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Abstract. Unlike the general object detection sub-domain, where the main objective is
to draw horizontal bounding boxes around detected objects inside a natural scene image,
text detection presents greater challenges. Text can appear not only horizontally but also
in inclined and curved formats. Additionally, when text regions are adjacent, general
models may mistakenly detect them as a single instance, which is typically considered
as a false detection. In this paper, we propose addressing these challenges by imple-
menting a semantic segmentation architecture designed to detect text regions and their
boundaries, ensuring proper separation. Our proposed architecture integrates an atten-
tion module that gathers both local and global contextual features by leveraging spatial
and channel dimensions. Additionally, we incorporate dilated convolutions to capture a
broader context, which is essential for accurately classifying each pixel in the image. The
effectiveness of our architecture has been demonstrated through evaluations on various
datasets, achieving a well-balanced performance in terms of recall and precision.
Keywords: deep learning, computer vision, scene text detection, convolutional neural
network, Dice loss
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Figure 1. Example images from the CTW1500 Dataset, showcasing text
regions that are positioned in close proximity to one another.

1. Introduction. Scene text detection is a subdomain of computer vision that plays an
important role in identifying text within natural images. This task is typically followed
by text recognition, which enables various applications, such as translation, autonomous
driving, and augmented reality. Unlike other object detection tasks, detecting text in
complex, real-world environments is particularly challenging. Images often suffer from
occlusions, blurring, or other images weaknesses. Text can also appear in different sizes,
colors, orientations, and fonts within the same image that makes the detection task more
difficult. Another layer of complexity in scene text detection arises from the way text
is annotated. Convolution neural networks (CNN) models are typically designed to de-
tect text at different levels, such as character, word, or line level. However, variations in
spacing between characters, words, or even lines across images can lead to inaccurate de-
tections. When space between characters or words are very narrow, or when the interline
spacing is minimal. This often leads the model to fuse text regions, which penalize it dur-
ing testing, as these fused detections are counted as false positives (Fig. 1). Additionally,
this fusion complicates the post-processing step, requiring additional effort to separate
the regions and restore the detections to their correct form before the recognition phase.

To address these challenges, numerous research papers have been published. With the
advent of convolutional neural networks, two main streams of techniques have emerged to
tackle the problem: regression-based models[1][2] [3] and semantic segmentation models[4][5]
[6]. Both techniques have been employed to detect text, particularly in multi-oriented for-
mats, by either predicting rectangular coordinates and the inclination angle or detecting
the vertices of a quadrilateral surrounding the text regions. Unfortunately, most of these
frameworks struggle to detect text instances with arbitrary shapes (e.g., curved text), as
this type of text requires the detection of more than four vertices, which can be achieved
using a polygonal representation.

In this paper, we present a novel methodology for text detection that effectively handles
multi-oriented and curved text, with a particular focus on separating closely positioned
text. To achieve this, we incorporate a semantic segmentation module designed not only
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to detect text regions but also to delineate boundaries around them. By leveraging these
boundary regions, we enhance the model’s ability to separate adjacent text. This approach
transforms the traditional binary semantic segmentation task, which classifies each pixel
as either text or background, into a three-class segmentation problem. Here, each pixel
is identified as either background, part of a text region, or part of a boundary region.

Our contribution can be summarized as follows :

1. A New Semantic Segmentation Architecture: We propose a new semantic seg-
mentation architecture based on the Pyramid Scene Parsing Network (PSPNet)[7].
This architecture is chosen because it uses a Pyramid Pooling Module (PPM), which
allows the detection of objects at multiple scales within an image. This capability
is crucial since, generally, text appears in the same image at various scales. For
each pixel in the image, our model attempts to predict whether it belongs to a text
region, the boundary of a text region, or the background. The objective is to better
separate closely located text regions, leading to improved predictions.

2. A New Attention Channel-Space Module : We introduce a novel attention
mechanism that operates across both spatial and channel dimensions, integrating
it into the PPM block. The primary objective of this module is to evaluate the
features present in each channel of the input feature map. By assigning a weight to
each channel based on the quality of the data it contains, the module emphasizes
the most informative channels while assigning lower weights to less relevant ones.

