogonal polynomials resulted from KrP,
TcP and DCT, respectively. It is important to note that the order in which mathe-
matical equations of the OP are multiplied has the greatest influence in determining the
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properties of the resulted OP. Therefore, in this research, many attempts were made to
obtain the most appropriate order that gives the required better properties. The matrix
representation of the DKTKCT can be depicted as follows:

R = QKQTQKQC = RDKTKC (43)

where QK , QC and QT are the matrix form of the Xn(x;N), Zn(x), and Y n(x;N)
polynomials, respectively. Figure4 shows the 3D plot of the DKTKCT for an image of
size 128 × 128 using the control parameters of p = 0.5 and N = 128. It can be noticed
that the moments with high energy are distributed in the middle which hold the signal
information. On the other hand, the moments energy is reduced when moving to corners
where the details of the signal are located. From these specified properties, we can select
the appropriate OP based on the type of applications.

Figure 4. The 3D plot of moment distribution of the proposed polynomial
in the DKTKCT domain

4. Performance Evaluation of The Proposed Polynomials. This section evaluates
the transforms (DCKTT, DCKTKT, and DKTKCT) by providing experimental results.
In this section, the computational aspects of the proposed hybrid forms are evaluated
in terms of reconstruction of 2D signals, measuring of the localization property, and
measuring of the energy compaction (EC) property. In addition, a comparative analysis
is performed among the proposed polynomials and the existence polynomials STKP [19],
SKTP [17], DKTT [11], DTKT [28] to show the robustness of the proposed work.

4.1. The Localization Property. In this subsection, the localization in space property
is tested for the proposed polynomials. As mentioned previously, this property determines
what frequencies are present and in which part of the signal based on a specific parameter
termed as the localization parameter. It determines the ability of the OPs to extract local
features and define the quality of all OPs. To examine the property of localization for the
proposed polynomials, the procedure described in [31] is employed as follows:



DCT-Driven Hybrid OP: Design and Applications in Signal Processing 613

• The matrix of the test image in the moment domain is partitioned into four quarters:
q1, q2, q3 and q4.

• To determine the ROI in the test image, a binary mask is used, which has ones in
the ROI and zeros in the remaining parts.

• The following equation is used to reconstruct the ROI:

f̂(x, y) =
N−1∑
n=0

N−1∑
m=0

Rn(x;N)Rm(y;N)Φnm, (44)

x = 0, 1, · · · , N/2− 1

y = 0, 1, · · · , N/2− 1

Figure 5 shows the quarters in the moments domain as well as the reconstructed image
quarters. Figure 5b shows the reconstruction of q1 quarter, which reconstructs the region
of fN−1

x,y=N/2−1 using DKTKC transform with 0.183 sec execution time, it can be noted

that this type of orthogonal polynomial reverses the signal reconstruction process, while
the same reconstruction process occurs for the DCKTK transform as shown in Figure
5c with 0.04 sec execution time. Therefore, DCKTK is better than DKTKC in term of
reconstruction quality and execution time. On the other hand, for SKTP to reconstruct

the region of f
N/2−1
x,y=0 , the second quarter q2 of the image will be reconstructed with

0.385 sec execution time as shown in Figure 5d and when the process is repeated for
STKP, Figure 5e shows that the first quarter q1 will be reconstructed with 0.181 sec
execution time. Therefore, it can be notice that the DCKTK transform has the best
feature extraction property in terms of quality and consumption less processing time,
while the DCKTT does not have localization in space.

The results of the variance distribution of the transform coefficient for N = 8 and
ρ = 0.8, and 0.9 are presented in Table 4. It is possible to summarize the variance values
of the transform coefficient (σ2

l ) for DTKT, DKTT, STKP, SKTP, and the proposed
polynomials with two covariance coefficients ρ = 0.8 and ρ = 0.9 and N = 8 as a function
of d, where d denotes the diagonal coefficients. It can infer that the maximum values
of variance for DKTT, SKTT, and DKTKC, are located at D = 4 and D = 5 with the
variance gradually decreasing towards the edges, whereas the maximum values of DTKT,
STKT, and DCKTK are at the edges and decreases toward the centre. To examine the
EC of the proposed transforms, the normalized restriction error (Jm) in [12] is computed
as follows:

Jm =

∑N−1
q=n σ2

q∑N−1
q=0 σ2

q

, (45)

n = 0, 1, · · · , N − 1

Where σ2
q represents σ2

d arranged in descending order. Figure6 illustrates a comparison
between the proposed polynomials, while Figure7 illustrates a comparison between DTKT,
DKTT, STKP, SKTP and the proposed polynomials, in term of the normalized restriction
error with two covariance coefficients values of 0.85 and 0.75.

