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Abstract. This work presents a comparative evaluation of five envelope extraction
methods for the PCG signal under added white noise conditions, namely: Shannon en-
velope, Hilbert envelope, Shannon entropy, the cardiac sound characteristic waveform,
and Multiscale product method. The performance was assessed using the false positive
rate (FPR) and the area under the ROC curve (AUC) at three SNR levels (15 dB, 5 dB,
and 0 dB). At 15 dB, the methods yielded promising results, with FPRs ranging from
2% to 10% and AUCs between 89% and 97%. As the noise increased (at 5 dB and 0 dB),
a general degradation in performance was observed—particularly for the Shannon, En-
tropy, and Hilbert methods, which exhibited significant increases in FPR and decreases
in AUC (for instance, Shannon dropped from an AUC of 89% to 76%). In contrast, the
cardiac sound characteristic waveform and Multi-scale methods maintained relatively
robust performance, with the Multi-scale approach performing notably well, achieving
AUCs of 97%, 94%, and 88.5% with corresponding FPRs of 2%, 4%, and 12% at 15
dB, 5 dB, and 0 dB, respectively. These results underscore the importance of adapting
the extraction method to noise conditions and suggest that the Multi-scale approach is
the most reliable for precise phonocardiogram signal extraction in noisy clinical environ-
ments.
Keywords: PCG signal; envelope extraction; Shannon; Shannon entropy; Hilbert trans-
form; cardiac sound characteristic waveform; multi-scale product

1. Introduction. Cardiac auscultation, performed using a stethoscope, is a fundamental
clinical examination technique. This instrument, consisting of a diaphragm or bell con-
nected to earphones, amplifies the sounds produced by the heart. These sounds, known as
heart sounds, provide valuable information about cardiac function. Normal heart sounds,
S1 and S2, correspond to the closure of the heart valves. Abnormal sounds, known as
murmurs, may indicate valvular stenosis (narrowing) or valvular insufficiency (regurgita-
tion). With the advent of electronic stethoscopes, it is now possible to record and analyze
these sounds in greater detail. This recording, called a phonocardiogram (PCG), helps
detect subtle abnormalities that might be missed during traditional auscultation. The
PCG signal plays a crucial complementary role in cardiac auscultation [1]. It not only
confirms the findings obtained from a stethoscopic examination but also refines them by
providing additional insights into the acoustic activity of the heart. Through PCG anal-
ysis, the precise timing of pathological signs within the cardiac cycle can be determined,
facilitating the diagnosis and understanding of cardiac disorders.

A phonocardiogram (PCG) is a graphical representation of heart sounds, comprising
multiple components that provide essential information about cardiac function. The pri-
mary features of the PCG include the normal S1 and S2 sounds, corresponding to the
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closure of the atrioventricular and semilunar valves, respectively [1]. In addition to these
fundamental sounds, the PCG may also contain additional acoustic events, such as heart
murmurs, which result from turbulent blood flow caused by stenoses or valvular regur-
gitations. These murmurs can be classified as systolic or diastolic, depending on their
occurrence within the cardiac cycle.

Furthermore, S3 sounds are often associated with ventricular dilation, whereas S4
sounds indicate ventricular stiffness. Cardiac sounds are inherently non-stationary, mean-
ing their characteristics vary over time. They are predominantly low-frequency signals,
typically ranging between 40 and 600 Hz [2, 3], mainly resulting from valvular vibrations,
blood flow dynamics, and myocardial wall motion during different phases of the cardiac
cycle.

The automatic analysis of cardiac signals, such as phonocardiograms, presents signif-
icant challenges due to their highly non-stationary nature. To facilitate this analysis,
it is essential to extract relevant signal features. While frequency based analysis has
been extensively explored, time domain techniques, particularly envelope extraction, offer
promising new perspectives.

The envelope of a cardiac signal provides valuable information about its intrinsic char-
acteristics, such as the amplitude and duration of different cardiac events. This ap-
proach enhances our understanding of the underlying physiological mechanisms involved
in heart sound production and enables the correlation of these features with various
cardiac pathologies. Envelope extraction is widely utilised to simplify the analysis of
biomedical signals. It improves the detection of S1 and S2 heart sounds by highlighting
regions of interest, thereby facilitating signal segmentation and reducing noise impact.
Using time domain, frequency domain, and time frequency methods, envelope extrac-
tion enhances amplitude variation analysis, ultimately improving the robustness of heart
sound classification algorithms. This technique is particularly valuable for identifying
abnormalities such as heart murmurs and optimising the performance of computer aided
diagnostic systems.

Recent advancements in digital signal processing have paved the way for novel clini-
cal applications. Automated cardiac signal analysis has the potential to enable earlier
detection of cardiovascular diseases and provide more personalized patient monitoring.
Additionally, the development of user-friendly interfaces could make this technology ac-
cessible to a broader audience, including non-specialists.

Research on heart sound envelope extraction has explored various methods. A com-
monly employed approach involves segmenting the signal based on its instantaneous en-
ergy, with Shannon energy frequently used as a key measure due to its ability to capture
amplitude variations in the frequency domain [4]. By normalizing this energy, different
signal regions can be compared, aiding in the identification of cardiac events.