3. A New Pipeline for Polygon Coordinate Generation : We introduce a post-
processing pipeline designed to generate polygon coordinates for each text instance
within an image. This pipeline is tailored for detecting curved text by producing a
set of points that define the closest polygon enclosing the text regions. Furthermore,
to ensure the accurate detection of adjacent text, which the model may merge into a
single region, the pipeline utilizes boundary predictions to effectively separate them,
resulting in a more accurate representation.

2. Related works : Research in natural scene text detection has a long-standing his-
tory and did not originate only recently. Early approaches primarily relied on gradient-
based methods combined with handcrafted rules to make predictions[8] [9] . While these
strategies achieved notable results, the most significant advancements have emerged in
the deep learning era, where many works have been inspired by general object detection
frameworks such as Fast R-CNN, YOLO, Mask R-CNN, and FCN. This research can be
broadly categorized into two principal streams.

Regression-Based Methods: These approaches focus on predicting the coordinates of
bounding boxes that enclose text regions. Depending on the text’s shape and orienta-
tion, models are designed to output various bounding box formats, including horizontal
rectangles, multi-oriented rectangles, quadrangles, or polygons. Liao et al.[3] proposed
an end-to-end architecture inspired by the VGG network to detect rectangular coordi-
nates surrounding text. This process is followed by a Non-Maximum Suppression (NMS)
algorithm to eliminate overlapping predictions. Text inside images generally appear in
multi-oriented orientations, Keserwani et al.[10] addressed this challenge by proposing
a method to regress the quadrilateral coordinates through a combination of direct and
indirect regression techniques. Initially, the four vertices of the quadrilateral are shifted
toward its centroid. Then, the model focus on regressing the relative positions of the ver-
tices by utilizing vectors originating from the shifted points. In the case of curved text,
Wu et al. [11] use a combined architecture that leverages both semantic and regression
approaches. This architecture employs a two-branch design: the first branch focuses on
learning semantic information, while the second handles geometric information. These
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Figure 2. In the encoder part of our architecture, ResNet50 serves as
the backbone to capture global features. In the decoder part, we integrate
two PPM modules combined with an attention space-channel mechanism,
which adjusts channel weights by prioritizing those rich in relevant features.
Furthermore, three convolutional blocks with dilated convolutions are em-
ployed to improve boundary refinement.

two branches interact with each other through an interleaved feature attention module
based on deformable convolutions.

Semantic segmentation-based methods : Focus on predicting whether each pixel in an
image belongs to a text region or not. While this approach provides a better understanding
at the pixel level and achieves improved results with irregular shapes, it often struggles
with compact or overlapping regions. Liao et al. [12] attempt to combine predictions
at various scales using a two-branch architecture. The first branch focuses on predicting
text regions, while the second branch is dedicated to detecting boundaries. These two
branches are then merged. Additionally, they propose a differentiable binarization module
to optimize the training process. Li et al. [13] address the challenge of distinguishing
closely spaced text regions, which models often detect as a single region. To tackle this,
they propose the Progressive Scale Expansion Network (PSENet). This method generates
multiple text region kernels of varying sizes and progressively expands the smallest kernels
to reconstruct complete text shapes.

Figure 3. The dilated block consists of a dilated convolutional layer to
capture more global context, followed by a 3× 3 and a 1× 1 convolutional
layers to reduce the input feature map depth before the upsampling step.

3. Methodology. In this section, we describe the key components of our proposed ar-
chitecture, which is inspired by the Pyramid Scene Parsing Network (PSPNet). PSPNet
was chosen for its ability to extract features at multiple scales within an image and its
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effectiveness to combine global and local context information to enhance detection per-
formance. (Fig. 2) provides a detailed explanation of our model, which is based on an
encoder-decoder semantic segmentation architecture. In the encoder, ResNet-50 is em-
ployed to extract global features. This choice is motivated by ResNet-50’s capability
to learn hierarchical features, from simple edges to complex patterns, which is crucial
for handling text that may vary in color, shape, and font within the same image. More-
over, ResNet-50’s residual connections are instrumental in facilitating gradient flow during
backpropagation, ensuring efficient training of deeper layers.