5. Experimental Results on Different applications.

5.1. Numerical Recognition Application. As technology and automation continue
to evolve, the need for applications such as numerical recognition application increases
due to their importance and their entry in diverse fields, including finance, logistics, doc-
ument digitization and manufacturing, where accuracy and speed of the running time are
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(a)

(b)

(c)

(d)

(e)

Figure 5. (a) Moments domain matrix, (b) Image reconstructed quarter
using DKRTKCT, (c) Image reconstructed quarter using DCKTKT, (d)
Image reconstructed quarter using SKTP, (e) Image reconstructed quarter
using STKP.

very important factors. Various methodologies are applied to implement the numerical
recognition starting from classical support vector machine (SVM) classifiers [50] to ad-
vanced convolutional neural networks (CNNs) [51]. In [49] orthogonal polynomials have
been implemented by using SKTP polynomial which plays a vital role in enhancing the
accuracy and execution time of numerical recognition applications specially in noisy en-
vironment, and it shows its robustness against noise distortion and outperforms to all
previous methods remarkably.

To clarify the performance of the proposed polynomials in terms of accuracy and exe-
cution time, two different environments are used in the experiments: a clean (noise-free)
environment and noisy environment. The comparison is performed with SKTP polyno-
mial based on numerical recognition application as a case study.

The flow charts of the implemented numerical recognition process are shown in Figure 8
and Figure 9 which is adopted from the work introduced in [49]. In the recognition process,
the first step is based on extracting the features that are used for signal representation in
transform domain. The proposed polynomials are adopted then select a specific moments’
order and perform a matrix multiplication based on MNIST database images (Training
and Testing dataset) to transfer them to moment domain for efficient global features
extraction as shown in Figure 8. After that, an identified number value (ID) for each
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(a)

(b)

Figure 6. Restriction error for the proposed transforms with (a) ρ = 0.85,
(b) ρ = 0.75.

input image is obtained based on a classifier where the SVM method is used in the
classification process which is considered as a second step in the recognition process as
shown in Figure9. Then, an evaluation process is performed to check the efficiency of the
process by checking the accuracy between the actual and predicted labels.

To evaluate the performance of the proposed polynomials in numerical recognition ap-
plication, the accuracy comparison is presented between the proposed polynomials and
SKTP. The comparisons are conducted for clean and noisy environments using differ-
ent datasets (Roman and Devanagari) numeral recognition with 10,000 samples for each
dataset, which was divided into 5000 for training and 5000 for testing. Details of the
datasets used are depicted in Table 1.
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(a)

(b)

Figure 7. Restriction error for DTKT, DKTT, STKT, SKTT and the
proposed polynomials (a) ρ = 0.85, (b) ρ = 0.75.

Table 1. Details of the datasets used in numerical recognition application.

Attribute Devanagari Roman
Dataset Name CMATERdb3.2.1 MNIST
Dataset Reference [53] [54]
Script/Numeral System Devanagari (0-9) Roman (0-9)
Dataset Name CMATERdb3.2.1 MNIST
Numerical Numbers 10 (0-9 in Devanagari) 10 (0-9 in Roman)
Samples per Number 300 1000
Total Samples 3000 10000



DCT-Driven Hybrid OP: Design and Applications in Signal Processing 617

Figure 8. Flow diagram of the features extraction process.

Table 2 shows the accuracy evaluation of the proposed functions compared to SKTP
in the clean environment where no noise is added. It can be seen that DCKT polynomial
presents a higher accuracy as compared to SKTP in noise-free environment, while the
DKTKC polynomial gives results close to SKTP, with less complexity in execution time.
Therefore, each proposed polynomial has its significant property that gave it the superior
property.

In the noisy environment, and as shown in Table 3, the DCKT polynomial also shows
higher accuracy with different types of noise that are presented in the table. In general,
the proposed transform, DCKT, outperformed other transforms in terms of accuracy and
execution time in all types of environments.

Figure 9. Flow diagram of support vector machine (SVM) training and
testing process.

