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ABSTRACT. This paper proposes a robust method for the application of music genre clas-
sification. The proposed method first uses moving average filter and Butterworth low-pass
filter to partly eliminate the effect of fluctuation in short-term signal. Then, it makes
use of the sparse representation based classification (SRC) and wavelet packet trans-
form (WPT) with discrete trigonometric transforms (DTTs) to accurately classify and
increase classification performance. Sparse representation based classification has been
widely used for music genre classification via the primal-dual algorithm for linear pro-
gramming to search the most compact representation of the signal in the digital domain.
To investigate its performance, the proposed method is validated by comparison with vari-
ous discrete cosine transform types and classification methods. FExperimental results show
that the accuracy of DCT-II orthogonal is clearly better than that of DCT-II non orthog-
onal via SRC classifier. Specifically, the best classification result with the odd orthogonal
DCT-II is 89.7%, which is significantly better than the 86.69% accuracy rate obtained by
the even orthogonal DCT-II both on the ISMIR 2004 Genre dataset. It is shown that the
proposed method greatly improves the performances of previous music genre classification
algorithms.

Keywords: Best basis algorithm, Wavelet packet transform, Music genre classifica-
tion, Sparse representation based classification.

1. Introduction. Due to the rapid growth and development of digital music content, automatic music
genre classification has been a challenging task in the filed of Music Information Retrieval (MIR) [1]. Since
a typical multimedia database often contains millions of audio clips, it is very difficult to manage such a
large music database. It follows from previous researches [2][3] that audio signal usually carries evidence
information in its genre. Hence the need to automatically recognize to which class a musical genre
belong makes the automatic analysis of music signals and content-based musical information retrieval
(MIR) an emerging research area. In general, an automatic music analysis is to make use of several
characteristics that can capture the information about music content. Among these characteristics,
music genre information is regarded as a principal one. Musical genres are the main top-level descriptors
used by music dealers and librarians to organize their music collections [3]. It can be used to describe
music as well as to structure music database [4]. However, musical genres have no strict definitions, as
their boundaries vary with the public, marketing, historical, and cultural factors. Another problem is
that most of current musical genre annotation is still performed manually [3][5]. The automatic musical
genre classification is still one of the most important parts of MIR [1]. Many researchers have studied
or proposed methods capable of automatically extracting music information by using a computational
approach to structure and organize the musical genres [6].

Most of the music genre classification algorithms resort to the so-called bag-of-features approach [2],
which models the audio signals via the long-term statistical distribution of their local spectral features.
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In general, the most popular features used in recent studies could be roughly categorized into short-term
and long-term features [3]. The short-term features, which can represent the spectrum of music, include
spectral centroid, spectral roll-off, mel-frequency cepstral coefficient (MFCC), and etc. The long-term
features, which can characterize either the variation of spectral shape or beat information, include low-
energy [4], and beat histogram, and etc [3][7]. Most music classification systems so far are based on
pattern recognition techniques to recognize the classes of music genre defined in the taxonomy. Once
the features are extracted from an audio clip, a classifier will be employed to determine the genre of
the given an audio clip. Several statistical techniques, such as neural networks, hidden Markov models
(HMM), Gaussian mixture models (GMM), K-nearest neighbors (KNN) [3], sparse representation based
classification (SRC), and support vector machines (SVM), have been employed for automatic musical
genre classification.