However, Shannon energy-based segmentation is not always optimal, particularly in
noisy environments or when dealing with highly disturbed signals. Since most cardio-
vascular sounds fall below 1 kHz, the primary goal is to classify heart sounds as normal
or abnormal using Shannon energy. This energy is computed from pre-processed signals,
which are either low pass filtered (frequencies below 1 kHz) or band pass filtered to target
specific frequency ranges [5].

Moreover, Hilbert transform based methods leverage two key features: the envelope (E),
derived from the real part of an analytic signal, and the instantaneous frequency (IF),
computed as the derivative of the imaginary part of the analytic signal [6, 7, 8, 9]. Previous
studies have utilized entropy based metrics to characterize the complexity of heart sounds
in PCG signals. By quantifying the degree of randomness and unpredictability within the
signal, this approach enables precise detection and quantification of cardiac abnormalities,
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which are often associated with increased local entropy [10, 11]. This method provides a
valuable diagnostic tool, particularly for the detection of heart murmurs and other rhythm
abnormalities.

Additionally, algorithms dedicated to extracting heart sound characteristic waveforms
of heart sounds are based on one degree of freedom analytical models. These models allow
for derivation of characteristic waveforms, while their response curves assist in classifying
heart sounds as normal or abnormal [12, 13]. Then, the multi-scale product method, which
is based on the idea that the temporal characteristics of heart sounds can be highlighted
by combining information from different signal representation scales. Specifically, this
method applies a continuous or discrete wavelet transform to the phonocardiogram (PCG)
signal to decompose it into multiple frequency scales [14, 15].

However, to ensure effective auscultation of heart sounds, several hardware and contex-
tual factors must be considered [16, 17]. These include stethoscope system performance,
recording conditions, and individual variations. Such factors can directly influence signal
quality, particularly through variations and interferences caused by ambient noise. Signal
envelopes are especially sensitive to noise components, which can significantly degrade
heart sound segmentation accuracy. Our study focuses on a comparative analysis of five
envelope extraction algorithms for segmenting first (S1) and second (S2) heart sounds. We
compare our proposed method against widely used reference techniques, such as normal-
ized Shannon energy, Hilbert transform, Shannon entropy, cardiac sound characteristic
waveform analysis, and multi-scale product techniques. These methods have been ap-
plied in various biomedical applications and evaluated in multiple studies. However, their
comparative performance in noisy conditions remains an open research question, requir-
ing further analysis to determine the most suitable method for real PCG signals. The
performance of different envelope extraction techniques will be assessed based on two key
criteria:

• Database diversity: The dataset used for this study includes a variety of cardiac
signals, encompassing both clinically normal recordings and signals exhibiting differ-
ent cardiac pathologies. This diversity will enable the evaluation of each method’s
ability to adapt to a broad range of clinical scenarios.

• Impact of noise: The test signals originate from a clinical environment, where they
are naturally contaminated by ambient noise, respiratory sounds, and frictional
noises associated with auscultation. To further examine the robustness of each
method, we will artificially add three levels of Gaussian white noise to the clini-
cal signals, corresponding to signal-to-noise ratios (SNR) of 15 dB, 5 dB, and 0 dB,
respectively.

To assess the impact of noise on cardiac signals, we will compute the signal-to-noise
ratio (SNR). This metric will be obtained by comparing the average signal power within
a time window containing S1 and S2 sounds to the average background noise power in an
equally sized window during diastole (i.e., when no heart sounds are present).

Furthermore, the second evaluation of the five algorithms for S1 and S2 localization will
be based on receiver operating characteristic (ROC) curve analysis, focusing on the area
under the curve (AUC) and its variation under different levels of Gaussian white noise.

The ROC curve is a widely used method for visualizing and comparing classifier per-
formance, illustrating variations in true positive rate (sensitivity) and false positive rate
(1-specificity) as a function of threshold values. This approach provides insights into each
method’s robustness in precisely localizing S1 and S2 sounds in noisy conditions.

This article is structured as follows: Section 2 focuses on the localization of heart sounds
using envelope extraction techniques. Section 3, entitled “Algorithmic implementation of
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the proposed methods”, describes in detail the implementation of the algorithms devel-
oped in this study. Section 4 presents a comprehensive performance analysis, highlighting
key parameters relevant to signal processing and classification. The results, discussion,
and conclusions are provided in Sections 5 and 6, respectively.

2. Envelope Extraction. The localization of heart sound signals is a crucial step in the
analysis of phonocardiographic (PCG) signals. It aims to precisely identify the occurrence
times of the first (S1) and second (S2) heart sounds. This temporal localization precedes
signal segmentation, which involves dividing the cardiac cycle into four distinct phases:
S1, systole, S2, and diastole. Such detailed segmentation significantly facilitates automatic
analysis and classification tasks, providing clinicians and diagnostic support systems with
both quantitative and qualitative information about different components of the heart
sound signal.

Direct heart sound localization methods are applied exclusively to the phonocardiogram
(PCG) without relying on complementary signals such as the electrocardiogram (ECG).
This non-invasive approach presents an attractive alternative to indirect methods, en-
abling a simpler and less restrictive assessment of cardiac function for the patient. Our
study specifically focuses on the evaluation and development of these direct localization
methods. Most heart sound localisation algorithms follow a standard process, as illus-
trated in Figure 1. After acquiring and filtering the PCG signal, a specific transformation
is applied to extract relevant signal features.