5.2. Energy Compaction (EC). EC measures how efficiently a large fraction of the
signal energy is captured and represented by a reduced set of transform coefficients [12]. In
other words, this property is defined as the ratio of the number of coefficients that include
most energy of the signal to the total number of coefficients. When the ratio value is low
for a given compression percentage; this means better energy compaction is delivered. The
reconstruction of signal information depends on a specific sequence of moment indices that
concentrates most of the signal’s energy, while negligible energy appears in the remaining
moments. This concentration does not lead to information loss, making the transform
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Table 2. Comparison between the proposed polynomials and SKTP poly-
nomial for MNIST dataset in clean environment.

Method Classifier Type Dataset Accuracy % Execution Time
SKTP SVM MNIST 99.90 14.18
DCKT SVM MNIST 99.96 14.33
DCKTK SVM MNIST 99.68 14.27
DKTKC SVM MNIST 99.82 13.92

Table 3. Comparison between the proposed polynomials and SKTP poly-
nomial for Roman numeral recognition in noisy environment.

SKTP DCKT DCKTK DKTKC
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Speckle
σ2 = 0.05

99.84 17.136 99.94 14.422 99.70 17.821 99.88 16.81

Speckle
σ2 = 0.01

99.86 18.387 99.96 14.382 99.68 17.878 99.82 16.271

poisson 99.86 18.743 99.96 16.462 96.64 20.194 99.86 21.631
Salt &Pepper

d = 0.05
99.44 17.271 97.86 14.375 96.84 18.006 98.70 28.532

Salt & Pepper
d = 0.01

99.82 16.559 99.94 16.502 99.64 17.846 99.82 16.316

suitable for compression applications. Therefore, a comparison is performed first between
the three proposed polynomials, second between DTKT, DKTT, STKP, and SKTP hybrid
form and the proposed polynomials, using the procedure presented by [12], which is based
on stationary Markov sequence of the first-order with zero mean and length N as follows:

1. A covariance matrix M with different covariance coefficient ρ, is given by [12]:

M =


1 ρ ρ2 · · · ρN−1

ρ 1 · · · · · · ...

ρ2
...

. . .
... ρ2

... · · · · · · . . . ρ
ρN−1 · · · ρ2 ρ 1

 . (46)

2. Multiply the M matrix by the proposed polynomial to transform it to the moment
domain using the following equation:

T = R M RT (47)

where R is the matrix form of the OP, and T is the transformed matrix that is
used to describe the transform coefficients that are denoted by the diagonal T .

5.3. Digital Image Steganography Application. The rapid evolution of digital tech-
nologies has significantly increased the volume and importance of sensitive data being
transmitted and stored. Due to growing concerns over unauthorized access, data breaches,
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Table 4. The distribution of variance of the transform coefficient for N =
8 and ρ = 0.8, and 0.9.
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1 2.336 0.254 3.031 0.188 3.862 3.083 0.226 2.585 0.16 3.402 0.108 4.956 3.487 0.129
2 0.659 0.676 0.457 0.349 1.834 0.425 0.399 0.571 0.568 0.257 0.187 1.606 0.248 0.219
3 0.526 1.295 0.269 1.016 1.118 0.267 1.002 0.446 1.309 0.183 0.869 0.846 0.137 0.863
4 0.479 1.774 0.242 2.446 0.500 0.225 2.373 0.398 1.964 0.158 2.836 0.262 0.129 2.79
5 0.479 1.774 0.242 2.446 0.263 0.225 2.373 0.398 1.964 0.158 2.836 0.129 0.129 2.79
6 0.526 1.295 0.269 1.016 0.173 0.267 1.002 0.446 1.309 0.183 0.869 0.083 0.137 0.863
7 0.659 0.676 0.457 0.349 0.133 0.425 0.399 0.571 0.568 0.257 0.187 0.064 0.248 0.219
8 2.336 0.254 3.031 0.188 0.118 3.083 0.226 2.585 0.16 3.402 0.108 0.056 3.487 0.129

Table 5. Comparison between the proposed polynomials and SKTP poly-
nomial for Devanagari numeral recognition in noisy environment.
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Speckle
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98.87 43.37 99.40 58.76 99.33 55.26 98.90 44.38

poisson 98.90 41.40 99.40 58.98 99.37 54.25 98.90 45.99
Salt &Pepper

d = 0.05
98.87 39.41 99.43 55.75 99.27 55.33 98.3 52.06

Salt & Pepper
d = 0.01

98.93 42.84 99.40 58.58 99.37 52.62 98.93 45.90

and privacy violations, the development and implementation of advanced information hid-
ing techniques have become critical to ensuring the security and integrity of data [55].