In the decoder part, we extend the PSPNet implementation by adding additional layers.
The goal is to enhance the model’s precision in handling edges by encouraging it to learn
a richer combination of local and global features. To achieve this, the Pyramid Pooling
Module (PPM) from the original PSPNet is used to aggregate contextual features from
multiple scales. Given an input feature map, the PPM pools it into a four-level pyramid
with different sizes. Each level’s depth is reduced using a 1Ö1 convolution, followed by
bilinear interpolation to upsample the features back to the original size. Finally, the
upsampled features are fused with the input feature map.

To enhance the PPM module, we integrate an attention mechanism that assigns weights
to each channel of the four-level pyramid. This mechanism evaluates the quality of in-
formation in each channel based on both spatial and channel dimensions, enabling the
model to focus on the most relevant ones. Our attention module (Fig. 4) is inspired by
and extends the Squeeze and Excitation Network[14] (SE), which recalibrates channel-
wise responses through a two-step process. In the squeeze step, each channel is reduced
to a single value by applying global average pooling to generate channel-wise statistics,
followed by the excitation step where two fully connected layers is used to capture channel-
wise dependencies. This process produces a weight vector that is multiplied with the input
feature map. One limitation of the approach is its lack of consideration for spatial in-
formation, as it focuses solely on the channel dimension. We address this limitation by
extending the attention mechanism to incorporate spatial attention as well.

As described in Algorithm 1, during the sqeeze step, given an input feature map X ∈
Rw×h×c, we define a matrix SA ∈ Rw×h by computing the average values along the spatial
dimension. Similarly, a vector CA ∈ Rc is obtained by applying global average pooling
along the channel dimension.

To further analyze X, we compute a distance features map D ∈ Rw×h×c, representing
the difference between the input feature map and the spatial average matrix SA. The
goal is to evaluate each channel at the space level and identify those that closely match
the average values in SA, which is considered as a reference for accurate predictions.
layers that are closer to SA are hypothesized to contribute more effectively to the final
prediction, as they are more likely to align with the collective representation captured by
the network.

The distance feature map D is converted into a vector of weights, reflecting the quality
of each channel’s alignment with the spatial average SA. This vector is then multiplied
by the channel average CA, emphasizing the channels that best align with both spatial
and channel contexts while giving less importance to those that are less relevant. A ReLU
activation is applied to the resulting vector. The excitation step is then performed by
passing this vector through two dense layers, with ReLU and Sigmoid activation functions
applied sequentially, as shown in Equation 1.

s = σ (W2 · δ (W1 · z+ b1) + b2) (1)

Where:

• z ∈ RC : Input vector (squeezed vector).
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Figure 4. Given an input feature map, both spatial and channel-wise
average values are computed. The spatial average value is used to compute
a vector of distances to highlight layers rich in features. This vector is
multiplied by the channel-wise average value and passed through two dense
layers to produce the final vector of weights

• W1 ∈ RC×r: Weight matrix of the first dense layer. r present the reduction ratio
• b1 ∈ Rr: Bias of the first dense layer.
• δ(·): ReLU activation function.
• W2 ∈ Rr×C : Weight matrix of the second dense layer.
• b2 ∈ RC : Bias of the second dense layer.
• σ(·): Sigmoid activation function.

The PPM module, integrated with the attention mechanism, is applied twice within
the decoder, followed by the application of a dilated block three times before outputting
the final predictions. Each dilated block consists of three convolutional layers. The first
layer employs dilated convolution, chosen for its ability to expand the receptive field
and capture more global contextual information. The second layer uses a classic 3 × 3
convolution, and the final layer uses a 1×1 convolution to reduce the channel depth of the
input feature map before upsampling it. This design choice enhances the model’s ability
to detect edges and refine boundaries.

The model output predicts whether each pixel belongs to a text area, a boundary area,
or the background. The primary objective is to utilize boundary predictions to distinguish
closely positioned text regions, enabling the model to focus on accurately separating them.
This approach prevents the detection of multiple text regions as a single one, which would
otherwise result in false detections.