This transformation, at the core of the localization process, highlights the primary
components associated with the S1 and S2 heart sounds. An additional low pass filtering
step is often employed to suppress high frequency noise and enhance the readability of the
signal envelope. Finally, thresholding and local maxima detection are used to accurately
identify the occurrence of the S1 and S2 heart sounds.

Figure 1. Structural diagram of PCG Signal Processing

A comparative study of heart sound localization algorithms was conducted using the
PASCAL database [18]. This database includes 176 recordings intended for heart sound
segmentation and 656 recordings for heart sound classification. Although the number of
recordings is relatively large, their duration is limited, ranging from 1 to 30 seconds.

Furthermore, the frequency range is restricted to values below 195 Hz due to the appli-
cation of a low pass filter. This filtering removes many components of heart sounds that
are essential for accurate clinical diagnosis. Subsequently, normalization is performed by
adjusting the signal variance to a value of 1. This step standardizes the signals, facilitat-
ing comparisons and subsequent analyses. The resulting signals can be expressed using
the following equation [19, 20]:

xnorm(t) =
x(t)

|max (x(t)) |
(1)

where x(t) represents the filtered original PCG signal.
This normalization ensures that the signals have a standardized amplitude while preserv-
ing their temporal and frequency characteristics. Heart sounds are often embedded in
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significant background noise originating from respiration, body movements, or medical
devices. These signals must be segmented into different components during the initial
stage of automatic analysis and classification. The envelope of heart sounds provides
valuable information for studying the intrinsic characteristics of the signal. However,
while the envelope offers a simplified representation, it contains less information than the
original sound signal. For example, a normal heart sound and its corresponding envelope
curve are illustrated in Figure 2.

It is evident that the envelope curve, derived from the first heart sound (S1) and the
second heart sound (S2), provides a clearer and more intuitive representation than the
raw acoustic signals. In this study, we analyze five of the most representative envelope
extraction techniques: the Shannon envelope (based on the normalized Shannon energy),
the Hilbert transform envelope, entropy-based methods, characteristic heart sound wave-
forms, and a nonlinear method.

Figure 2. PCG signal in top row, envelope extraction in bottom row

2.1. Shannon Envelope. Shannon Envelope. The Shannon envelope, based on the
normalized Shannon energy, is a widely used method for extracting the envelope of heart
sound signals. Further details of this algorithm are explained later in the text.

The normalized Shannon energy, also known as the Shannon envelope, is a commonly
used technique for heart sound envelope extraction, particularly in the analysis of phono-
cardiograms (PCG). It relies on nonlinear signal processing to emphasize energy variations
over time, enhancing the detection of cardiac events such as heart sounds.

The main steps for obtaining the Shannon envelope of a heart sound signal are as
follows:

a) Compute the Instantaneous Energy E[n] of the Normalized Signal by Squaring Its
Amplitude [21]:

E[t] = x[t]2norm (2)

with x[t]norm being the amplitude of the signal at time t.
b) Transform the instantaneous energy using the Shannon formula to obtain the nor-

malized energy:
Eshannon = −E[t] · log (E[t]) (3)

c) Calculate the Mean Shannon Energy of the digital signal:

Ei = − 1

N

N∑
i=1

E[i] · log (E[i]) (4)
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When using a sliding window with a length of 0.02 s, corresponding to N = 40 samples
(for a sampling frequency of 2 kHz), and a 50% overlap rate, the normalized mean Shannon
energy is calculated as:

P (t) =
Ei[t]−M(Ei[t])

S(Ei[t])
(5)

In this context, Ei[t] represents the mean Shannon energy within window i, M(Ei[t])
is the average value of Ei[t], and S(Ei[t]) is its standard deviation.
These values are often used to characterize the Shannon envelope or to detect anomalies

in heart sound signals.

2.2. Hilbert Envelope. The Hilbert envelope is a mathematical representation that
allows us to track the amplitude of a signal over time while ignoring high-frequency
oscillations.

The Hilbert envelope of a signal x(t) is obtained from the Hilbert transform H(x(t)),
which generates a complex analytic signal [22, 23]:

Sa(t) = x(t) + jH(x(t)) = A(t)ejφ(t) (6)

where: x(t) is the normalized PCG signal,
H(x(t)) is its Hilbert transform, representing the imaginary part of the analytic signal

defined by the following formula:

H(x(t)) =
1

π

∫ +∞

−∞

x(τ)

t− τ
dτ = x(t) ∗ 1

πt
(7)

The Hilbert envelope of a real signal x(t), denoted as A(t), is defined as the modulus
of the analytic signal Sa(t) associated with x(t):

A(t) = |Sa(t)| =
√
x(t)2 +H(x(t))2 (8)

The main objective of the approach presented in [24] is to eliminate high-frequency
vibrations present in the envelope of a signal to highlight lower-frequency trends.