To further explain the performance ability, this section presents a second case study
to evaluate the efficacy of the proposed OP, where the digital image steganography ap-
plication is implemented. The flow chart of implementation steganography process is
shown in Figure 10 which is similar to steganography workflow introduced in [56]. In
that work, SKTP shows a high EC, and localization properties when compared to other
hybrid forms [56]. In this case, the presented hybrid OPs are compared to SKTP in the
steganography process to evaluate their performance.

The first step in steganography process is to convert the image from spatial domain
to moments domain using DCKT, DCKTK, and DKTKC (Eqs. (39), (41), and (43)).
Secondly, the moments are obtained with the high energy using a binary mask to pre-
serve the image information, as shown in Figure11. Each transform has its own moment
distribution and the mask values are set to ones in the ROI (required part) and zeros
in the remaining parts. Then, the values of the secret image are normalized to be equal
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Figure 10. The flow diagram of the Steganography application using dif-
ferent types of OP.

Table 6. PSNR comparison results of the polynomials and SKTP using a
cover image of size (a) 128× 128, and (b) 64× 64

(a) 128× 128

Cover image SKTP DCKT DCKTK DKTKC
Birds 50.219 55.087 49.484 52.725
Boat 49.219 55.319 44.880 49.902
Couple 49.505 50.629 45.078 48.694
F-16 53.149 58.319 45.605 54.353
Hill 48.627 54.204 45.001 50.712

House 47.441 55.659 47.115 47.071
Average 49.693 54.870 46.194 50.576

(b) 64× 64

Cover image SKTP DCKT DCKTK DKTKC
Birds 57.632 60.207 58.920 62.656
Boat 58.152 64.181 52.650 61.816
Couple 57.162 57.619 50.942 56.484
F-16 62.605 66.049 51.371 64.604
Hill 56.099 61.605 51.162 61.122

House 57.188 63.174 55.130 57.479
Average 58.140 62.139 53.363 60.694

or under the low energy moments and resized to be placed where the mask values equal
to zero. The stego-image is reconstructed to spatial domain and sent with its required
information to the receiver.

To appraise the performance of the hybrid forms, two types of measurements have been
used: peak signal-to-noise-ratio (PSNR) and SSIM, where the size of the cover images
is 512 × 512 and two different sizes for the secret image have been employed, which are
128× 128 and 64× 64.
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Table 6 illustrates the comparison results between SKTP [56] and the proposed hybrid
forms in terms of PSNR. It can be noted that the PSNR values for DCKT and DKTKCT
are acceptable compared to SKTP across different message sizes. For example, the average
PSNR for secret image size 128 × 128 is 54.850 and 50.576 for DCKT and DKTKCT,
respectively, while the average PSNR for secret image size 64Ö64 is 62.140 and 60.694 for
DCKT and DKTKCT, respectively.

Figure 11. High energy moments distribution for the proposed polynomi-
als, and locations of secret messages, (a)DCKT, (b) DCKTK, (c) DKTKC

For more evaluation, Figure 12 shows the quality of the stego-images generated using
DCKTK polynomial for secret image sizes of 64× 64 and 128× 128. The cover image are
shown in the first column, while the middle and the last columns show the stego-image
embedded with secret image of size 64 × 64 and 128 × 128, respectively. It is evident
that there are no noticeable distortion by the human eye between the cover-image and
the stego-images.

6. Conclusion. In this paper, a new set of discrete orthogonal functions were proposed.
The proposed OPs are constructed by multiplying well-known OPs. DCT is employed as
a substantial part of the proposed hybrid forms of OP and their moments computations.
The proposed hybrid forms are termed as: DCKT, DKTKC, and DCKTK and derived
from three transforms which are DCT, DKrT and DThT. The proposed DCKT shows
superior performance in terms of EC as compared with DKTKC, DCKTK and other
existing hybrid forms of KrP and TcP; while DKTKC and DCKTK outperform other
transforms in terms of localization property and DCKTK has the best features extraction
as compared with other hybrid forms. A comparative study is performed using two
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Figure 12. Cover images with their corresponding stego-images obtained
from the DCKTK polynomial.

applications: digital image steganography and numerical recognition applications. DCKT
shows a remarkable result as compared with existing OPs in the two applications, while the
DCKTK and DKTKC show results that are close to existing OPs, with an improvement
in terms of execution time in some results. However, the proposed hybrid forms have the
potential to show better and improved results in different computer vision applications
such as compression applications, indicating a possible direction for future work.