On the other hand, various content-based analysis methods of music signal are proposed for music
genre classification. Among these techniques, SRC, which were introduced by Wright et al. in [8], have
been regarded as a new learning algorithm for various applications, such as face recognition [8] and im-
age classification. The sparse representation is computed by the [i-regularized least square method. To
investigate its performance, the proposed method is validated by comparison with various discrete cosine
transform types and classification methods. Experimental results show that the accuracy of DCT- II
orthogonal is clearly better than that of DCT- II non orthogonal via SRC classifier. Specifically, the best
classification result with the DCT- II odd orthogonal is significantly better than the Type II even orthog-
onal on the ISMIR 2004 Genre dataset. By using topology preserving non-negative matrix factorization
(TPNMF) and SRC, instead of the 2D auditory temporal modulations and SRC, Y. Panagakis and C.
Kotropoulos [9] managed to significantly improve the previous work [10] on classification performance.
This paper compares the results of Y. Panagakis and C. Kotropouloss method [9] and builds a more ro-
bust music genre classification system by incorporating additional wavelet packet transform (WPT) with
best cosine transform and the best wavelet packet basis via best basis algorithm (BBA). The application
of a wavelet package transform can generate a wavelet decomposition that offers a richer signal analysis.
The best basis algorithm is obtained by minimizing the Shannon entropy. The method proposed in this
paper uses the Top-Down search strategy with cost function to select the best basis of WPT. In contrast
to the conventional methods, it can be attributed to better feature extraction and classification accuracy.
Experiments are carried out using the ISMIR2004 GENRE database with 6 types of music genres and
about 1458 music clips. Experimental results show that the use of proposed method can obtain significant
improvements in music genre classification accuracy. The average music genre classification accuracy rate
of the proposed method can achieve 89.7%.

The rest of the paper is organized as follows. The proposed music genre classification system is
presented in Sections II, including moving average filter and Butterworth low-pass filter, introduction to
the wavelet package transform, wavelet package analysis with best basis algorithm, feature extraction,
discrete trigonometric transform, and the introduction to the sparse representation based classification.
Experimental results are described in Sections III. Finally, conclusions are given in Sections IV.
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FIGURE 1. The proposed genre classification system calculation flow diagram
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2. Proposed Music Genre Classification System. The proposed genre classification system consists
of three phases: (1) pre-processing phase, (2) feature extraction phase, and (3) the machine learning
phase. The pre-processing phase is composed of moving average filter / butterworth low-pass filter,
frame blocking and window function selection, wavelet package transform with best basis algorithm. The
feature extraction phase consists of fast Fourier transformation (FFT), triangle filters, logarithmic energy
and discrete trigonometric transforms (DTTs). The machine learning phase is composed of 50:50 training
and test set split and classifier. Fig. 1 shows the flow diagram of the proposed genre classification system.
A detailed description of each module will be described below

2.1. Moving average filter and Butterworth low-pass filter. The moving average filter and But-
terworth low-pass filter are the two commonly used methods in the field of digital signal processing.
Butterworth low-pass filter discussed here is determined by the cutoff frequency C and the order of filter
F. There are four examples shown in Fig. 2. The horizontal axis shows the normalized frequency (For
example, assume that data sampling rate is 44100 Hz, design a 3th-order low-pass Butterworth filter with
cutoff frequency of 8000 Hz, which corresponds to a normalized value of 0.3628), whereas the other axe
indicates the magnitude (dB). This paper also applied MF-point moving average filter to an audio sound
to reduce random noise while retaining a sharp step response. The MF-point moving average filter is
depicted in Fig. 3
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FIGURE 2. Butterworth low-pass filter with Cutoff frequency (C=8000,
12000, 16000 and 20000 Hz)

2.2. Introduction to the Wavelet Package Transform. A wavelet packet transform (WPT), which
was first introduced by Coifman et al. [11], is shown in Fig. 4, where h(k) and g(k) are the analysis
low-pass and high-pass filters, respectively. In addition, the symbol | 2 denotes the down-sampling by 2.
The equations of WPT filtering operations is described as

a; (k) = h(n = 2k)a;41(n) (1)
d; (k) = g(n —2k)a;41(n) (2)

where a; (k) and d; (k) are called the approximation and detail coefficients of the wavelet decomposition
of ,a;11 (n) respectively.
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FIGURE 3. MF-point moving average filter to an audio sound (MF =5, MF
=10, MF =20 and MF =40)
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F1GURE 4. Three-level wavelet packet transform.