2.3. Shannon Entropy. Shannon entropy is a fundamental measure in information the-
ory that quantifies the degree of uncertainty or diversity in the probability distribution
of a particular event x, which in this case corresponds to the PCG signal.
The entropy of a signal x is defined as:

H(x) = −
N∑
i=1

P (xi) log2 P (xi) (9)

where:
P (x) represents the probability density of the amplitude xi occurring in the PCG signal,

N is the total number of amplitude levels considered, and the logarithm base determines
the unit of entropy, with a log2 expressing entropy in bits.
In the domain of PCG signals, this formula is used to quantify the uncertainty or

variability of signal amplitudes. In other words, it measures the complexity of the PCG
signal [25].

Several methods exist for estimating the probability density of a discrete signal, and
these approaches are essential for calculating Shannon entropy. In probability density
estimation, two major categories of methods can be distinguished:

• Parametric Methods: These methods assume that the probability density follows a
known distribution (e.g., Gaussian) and estimate its parameters.

• Non-Parametric Methods: These methods do not assume a predefined model and
construct the probability density directly from the data.
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Parametric methods have the disadvantage of being sensitive to violations of the assumed
distribution hypothesis. If the signal does not follow the presumed distribution, the
estimation may be biased and inaccurate. These methods are less suitable for complex
signals where the underlying distribution is unknown or difficult to model. On the other
hand, non-parametric methods offer greater flexibility and are better suited for complex
signals with unknown or difficult to model distributions. The choice between parametric
and non-parametric methods depends on the prior knowledge of the signal’s distribution
and the amount of available data.

For PCG signals, non-parametric methods are generally more appropriate due to their
complexity and the challenges in modeling their distribution. The histogram method is
one of the simplest and fastest non-parametric approaches for estimating the probability
density of a PCG signal. However, it has a major drawback: it does not provide density
smoothing.

For this reason, kernel density estimators are often a better alternative to histograms,
as they enable density smoothing, are less sensitive to bin selection, and offer greater
accuracy.

Yaddoulahi et al. [26] employed kernel density estimation to model the distribution
of heart sounds in PCG signals. They assumed that heart sounds followed a different
distribution than lung sounds, using the following kernel estimator:

P̂ (x) =
1

N

N∑
i=1

1

h
K

(
x−Xi

h

)
(10)

Where:
x is the point at which the probability density is to be estimated, Xi represents the
observations (samples) of the PCG signal, N is the total number of observations, K(x) =

( 1
2π
)e−

x2

2 is the kernel function, and h = 1.06σ̂(x)N−0.2 is the scaling factor, where σ̂ is
the standard deviation of the observations.

The steps for calculating Shannon entropy on a PCG signal are: The steps for calcu-
lating Shannon entropy on a PCG signal are as follows:
(i) Divide the signal into segments of 50 samples with a 50% overlap.
(ii) For each segment, compute Shannon entropy.
(iii) Determine the adaptive threshold: threshold = (σ + µ).
(iv) Compare the entropy of each segment to the threshold to locate heart sounds.

2.4. Cadiac sound characteristic Waveform. The Single Degree of Freedom (SDOF)
model is a simple yet powerful tool for analyzing dynamic systems. In this context, it
is used to model the cardiovascular system’s response to heart sounds. The model is
based on an electrical analogy, where mechanical elements (mass, spring, and damper)
are represented by their equivalent electrical components (inductance, capacitance, and
resistance).

Although the cardiovascular system is inherently complex, an SDOF model can provide
a reasonable approximation of its response to heart sounds. It considers the system as a
damped oscillator, which allows capturing the key characteristics of heart sounds. This
model is defined by M as the mass, K as the spring stiffness coefficient, and C as the
damping coefficient of the damper. By designating the heart sound recorded by the
stethoscope as the input signal X(t), the output response Y (t) of the SDOF model is
given by the following differential equation [27]:

MŸ (t) + CẎ (t) +KY (t) = X(t) (11)

This equation can be written as:
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Ÿ (t) + 2ωζẎ (t) + ω2ζ2Y (t) = X(t) (12)

With the signal X(t) = ± |X(t)/M |, the angular resonance frequency ω =
√

K/M

(rad/s), and the damping ratio parameter ζ = C/2
√
MK × 100 (%), the appropriate

selection of ω and ζ is crucial for extracting heart sound features using an SDOF model.
In the study [27], the authors fixed ω a value of 62.832 rad/s (10 Hz) and ζ a value of
70.7% to analyze heart sounds within a specific frequency range and with a high damping
level.

2.5. Multi-scale product envelope. The ability of wavelets to analyze the local regu-
larity of a function is a fundamental property that makes them a powerful and versatile
tool in many scientific and engineering fields. The relationship established by Meyer et
al. between the decay of wavelet coefficients and Lipschitz regularity provides a strong
theoretical foundation for numerous practical applications [28].

A function f is said to be uniformly Lipschitz of order α ≤ r over an interval [a, b], and
is defined as:

|Wf,j(x)| = K2jα (13)

Where Wf,j represents the wavelet coefficient of the function f(x) at scale j.
Multiresolution analysis provides a powerful tool for separating the regular components

of a signal from background noise by leveraging the different behaviors of these two
types of signals across various scales. The increasing distance between the signal and
noise with scale is a key characteristic that facilitates the detection and characterization
of cardiac signals, particularly the Phonocardiogram (PCG), and aims to highlight the
main components of the PCG signal (S1 and S2). The discrete wavelet transform of
the pulmonary signal is computed using the Symlet5 mother wavelet [29]. This process
involves decomposing the signal into different scales (or detail levels) and computing the
corresponding wavelet coefficients. These coefficients represent the signal’s energy at each
scale and position.