DCT-Driven Hybrid OP: Design and Applications in Signal Processing 623

Acknowledgment. The authors would like to thank University of Baghdad for their
general support. The authors also gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] S. Roy and A. Chandra, “A Survey of FIR Filter Design Techniques: Low-complexity, Narrow
Transition-band and Variable Bandwidth,” Integration, vol. 77, no. 8, pp. 193–204, 2021. [Online].
Available: https://doi.org/10.1016/j.vlsi.2020.12.001

[2] B. Torres, G. Peeters, and G. Richard, “Unsupervised Harmonic Parameter Estimation Using
Differentiable DSP and Spectral Optimal Transport,” pp. 1–5, 2023. [Online]. Available:
http://arxiv.org/abs/2312.14507

[3] R. B. Pachori, Time-Frequency Analysis Techniques and their Applications, 2023.
[4] W. Liu, E. W. Hu, B. Su, and J. Wang, “Using machine learning techniques for DSP software

performance prediction at source code level,” Connection Science, vol. 33, no. 1, pp. 26–41, 2021.
[Online]. Available: https://doi.org/10.1080/09540091.2020.1762542

[5] S. H. Abdulhussain, A. R. Ramli, S. A. R. Al-Haddad, B. M. Mahmmod, and W. A. Jassim, “On
Computational Aspects of Tchebichef Polynomials for Higher Polynomial Order,” IEEE Access,
vol. 5, no. c, pp. 2470–2478, 2017.

[6] B. M. Mahmmod, A. M. Abdul-Hadi, S. H. Abdulhussain, and A. Hussien, “On computational
aspects of krawtchouk polynomials for high orders,” Journal of Imaging, vol. 6, no. 8, 2020.

[7] S. H. Abdulhussain, A. R. Ramli, S. A. R. Al-Haddad, B. M. Mahmmod, and W. A. Jassim, “Fast
Recursive Computation of Krawtchouk Polynomials,” Journal of Mathematical Imaging and Vision,
vol. 60, no. 3, pp. 285–303, 2018.

[8] X.-M. Huang, Y. Lin, and Y.-Q. Zhao, “Asymptotics of the charlier polynomials via difference
equation methods,” Analysis and Applications, vol. 19, no. 04, pp. 679–713, 2021.

[9] Z. I. Abood, “Image Compression Using 3-D Two-Level Techniques,” vol. 19, no. 11, 2013.
[10] L. Kotoulas and I. Andreadis, “Image moments based on hahn polynomials,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 29, pp. 2057–2062.
[11] B. M. Mahmmod, A. R. bin Ramli, S. H. Abdulhussain, S. A. R. Al-Haddad, and W. A. Jassim,

“Signal compression and enhancement using a new orthogonal-polynomial-based discrete transform,”
IET Signal Processing, vol. 12, no. 1, pp. 129–142, feb 2018.

[12] A. K. Jain, “Fundamentals of Digital Image Processing,” Tech. Rep.
[13] H. Zenkouar and A. Nachit, “Images compression using moments method of orthogonal polynomials,”

Materials Science and Engineering: B, vol. 49, no. 3, pp. 211–215, 1997.
[14] “Improved image compression based wavelet transform and threshold entropy,” Jour-

nal of Engineering, vol. 17, no. 05, p. 1152–1158, Oct. 2011. [Online]. Available:
https://www.joe.uobaghdad.edu.iq/index.php/main/article/view/3003

[15] N. Y. Baithoon, “Combined dwt and dct image compression using sliding rle technique,” Baghdad
Science Journal, vol. 8, no. 3, pp. 238–238, 2011.

[16] A. H. Ahmed and L. E. George, “The use of wavelet, dct & quadtree for images color compression,”
Iraqi Journal of Science, pp. 550–561, 2017.

[17] S. H. Abdulhussain, A. R. Ramli, B. M. Mahmmod, M. I. Saripan, S. A. Al-Haddad, and W. A.
Jassim, “A New Hybrid form of Krawtchouk and Tchebichef Polynomials: Design and Application,”
Journal of Mathematical Imaging and Vision, vol. 61, no. 4, pp. 555–570, may 2019.