Since wavelet packet transform is a generalization of the dyadic wavelet transform (DWT), it is regarded
as a more effective tool than the Fourier transform for audio processing. WPT provides good spectral
and temporal resolutions through the filter bank structure in arbitrary regions of the time-frequency
plane. WPT can easily transform discrete signal from the time domain into time frequency domain.
The transformation product is a set of coefficients that represents the spectrum analysis as well as the
spectral behavior of the signal. Therefore, the wavelet package transform is able to provide an optimal
representation for music.
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2.3. Wavelet Package Analysis with Best Basis Algorithm. The basic idea of wavelet package
transform (WPT) is to concentrate energy of signal into part of trees, so it is important to find the
best wavelet packet basis via best basis algorithm (BBA). An example of the wavelet packet tree with
three-level decomposition is shown in Fig. 5.
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F1GURE 5. Three-level Wavelet Packet Tree Decomposition

The best basis algorithm is one of the important issue of the wavelet packet analysis. The basic idea of
optimal wavelet packet decomposition based on cost function, namely, the Shannon entropy, is introduced
to find the best wavelet packet (WP) base in music genre classification. Based on the above mentioned
observations, the optimal basis is picked up by optimizing the information cost function. The algorithm
proposed in this paper uses the top-down tree search strategy with cost function to select the best basis
using basis selection method [11], [12]. This could be done by adopting Shannon entropy, a new method
based on BBA is presented to minimizing the information cost function.
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FIGURE 6. Six types of entropy were invited for evaluation.

A one dimension orthogonal wavelet packet base can be described by a binary-tree with the root node
Ua , the nodes without any child node are called the leaf nodes, and except the leaf nodes, each node U s
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has two child Ufﬂl and U Jz_ﬁfl. The binary-tree structure assures a simple algorithm for selecting the best
wavelet packet base. For a given music signal, one can perform J-level full wavelet packet decomposition,
and the wavelet packet coeflicients at the node U;* can be represented as

2n+1
Up = U o UG 3)
where n =1,---,27 —1and j =0,1,---,J . For each node, its cost function can be calculated by
N N

H = 3" Plai) - 1[P(as) = = Y Plas)log, P(a) @)
i=1 i=1
I[P(a;)] = —logy P(a;) (5)
where {a;}, 1 < < N ,defined to be the histogram for the intensity music and is the number of bins
in the histogram.

The entropy discussed here is implemented by using a two stage process. First, a histogram is estimated
and thereafter the entropy could be calculated. Six types of entropy were used for evaluation, which are
listed in Fig. 6. This collection of entropy value is designed roughly to provide ideas and templates to
selecting the "best basis” for decisions.

In the selection method, the entropy value based on the Bottom-up binary tree scheme is used for
further comparison. Fig. 7 shows the entropy value at each node of a three-level wavelet packet tree
decomposition and the optimal base is indicated. From Fig. 7 we know that the best basis algorithm can
be implemented by an optimal base procedure. Therefore, the optimal base procedure is shown as below.

Algorithm for optimal base procedure

1. Determine the wavelet decomposition level j(j = 1,2, ...)

2. Compute entropy value of each node by histogram technique in completely

decomposition tree.

3. Compare E(parent);(j =1,2,..) and E(chold);,,(j = 1,2,...). If
E(chold);,q + E(chold);,, < E(parent);, then E(chold) will be considered as a leaf

node of a tree.

4. Repeat the steps 2-3 for each E(chold) considering it as current node. Otherwise

E(parent) acts as a leaf node of a tree.

Notice that H is determined according to the input music signals. The entropy in music signals will
cause low entropy when less information it contains. On the contrary, bigger entropy mean more infor-
mation. Another interesting observation is that the high entropy is associated with increasing number of
wavelet packet decomposition. Specifically, the proposed method using the wavelet packet decomposition
performs best at depth 1 with db8 wavelet packets. As a rule of thumb, this paper concludes that the
entropy is close to zero can lead to poor performance in music classification.