The wavelet coefficient product is a powerful technique that exploits redundancy across
scales to enhance certain signal properties. It is given by:

Pj(n) =

j∏
i=1

Wi (f(n)) (14)

With Wi representing the wavelet coefficient at scale i, and the decomposition level j
is fixed at 3 to extract the key features of the PCG signal f(n). The signal obtained
after the multiscale product of the wavelet coefficients is then filtered using a 5th-order
Butterworth low-pass filter with a cutoff frequency of 20 Hz.

3. Implementation of the Proposed Methods. The localization of the S1 and S2
heart sounds in PCG signals is a fundamental step in automated cardiac signal analysis.
This study investigates five envelope extraction methods applied to signals from the PAS-
CAL database, with a focus on evaluating their robustness under noisy conditions. All
signal processing was performed using MATLAB R2022a on a system equipped with an
Intel Core i7 processor (8 cores), 32 GB of RAM, and running Windows 10 (64-bit). The
PCG signals were sampled at 2 kHz.

All PCG signals were filtered using a 4th-order Butterworth low-pass filter with a cutoff
frequency of 195 Hz to eliminate high-frequency components. Subsequently, the signal
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was normalized to unit variance, as described by Equation (1), ensuring standardized
amplitude while preserving temporal and spectral characteristics.

The evaluation was carried out using the PASCAL Heart Sound Database, which con-
tains 176 recordings for segmentation and 656 recordings for classification. Signal dura-
tions range from 1 to 30 seconds and encompass normal, pathological, and noisy cases. To
ensure the reproducibility of the study, the main implementation steps for each envelope
extraction method are described in detail below.

a) Shannon Energy envelope algorithm
The Shannon envelope method is based on an estimation of the energy of the normalized

PCG signal, which is then transformed to emphasize its most prominent components. The
process begins with the computation of the instantaneous energy by squaring each sample
of the signal (Equation 1). This energy is subsequently transformed using the Shannon
energy formulation, where each energy value is multiplied by the negative logarithm of
itself (Equation 2). This transformation enhances high-energy peaks while suppressing
low-intensity regions. Finally, a moving average is applied using a 0.02-second rectangular
window (corresponding to 40 samples at a 2 kHz sampling rate), with 50% overlap between
frames, to smooth the resulting signal and generate a clear and informative temporal
envelope (Equations 3 and 4).

Figure 3 shows a typical result obtained using Shannon envelope extraction applied to
a PCG signal. The figure highlights the envelope of the normalized signal, with distinct
peaks corresponding to the S1 and S2 heart sounds.

Figure 3. Shannon envelope extraction

b) Hilbert envelope algorithm
The Hilbert envelope method is based on the use of the analytic signal Sa(t) obtained

by applying the Hilbert transform (Equation 6). This operation constructs a complex
signal whose real part corresponds to the normalised PCG signal and whose imaginary
part is its Hilbert transform (Equation 7). The analytic signal effectively captures the
amplitude variations of the cardiac signal. The envelope is then derived by calculating
the modulus of this complex signal, which corresponds to the instantaneous amplitude
of the original signal (Equation 8). To improve the clarity of the envelope and suppress
high frequency noise, a low pass filter is applied using a 5th order Butterworth filter with
a cut-off frequency set at 20 Hz. This approach results in a smooth and well localised
envelope that accurately highlights cardiac acoustic events (see figure 4).

c) Shannon Entropy envelope algorithm
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Figure 4. Hilbert envelope extraction

The Shannon entropy method uses entropy as a measure of local complexity within
the normalised PCG signal (Equation 9) to detect cardiac events. The signal is first di-
vided into segments of 50 samples, with 50% overlap between adjacent windows. For each
segment, the probability density function of the signal amplitudes is estimated using a
Gaussian kernel with bandwidth set to the local standard deviation of the PCG signal
(Equation 10). Based on this estimate, the Shannon entropy is calculated to quantify
the degree of disorder within each segment. An adaptive threshold, defined as the mean
entropy calculated over the entire signal, is then used to identify segments containing rel-
evant information. This approach is particularly effective in emphasizing key heart sound
components. Figure 5 shows the input PCG signal along with its corresponding envelope
extracted using the Shannon entropy method. This approach effectively highlights the S1
and S2 heart sounds by enhancing their temporal contrast and attenuating background
noise.

Figure 5. Entropy envelope extraction

d) Cadiac sound characteristic waveform envelope algorithm
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The Cardiac Sound Characteristic Waveform (CSCW) method is based on a dynamic
modeling approach using a Single-Degree-of-Freedom (SDOF) system applied to a pre-
processed cardiac signal. Initially, the signal is normalized to its maximum absolute
amplitude. This preprocessed signal, denoted as X(t) is subsequently used as the input
to an SDOF system modeled by a classical differential equation, where the output Y (t)
represents the heart’s response to the excitation. This response is then corrected for any
temporal delay by means of cross-correlation, allowing accurate alignment of the cardiac
events in time. The corrected output signal, referred to as CSCW, forms a smoothed and
noise robust envelope, clearly highlighting the first (S1) and second (S2) heart sounds.
The corresponding figure 6 illustrates the entire process, showing sequentially: (1) the
normalized signal, (2) the uncorrected SDOF system response, and (3) the final CSCW
envelope, effectively demonstrating the method’s capability to extract relevant cardiac
features.