[18] Y. El Madmoune, I. El Ouariachi, K. Zenkouar, and A. Zahi, “Robust face recognition using convo-
lutional neural networks combined with krawtchouk moments.” International Journal of Electrical
& Computer Engineering (2088-8708), vol. 13, no. 4, 2023.

[19] Z. N. Idan, S. H. Abdulhussain, and S. A. R. Al-Haddad, “A New Separable Moments Based on
Tchebichef-Krawtchouk Polynomials,” IEEE Access, vol. 8, pp. 41 013–41 025, 2020.

[20] A. L. N. Abbas, “Implementations of 8x8 dct and idct on different fpga technologies using the
modified loeffler algorithm,” 2005.

[21] L. E. George, F. G. Mohammed, and I. A. Taqi, “Effective image watermarking method based on
dct,” Iraqi Journal of Science, vol. 56, no. 3B, pp. 2374–2379, 2015.

[22] A. M. Salih and S. H. Mahmood, “Digital color image watermarking using encoded frequent mark,”
Journal of Engineering, vol. 25, no. 3, pp. 81–88, 2019.



624 M.T. Yassen and S.H. Abdulhussain

[23] K. K. Jabbar, F. Ghozzi, and A. Fakhfakh, “Robust color image encryption scheme based on rsa via
dct by using an advanced logic design approach,” Baghdad Science Journal, vol. 20, no. 6 (Suppl.),
pp. 2593–2593, 2023.

[24] L. Tan, Q. Wang, H. Zheng, and Y. Si, “Subpixel edge contour extraction based on zernike orthogonal
moments,” in Proceedings of the 7th International Conference on Intelligent Information Processing,
2022, pp. 1–6.

[25] S. J. Abou-Loukh, T. Zeyad, and R. Thabit, “Ecg classification using slantlet transform and artificial
neural network,” Journal of Engineering, vol. 16, no. 01, pp. 4510–4526, 2010.

[26] A. S. A. AL-Jumaili, H. K. Tayyeh, and A. Alsadoon, “Alexnet convolutional neural network archi-
tecture with cosine and hamming similarity/distance measures for fingerprint biometric matching,”
Baghdad Science Journal, vol. 20, no. 6 (Suppl.), pp. 2559–2559, 2023.

[27] M. A. Rajab and L. E. George, “Car logo image extraction and recognition using k-medoids,
daubechies wavelets, and dct transforms,” Iraqi Journal of Science, pp. 431–442, 2024.

[28] W. A. Jassim and P. Raveendran, “Face recognition using Discrete Tchebichef-Krawtchouk Trans-
form,” Proceedings - 2012 IEEE International Symposium on Multimedia, ISM 2012, no. December
2012, pp. 120–127, 2012.

[29] W. A. Jassim, “A New Discrete Orthogonal Function Based on Tchebichef and Krawtchouk Poly-
nomials and Its Applications to Speech and Image Analysis,” Ph.D. dissertation, Universiti Malaya,
2012.

[30] R. Mukundan, S. H. Ong, and P. A. Lee, “Image analysis by Tchebichef moments,” IEEE Transac-
tions on Image Processing, vol. 10, no. 9, pp. 1357–1364, 2001.

[31] R. Mukundan, “Some computational aspects of discrete orthonormal moments,” IEEE Transactions
on Image Processing, vol. 13, no. 8, pp. 1055–1059, 2004.

[32] P. T. Yap, R. Paramesran, and S. H. Ong, “Image analysis by Krawtchouk moments,” IEEE Trans-
actions on Image Processing, vol. 12, no. 11, pp. 1367–1377, 2003.

[33] K. Manasa and V. Krishnaveni, “Certain investigation on brain tumour segmentation using discrete
orthogonal moments approach on u-net,” Neuroquantology, vol. 20, no. 7, p. 3837, 2022.

[34] M. Asakura and T. Yabu, “Explicit logarithmic formulas of special values of hypergeometric functions
3 f 2,” Communications in Contemporary Mathematics, vol. 22, no. 05, p. 1950040, 2020.

[35] S. R. KABARA, “New generalized hypergeometric functions,” Ikonion Journal of Mathematics,
vol. 4, no. 2, pp. 21–31, 2022.

[36] W. Gautschi, “Computational aspects of three-term recurrence relations,” SIAM review, vol. 9, no. 1,
pp. 24–82, 1967.

[37] ——, “Minimal solutions of three-term recurrence relations and orthogonal polynomials,” mathe-
matics of computation, vol. 36, no. 154, pp. 547–554, 1981.