Algorithm 1 The proposed space-channnel attention mechanism

Require: Input feature map: inputs
Ensure: Weighted feature map
1: SA← Average values across space dimension
2: CA← GlobalAveragePooling2D()(inputs)
3: dist← (inputs− SA)2

4: squeeze← ReLu(dist× CA)
5: excitation← DenseLayer(squeeze)
6: excitation← ReLu(excitation)
7: excitation← DenseLayer(excitation)
8: excitation← Sigmoid(excitation)
9: return inputs× excitation
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3.1. Loss function : As a loss function, we propose using a combination of Generalized
Dice Loss (GDL) and Categorical Cross-Entropy (CCE) Loss. Text within an image is
typically represented by a relatively small number of pixels, leading to an imbalanced
representation compared to the background. Additionally, since our model predicts the
boundaries between text regions as a separate class, this further introduces another source
of imbalance. To stabilize the training process and mitigate overfitting, we adopt a bal-
anced combination of these losses. The overall expression of our loss function is formulated
as follows:
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LTotal = αLGDL + βLCCE (4)

Where:

• N is the number of pixels,
• C is the number of classes,
• wc: a weight assigned to each class to give more focus during the training process.
• yci is the ground truth label for the i-th pixel and class c,
• pci is the predicted probability for the i-th pixel belonging to class c,
• α and β are hyperparameters used to balance the contribution of the two losses.
Typically, they are set to 1.

This loss function empirically ensures better boundary refinement because the Dice
Loss is particularly effective in scenarios that require optimizing the overlap with both
the ground truth and predicted regions. This focus helps improve generalization and
capture the global context. On the other hand, the Cross-Entropy Loss ensures stable
optimization by emphasizing pixel-level accuracy and capturing fine-grained details.

3.2. Post-processing. Semantic segmentation models operate at the pixel level to pre-
dict the class of each pixel. However, in some cases, the resulting segmentation map is
not always accurate and requires post-processing to address false pixel classifications. In
our case, it is crucial that the detected boundaries are continuous and fully enclose the
text regions to prevent multiple ones from being merged.

Algorithm 2 outlines the post-processing steps we adopt to address this issue. First,
the boundaries and text regions are separated. Then, morphological dilation is applied
to increase the size of the detected boundary zones, which helps to correct any gaps in
the boundaries. The resulting map is merged with the text region predictions, and a
connected components algorithm[15] is used to detect each text region separately. Since
the boundary regions are oversized, the size of the predicted text regions is reduced. To
restore their original size, we iterate over each detected region and apply morphological
dilation before extracting the vertices of the contour surrounding it[16]. Repeating this
operation produces a list of polygons, each describing a distinct text region.

4. EXPERIMENTAL RESULTS.

4.1. Benchmark Datasets. Detecting text in natural scene images requires addressing
various real-world challenges, including diverse text forms (e.g., curved or multi-oriented)
and complex backgrounds, which can significantly affect model performance and lead to
false detections. To overcome these challenges, it is crucial to use datasets that capture
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Algorithm 2 Post-Processing Algorithm

Require: Prediction map pred with values representing background, text regions, and
boundaries.

Ensure: List of polygons list polygons representing refined text regions.
1: BM ← get boundaries map(pred)
2: TM ← get text regions map(pred)
3: BM ← exclude boundaries of small region(BM)
4: BMD ← morphological dilation(BM)
5: Corrected map← merge(TM,BMD)
6: new map← get new text regions(Corrected map)
7: text regions← connected Components(new map)
8: list polygons← []
9: for each tr in text regions do
10: tr← morphological dilation(tr)
11: polygon← get contour points(tr)
12: list polygons.add(polygon)
13: end for
14: return list polygons

a wide variety of scenarios and accurately represent real-life conditions. In our case, we
have selected the following datasets to train and evaluate our model.

• Total-Text Dataset [17] : introduced in 2017, consists of natural scene images
designed to capture real-world scenarios. It includes a diverse mixture of curved and
multi-oriented text. Some images exhibit challenges such as low contrast and other
quality issues, increasing the difficulty of detection. The dataset comprises 1,555
images, split into 1,255 for training and 300 for testing. The text is predominantly
in English and is annotated at the word level using a series of points that form
polygons outlining the text regions.
• CTW-1500 [18] : The CTW-1500 dataset, introduced in 2017, consists of 1,500
images, with 1,000 allocated for training and 500 for testing. The text in these images
features both curved and multi-oriented shapes. The dataset includes approximately
10,751 cropped text instances, of which 3,500 are curved [19]. The text instances are
in both English and Chinese and are annotated at the text-line level.
• MSRA-TD500 [20] : comprises 500 images, with 300 designated for training and
200 for testing. The text is presented in a multi-oriented format and includes a
mixture of English and Chinese. Annotations are provided at the text-line level,
with ground truth defined using rotated rectangles. Each rectangle is specified by
its top-left corner coordinates, width, height, and inclination angle.