Figure 6. CSCW envelope extraction

e) Multi-Scale Product envelope algorithm
The multi-scale product envelope method is a wavelet based technique designed to

highlight the salient components of a phonocardiogram (PCG) signal, particularly the
first (S1) and second (S2) heart sounds. This method leverages the redundancy and
correlation of wavelet coefficients across multiple decomposition levels to amplify relevant
features and suppress background noise.

The signal is first decomposed using a Discrete Wavelet Transform (DWT) commonly
with the Symlet5 wavelet up to a predefined level (e.g., level 3). At each level j, the
detail coefficients dj(n) are extracted. The multi-scale product is then computed as the
pointwise multiplication of detail coefficients across adjacent levels (see Equation 14).

This operation emphasizes structures (such as S1 and S2) that persist across scales while
attenuating uncorrelated noise. To further enhance the signal, the result is first smoothed
using a Kalman filter [30], which provides adaptive noise reduction by optimally estimating
the signal based on prior observations. This is followed by a low-pass Butterworth filter
(commonly 5th-order with a cutoff frequency of 20 Hz) to ensure a clean and continuous
envelope of the PCG signal. This combined approach has proven effective for denoising
and enhancing cardiac events, particularly in noisy conditions, due to its multiresolution
and adaptive nature.
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Figure 7 illustrates the input PCG signal and its corresponding Multi-Scale Product en-
velope. Subfigure (a) shows the input PCG signal, while subfigure (b) shows the envelope
extracted using the multi-scale wavelet product technique. This method effectively high-
lights the S1 and S2 heart sounds by enhancing their temporal contrast and suppressing
background noise components.

Figure 7. Multi-scale product envelope extraction

4. Evaluation criteria. The performance of PCG envelope extraction methods for lo-
cating S1 and S2 heart sounds is generally measured using the following parameters:

• Sensitivity Indicates the ability of the method to correctly detect S1 and S2 heart
sounds. It is calculated as:

Sensitivity =
TP

TP + FN
(15)

Where TP is the number of true positives (sounds detected correctly) and FN is the
number of false negatives (sounds not detected).

• Positive predictive value (PPV or accuracy): Measures the proportion of correct
detections among those identified as heart sounds. It is defined by:

PPV =
TP

TP + FP
(16)

With FP : Number of false detections (sounds wrongly detected).

• Positive Predictive Value (PPV), used here to deduce the false positive rate (FPR)
via the relation:

FPR = 1− PPV

100
(17)

• Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC), which
plots sensitivity (Se) as a function of the false positive rate (FPR). It is calculated
using the following integral:

AUC =

∫ 1

0

Se(FPR)d(FPR) (18)

Where:
- Se(FPR) is the sensitivity function as a function of the false positive rate.
- The ROC curve plots sensitivity (Se) against the false positive rate (FPR) for different
decision thresholds.
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The performance of the five envelope extraction methods is evaluated on a real dataset
containing both normal and abnormal signals, with average signal-to-noise ratio (SNR) of
approximately 15 dB. To simulate noisy acquisition conditions, Gaussian noise is added
to achieve SNR levels of 5 dB and 0 dB. Each method is then tested at these different
noise levels, and the results are compared to analyze their robustness and effectiveness in
the presence of perturbations.

5. Results and discussions. Our comparative study is based on the Pascal database,
which includes a total of 140 audio recordings. Among them, 25 correspond to normal
heart sounds, 40 to normal asfounds affected by noise, and 75 to recordings of cardiac
pathologies exhibiting systolic murmurs and other cardiac abnormalities. This distribu-
tion allows us to accurately assess the performance of the analysis methods applied to
both normal and pathological cardiac signals.

Figures 8 and 9 show a comparative analysis of normal and pathological (late systolic
murmur) heart sounds, respectively, along with their corresponding envelope representa-
tions obtained using different extraction methods. In both figures, sub-figure (b) repre-
sents the envelope extracted using Shannon energy. For the normal heart sound (Figure
8.b), the S1 and S2 components are clearly distinguishable, demonstrating the effective-
ness of the method in delineating primary heart sound events, despite the relatively broad
envelope. In contrast, the pathological signal (Figure 9.b) features a late systolic mur-
mur located after S2 and before the subsequent S1, which is effectively detected by the
Shannon-based envelope. Although the murmur has a more irregular and noisy struc-
ture compared to normal heart sounds, the Shannon energy method is able to highlight
these abnormal components, demonstrating its potential for characterizing pathological
patterns.

The Shannon entropy, shown in Figures 8.c and 9.c for the normal and pathological
cases respectively, provides improved localisation of the S1 and S2 heart sounds in the
normal signal compared to the standard Shannon energy method. In the pathological
case (Figure 9.c), which includes a late systolic murmur, the entropy based envelope
shows improved sensitivity in detecting both the primary heart sounds and the murmur
components. This suggests that the Shannon entropy approach provides a more refined
extraction of temporal features than the envelope obtained using Shannon energy.