[38] M. Begum, J. Ferdush, and M. S. Uddin, “A Hybrid robust watermarking system based on discrete
cosine transform, discrete wavelet transform, and singular value decomposition,” Journal of King
Saud University - Computer and Information Sciences, vol. 34, no. 8, pp. 5856–5867, 2022. [Online].
Available: https://doi.org/10.1016/j.jksuci.2021.07.012

[39] B. S. Journal, “Orthogonal Functions Solving Linear functional Differential EquationsUsing Cheby-
shev Polynomial,” Baghdad Science Journal, vol. 5, no. 1, pp. 143–148, 2008.

[40] A. Setyono and D. R. Ignatius Moses Setiadi, “An image watermarking method using discrete
tchebichef transform and singular value decomposition based on chaos embedding.” International
Journal of Intelligent Engineering & Systems, vol. 13, no. 2, 2020.

[41] B. Honarvar Shakibaei Asli and M. H. Rezaei, “Four-term recurrence for fast krawtchouk moments
using clenshaw algorithm,” Electronics, vol. 12, no. 8, p. 1834, 2023.

[42] A. Bagdasaryan, “A note on the 2f1 hypergeometric function,” arXiv preprint arXiv:0912.0917,
2009.

[43] H. Zhu, M. Liu, H. Shu, H. Zhang, and L. Luo, “General form for obtaining discrete orthogonal
moments,” IET Image Processing, vol. 4, no. 5, pp. 335–352, 2010.

[44] G. Zhang, Z. Luo, B. Fu, B. Li, J. Liao, X. Fan, and Z. Xi, “A symmetry and bi-recursive algorithm
of accurately computing krawtchouk moments,” Pattern Recognition Letters, vol. 31, no. 7, pp.
548–554, 2010.

[45] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” Computers, IEEE Transac-
tions on, vol. C-23, no. 1, pp. 90–93, 1974.

[46] A. K. Shakya and A. Vidyarthi, “Comprehensive study of compression and texture integration for
digital imaging and communications in medicine data analysis,” Technologies, vol. 12, no. 2, p. 17,
2024.



DCT-Driven Hybrid OP: Design and Applications in Signal Processing 625

[47] V. Dave, H. Borade, H. Agrawal, A. Purohit, N. Padia, and V. Vakharia, “Deep learning-enhanced
small-sample bearing fault analysis using q-transform and hog image features in a gru-xai frame-
work,” Machines, vol. 12, no. 6, p. 373, 2024.

[48] X. Liu and W. Wang, “Deep time series forecasting models: A comprehensive survey,” Mathematics,
vol. 12, no. 10, p. 1504, 2024.

[49] S. H. Abdulhussain, B. M. Mahmmod, M. A. Naser, M. Q. Alsabah, R. Ali, and S. A. Al-Haddad,
“A robust handwritten numeral recognition using hybrid orthogonal polynomials and moments,”
Sensors, vol. 21, no. 6, pp. 1–18, 2021.

[50] D. Gorgevik and D. Cakmakov, “Handwritten digit recognition by combining SVM classifiers,” in
EUROCON 2005-The International Conference on” Computer as a Tool”, vol. 2. IEEE, 2005, pp.
1393–1396.

[51] R. Jana, S. Bhattacharyya, and S. Das, “Handwritten digit recognition using convolutional neural
networks,” Deep Learning: Research and Applications, pp. 51–68, 2020.

[52] W. A. Jassim, P. Raveendran, and R. Mukundan, “New orthogonal polynomials for speech signal
and image processing,” IET Signal Processing, vol. 6, no. 8, pp. 713–723, 2012.

[53] “Cmaterdb.” [Online]. Available: https://code.google.com/archive/p/cmaterdb/downloads
[54] Y. LeCun, C. Cortes, C. Burges et al., “Mnist handwritten digit database,” 2010.
[55] T.-K. Dao, T.-T. Nguyen, T.-X.-H. Nguyen, and T.-D. Nguyen, “Recent information hiding tech-

niques in digital systems: A review.” Journal of Information Hiding and Multimedia Signal Process-
ing, vol. 15, no. 1, pp. 10–20, 2024.

[56] H. S. Radeaf, B. M. Mahmmod, S. H. Abdulhussain, and D. Al-Jumaeily, “A steganography based
on orthogonal moments,” in Proceedings of the international conference on information and commu-
nication technology, 2019, pp. 147–153.