4.2. Implementation Details. The training and testing of our model were performed
using the Nvidia L4 GPU. For the ResNet backbone, we employed transfer learning to
accelerate the training process. Additionally, we used data augmentation to diversify the
types of images presented to our model during training, especially since the number of
images in the used datasets is very low. The augmentation operations focused primarily
on rotation and scaling. The Adam optimizer was used with a learning rate of 10−4,β1

and β2 were set to 0.9 and 0.999, respectively.

4.3. Evaluation metrics. The evaluation of our model involves assessing the correspon-
dence between predicted and ground truth polygons. This is achieved through a two-step
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process. The first step computes the Intersection over Union (IoU) metric, which mea-
sures the degree of overlap between the two sets of polygons. The IoU metric is defined
as :

IoU =
AREA(G ∩ P )

AREA(G ∪ P )
(5)

Here, G represents the Ground Truth polygon, and P is the predicted one.
When a predicted polygon matches a ground truth one, this is considered as a true

positive (TP) detection; otherwise, it is evaluated as a false positive (FP). Evaluating all
predicted polygons allows us to classify them into three categories: true positives (TP),
false positives (FP), and false negatives (FN). These classifications enable the computation
of the Precision, Recall and F1-score metrics, defined as:

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

F1− score =
2×Recall × Precision

Recall + Precision
(8)

5. Result.

5.1. Quantitative results. The created model has been evaluated on various datasets.
Total-Text and CTW-1500 consist of both curved and multi-oriented text, while MSRA-
TD500 is composed solely of multi-oriented text. The evaluation process starts by detect-
ing the text regions, followed by computing the IoU metric to evaluate each prediction
and verify its match with a ground truth polygon. The predicted polygons are then clas-
sified into True Detection, False Detection, or Not Detected (in case there is no prediction
equivalent to a ground truth polygon). These values are used to compute the precision,
recall, and F1 score of our model.

Tables 1, 2, and 3 present the results obtained for the Total-Text, CTW-1500, and
MSRA-TD500 datasets, respectively. These results demonstrate how our model consis-
tently outperforms existing methods across all three datasets, highlighting its superior
ability to detect text regions in both multi-oriented and curved text environments. The
use of the attention mechanism, coupled with the proposed post-processing, leads to a
noticeable improvement in detection accuracy and robustness across various text orienta-
tions. This can be observed in the well-balanced trade-off between precision and recall,
which ensures the model’s ability to correctly identify positive text regions and maxi-
mize the detection of relevant ones. This reflects the model’s strong generalization ability
across a wide range of text orientation scenarios.

5.2. Qualitative results. Figure 5 shows examples of cases where the post-processing
successfully separates adjacent text regions. As shown, the dilation of the boundary re-
gions corrects prediction errors made by the model, contributing positively to the detection
of text regions in the desired format. This operation improves the model’s performance by
preventing correctly detected text regions from being evaluated as false detections simply
because they do not match the required format.

Figure 6 presents examples of predictions made by our model. In the first three rows, we
can observe how the model successfully detects text in both curved and multi-orientation
formats. The detected polygons also vary in size, and adjacent text regions are correctly
detected as separate instances. However, the last row highlights some examples of incor-
rect predictions. In the first image on the left, the model mistakenly identifies a ladder as
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text due to the similarity in its structural features to certain characters (I or H). In the
remaining examples, the post-processing fails to correctly separate adjacent text regions.
This issue may be attributed to poor boundary predictions that, even after dilation, are
insufficient to fully separate the adjacent regions.

Table 1. Detection results on the Total-Text Dataset.