The envelopes derived using the Hilbert transform are shown in Figures 8.d and 9.d
for the normal and pathological cases respectively. In the normal case (Figure 8.d), the
envelope shows relatively thick curves with clear and well defined peaks corresponding to
the S1 and S2 heart sounds. In contrast, the pathological case with a late systolic murmur
(Figure 9.d) presents a noisier envelope, especially in the segment after S2 and before the
following S1, where murmur components are present. Compared to the envelopes obtained
using Shannon entropy, those derived from the Hilbert transform appear slightly thicker
and more affected by noise, especially in the pathological case, indicating a reduced ability
to isolate finer acoustic details.

The envelope representations obtained using the Cardiac Sound Characteristic Wave-
form (CSCW) method are presented in Figures 8.e and 9.e for the normal and pathological
cases, respectively. In the normal case (Figure 8.e), the CSCW approach enables more
precise and well localized extraction of the S1 and S2 sounds compared to other methods.
For the pathological signal with a late systolic murmur (Figure 9.e), the envelope appears
less noisy than that produced by the Hilbert transform, particularly in the murmur region
following S2.

These observations suggest that CSCW provides a cleaner and more structured enve-
lope, highlighting its robustness in both normal and pathological conditions.
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Figures 8.f and 9.f show the envelope results obtained using the multiscale product
method for normal and pathological heart sounds, respectively. In both cases, the resulting
envelopes show smoother and more uniform curves compared to the raw signals, improving
the clarity and readability of the heart sound segmentation. In the normal case, the
S1 and S2 components are clearly represented with minimal noise. Similarly, in the
pathological case, the method effectively suppresses background noise while preserving the
characteristics of the late systolic murmur between S2 and the following S1. Compared
to other techniques such as Shannon energy, Shannon entropy, Hilbert transform and
CSCW, the multiscale product method produces cleaner and more consistent envelopes,
making it particularly suitable for reliable heart sound analysis.

Figure 8. a) Normal PCG Signal, envelope extraction of: b) Shannon
energy, c) Shannon entropy, d) Hilbert transform, e) CSCW, f) Multi-scale
product
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Figure 9. a) Heart murmur, envelope extraction of: b) Shannon energy
c) Entropy d) Hilbert transform e) CSCW f) Multi-scale product

Figures 10 and 11 illustrate the effect of additive Gaussian noise on normal PCG signals
at two different signal-to-noise ratio (SNR) levels: 0 dB and 5 dB, respectively. In the
case of 5dB SNR (Figure 11), the analysis shows that all five envelope extraction methods,
Shannon energy, Shannon entropy, Hilbert transform, CSCW and multiscale product, are
able to correctly localise S1 and S2 heart sounds despite the presence of moderate noise.
This is an indication of a certain robustness of the methods under conditions of relatively
low noise.

Among the techniques evaluated, the multi-scale product method provides the most
accurate localisation of S1 and S2 heart sounds, outperforming both the Shannon en-
tropy and Hilbert transform approaches. The CSCW method also shows relatively high
robustness and effectiveness. When the SNR is reduced to 0 dB (Figure 10), the analysis
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Figure 10. a) PCG signal with Added Gaussian noise (0 dB), Envelope
extraction of: b) Shannon energy c) Entropy d) Hilbert transform e) CSCW
f) Multi-scale product

shows that the Shannon energy and Hilbert transform methods are significantly affected
by noise, making it difficult to accurately identify the S1 and S2 components. In contrast,
the envelopes obtained using Shannon entropy (Figure 10.c) and CSCW (Figure 10.e)
still allow reasonable segmentation of the heart sounds. Notably, the envelope extracted
using the multi-scale product method (Figure 10.f) maintains a high level of accuracy
in localising the S1 and S2 events even under severe noise conditions, highlighting its
superior noise resilience.

Table 1 presents the sensitivity and positive predictive value (PPV) measurements per-
formed on the entire dataset, comprising 140 heart sounds, for all the methods previously
introduced. The row-by-row analysis of table 1 shows that the sensitivity and positive
predictive value (PPV) of the tested methods are high when the SNR is 15 dB without
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Figure 11. a) PCG signal with Added Gaussian noise (5 dB), envelope
extraction of: b) Shannon energy c) Entropy d) Hilbert transform e) CSCW
f) Multi-scale product

added noise. However, these performances significantly decrease when the SNR drops
from 5 dB to 0 dB. The Shannon method offers good performance, with a sensitivity of
88% and a positive predictive value (PPV) of 90% when the signal-to-noise ratio (SNR) is
15 dB, in the absence of additional Gaussian noise. Even in the presence of higher noise
levels, with an SNR of 5 dB, it maintains acceptable performance, achieving a sensitivity
of 86% and a PPV of 85%. However, when the SNR decreases to 0 dB, its effectiveness
significantly declines, with both sensitivity and PPV reduced to 76%. Furthermore, time-
domain analysis methods, particularly the Shannon approach, prove to be highly sensitive
to noise, which limits their reliability in heavily disturbed environments.
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Table 1. Performance of five Heart Sound localization methods: Sensitiv-
ity and Positive Predictive Value across three noise levels

Methods
SNR=15 dB SNR=5 dB SNR=0 dB

Sens (%) PPV(%) Sens (%) PPV(%) Sens (%) PPV(%)

Shannon 88 90 86 85 76 76

Entropy 91 90 89 87 84 81

Hilbert 89 90 85 85 78 77

CSCW 94 96 91 90 87 86

Multi-scale 96 98 92 96 89 88

Methods based on Shannon entropy and the Hilbert transform exhibit similar perfor-
mance to the Shannon method when the signal-to-noise ratio (SNR) is between 15 dB
and 5 dB.