Precision Recall F1-score
EAST [21] 50.0 36.2 42.0
Liu et al.[22] 74 .0 71.0 73.0

Wang et al.[23] 80.9 76.2 78.5
Xue et al.[24] 83.8 74.8 79.0
Dai et al.[25] 84.6 78.6 81.5
Our method 88.65 80.49 84.37

Table 2. Detection results on the CTW-1500 Dataset.

Precision Recall F1-score
EAST [21] 78.7 49.1 60.4

Liu et al. [26] 81.1 76.0 78.4
Tian et al.[27] 82.7 77.8 80.1
Li et al.[13] 82.5 79.9 81.2

Wang et al. [2] 82.8 80.4 81.6
Our method 83.57 81.47 82.47

Table 3. Detection results on the MSRA-TD500 Dataset.

Precision Recall F1-score
PixelLink [28] 83.0 73.2 77.8
TextSnake [29] 83.2 73.9 78.3

DBNet(ResNet-18) [12] 86.8 78.4 82.3
CRAFT [30] 88.2 78.2 82.9
Our method 85.23 81.90 83.53

5.3. Ablation study. To validate the attention mechanism and the post-processing steps
proposed in this paper, an ablation study was conducted. A series of experiments were
performed using different versions of our model. The evaluation is divided into three
parts: in the first, the complete model is used (baseline); in the second, the model is used
without the attention mechanism; and in the third, the complete model is used without
the post-processing step. Table 4 presents the obtained results.

When the attention module is not used, the F1-score is slightly lower than baseline.
A small drop in both precision and recall is observed in all datasets, except in the case
of the CTW-1500 dataset, where Recall is slightly higher. These results indicate how
the attention mechanism significantly helps in distinguishing text features from noise



636

Figure 5. In the first column, showing the predictions made by our model,
we can distinguish text regions (green color), boundary predictions (yellow
color), and background (purple color). The second column presents the pre-
dictions after applying the post-processing operations. In the last column,
we can find the polygons obtained in the final step.

Figure 6. Samples of predictions made by our model for detecting both
curved and multi-oriented text. The last row highlights some false predic-
tions.
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CTW-1500 Total-Text MSRA-TD500
P R F1 P R F1 P R F1

Model
With attention

83.75 81.47 82.47 88.65 80.49 84.37 85.23 81.90 83.53

Model
No attention

79.23 82.44 80.80 87.31 78.99 82.94 82.06 78.82 80.41

Model
No Post-Processing

82.60 77.55 79.99 85.94 77.49 82.26 81.40 73.40 77.19

Table 4. Ablative Study experiments on CTW1500, Total-Text, and
MSRA-TD500. The proposed model is trained under various conditions:
baseline, without the attention mechanism, and without post-processing.”

and improving detection consistency. In the absence of post-processing, we observe a
significant drop in recall, particularly for the CTW-1500 and MSRA-TD500 datasets,
with decreases of 3.92% and 8.5%, respectively. This outcome is expected, especially for
the MSRA-TD500 dataset, where text regions are typically small, and the spacing between
them is often narrow, making boundary refinement crucial for accurate detection. On the
other hand, the results for the Total-Text dataset are somewhat surprising. Given that
text in this dataset is annotated at the word level, the risk of merging adjacent text
regions is higher, yet the drop in recall is less pronounced. This may suggest that the
model, even without post-processing, is better at handling the separation of word-level
annotations in this particular dataset.

In all cases, it is clear that the results obtained without post-processing are inferior to
those of the baseline model across all metrics: precision, recall, and F1-score. This high-
lights the importance of the attention mechanism and the post-processing in improving
the accuracy and reliability of text detection, particularly in challenging scenarios with
closely spaced or overlapping text regions.

6. Conclusion. In this work, we propose a novel architecture and post-processing pipeline
for text detection in multi-oriented and curved formats. Our approach specifically ad-
dresses the challenge of adjacent text regions being in close proximity, which often leads
to the model merging them, a scenario that negatively impacts performance evaluation,
as such predictions are considered false positives.

The proposed model not only detects text regions but also delineates their boundaries,
leveraging post-processing to correct potential errors arising during prediction. The re-
sults obtained across various datasets are promising and demonstrate the potential of
the approach. Future improvements could include refining the attention module, revis-
iting the overall architecture, or enhancing the post-processing pipeline to further boost
performance.
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