Shannon entropy provides good results, with a sensitivity of 84% and a positive pre-
dictive value (PPV) of 81%. Additionally, the Hilbert-based method demonstrates com-
parable performance to the Shannon method at an SNR of 0 dB.

The characteristic waveform-based approach, which relies on frequency transformations,
exhibits superior performance when the signal-to-noise ratio (SNR) is 0 dB, achieving a
sensitivity of 94% and a PPV of 96%. This method proves to be robust against noise,
particularly at an SNR of 5 dB, where it reaches a sensitivity of 91% and a PPV of 90%.

Although its performance slightly decreases at an SNR of 0 dB, it remains acceptable,
with a sensitivity of 87% and a PPV of 86%.

Among the various approaches studied, the multi-scale product method stands out for
its exceptional performance, surpassing those of Shannon, Shannon entropy, the Hilbert
transform and the cardiac sound characteristic waveform method. This technique proves
to be particularly robust against noise, maintaining high accuracy even at low SNR levels.

For an SNR of 15 dB, it achieves a sensitivity of 96% and a positive predictive value
(PPV) of 98%, confirming its effectiveness under favorable conditions. Even when the
SNR is reduced to 5 dB, its performance remains superior, with a sensitivity of 92% and
a PPV of 96%.

At an SNR of 0 dB, although the performance slightly decreases, it remains competitive
compared to other methods, with a sensitivity of 89% and a PPV of 88%.

One of the key strengths of this method lies in its time-frequency approach, which is
based on the use of the Symlet 5 wavelet. This function enables a more refined signal
analysis by effectively decomposing frequency components, thereby enhancing detection
and robustness against noise. Thanks to this combination, the multi-scale product method
emerges as a particularly reliable and high-performance solution, outperforming previously
mentioned methods, especially in highly noisy environments.

Figure 12 and Table 2 comprehensively illustrate the performance of various methods
for extracting the S1 and S2 envelopes from the PCG signal in the presence of noise.
Based on the ROC curves shown in Figure 12, it is evident that at a clinical SNR of 15
dB, all methods yield promising results with curves that approach the upper left corner,
indicating high sensitivity and a low false positive rate.

Table 2 quantifies these performances, showing, for example, AUC values of approx-
imately 0.97 for the Multi-scale Product method and about 0.95 for the cardiac sound
characteristic waveform method, compared to around 0.89 for Shannon, 0.905 for En-
tropy, and 0.895 for Hilbert. As the noise level increases (with SNR decreasing to 5 dB
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Figure 12. Variation of the ROC curve with added white noise

and then 0 dB), the ROC curves degrade and shift toward higher FPR values, leading to
a reduction in AUC, the Multi-scale Product method declines to roughly 0.94 and then
to 0.885, while the other methods experience more pronounced decreases (with Shan-
non dropping to about 0.855 and then 0.76). These observations suggest that although
all methods perform competitively under low-noise conditions, the multi-scale Product
and Characteristic Waveform methods exhibit superior robustness in noisy environments,
making them the preferred choices for reliable cardiac sound extraction.

Table 2. Comparison of Performance Metrics (FPR and AUC) of Methods
at Different SNR Levels

Methods
SNR=15 dB SNR=5 dB SNR=0 dB

FPR(%) AUC(%) FPR (%) AUC(%) FPR (%) AUC(%)

Shannon 10 89 15 85.5 24 76

Entropy 10 90.5 13 88 19 82.5

Hilbert 10 89.5 15 85 23 77.5

CSCW 4 95 10 90.5 14 86.5

Multi-scale 2 97 4 94 12 88.5
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6. Conclusion. In this comparative study, we analyzed several envelope extraction meth-
ods for the PCG (Phonocardiogram) signal to localize heart sounds S1 and S2, using the
Pascal database. Five approaches were evaluated: the Shannon method, Shannon en-
tropy, the Hilbert transform, the cardiac sound characteristic waveform method, and the
multi-scale product method.

The results show that the multi-scale product method is the most effective, achieving
high sensitivity (Se), positive predictive value (PPV), and an area under the ROC curve
(AUC) of 0.973, confirming its robustness even in the presence of significant noise. The
cardiac sound characteristic waveform method follows closely, with an AUC of 0.950,
while the Shannon entropy and Hilbert transform methods exhibit moderate performance
(AUC of 0.867 and 0.846, respectively). Finally, the Shannon method is the least effective,
with an AUC of 0.832, indicating more uncertain classification and greater sensitivity to
noise. This study highlights the importance of the choice of envelope extraction method to
ensure reliable detection of S1 and S2 heart sounds, essential for automatic PCG analysis
and screening for cardiovascular pathologies.
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