2.4. Feature Extraction. Feature selection is one of the important and frequently used techniques in
audio processing for music content analysis. These features should reflect the acoustic characteristics of
different kinds of music signals. Among these features, mel-frequency cepstral coeflicient (MFCC) and
log energy are commonly used for speech recognition, music classification, and other audio/speech related
applications [13-14]. The detailed procedure is given in the following.

1) MFCC: Let s(n),n = 1,.., N, be a music signal frame that is pre-emphasized to increase the acoustic
power at higher frequencies. In order to reduce the effects of spectral leakage and to minimize waveform
distortion caused by ringing effect, the proposed method multiplies each frame by a window. The window
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F1GURE 7. The entropy value of the three-level wavelet packet tree decom-
position at each node is given and the optimal base is indicated
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Fi1GUrE 8. Comparison of 12 window functions of Behaviors

discussed here is implemented via a series of cosine function. As shown in Fig. 8, 12 window functions
have their own unique characteristic. Each of these characteristics has various amplitudes and shapes
[15]. Usually, there are two parameters that could control the trade-off between main-lobe width and
side-lobe area. Ideally, a windowing function would produce a narrow main-lobe and low level side-lobes.
In other words, as the main-lobe narrows, the frequency resolution increases. Finally, the time domain
signal, s(n), is transferred into frequency domain by an M point discrete Fourier transform (DFT). The
resulting energy spectrum can be represented as

M 2

3 s(n) - o(FH) (6)
n=1

where 1 < k < M. Then, according to the previous psychophysical studies, human perception of the
frequency content of sounds follows a subjectively defined nonlinear scale called the "mel” scale [16]. It
can be defined as,

[S(k)? =

_ f
Jmer = 112511 + =25) (7)

where f is the actual frequency in Hz. Next, the triangular filter banks, whose frequency bands are
linearly spaced in the mel scale defined in (7), are imposed on the spectrum obtained in (6). The outputs

{e (i)ileQ} of the mel-scaled band-pass filters can be calculated by a weighted summation between

respective filter response H; (k),i = 1°Q, Q is the number of triangular band-pass filters in the bank
and the energy spectrum |S (k)|* as

M/2

e(i) = Y |S(k)[* - Hy(k) (8)
k=1

where k denotes the coefficient index in the M-point DFT and Hi(k) is defined as
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0, for k< fb(i—l)

(k—=foii—1))
(fb<i)fb},)<,;l_)j)a for fb(iq) <k< fb(i)

(focir1) —k)
ma for  fuuy <k < fout

0, for k> fb(i+1)
In (9), Jv(iy are the boundary points of the filters and are depended on the sampling frequency Fi and
the number of points M in DFT. That is

o = (37 - Fs (S ) et i) = St i) ) (10)

Here, fiow and frign are respectively the low and high boundary frequencies for the entire filter bank.
f;él is the inverse to (7) transformation, formulated as

Hz(k) = (9)

Smel
=

fol =100 [e(m”> - 1} (11)
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FIGURE 9. Original (upper one) and normalized (lower one) mel-space tri-
angular filter bank (Q=32)

Fig. 9 shows the original as well as normalized mel space triangular filter bank with Q = 32. Finally,
discrete cosine transform (DCT) is taken on the log filter bank energies {log [e (z)]}?:1 and the MFCC
coefficients C,,, can be written as,

Q-1
C’m:AZIOg[e(p—i—l)-Tdct;form:0,~-,L—l (12)

p=0
where L is the desired number of mel-scale cepstral coefficients, A is the scale factor of the discrete
cosine transform, and Ty, is a trigonometric function (i.e., sin(x) and cos(x)). In Section II-E, this paper
describes the four common kernel matrixes for the discrete cosine transform. Here A, and Ty.; are also
given in Section II-E. 2) log energy: The log energy is usually cooperated with MFCC for applications
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of speaker recognition and audio segmentations [17]. The definition of log energy used in this paper is
defined in (13).

E =log (Z s[n]2> (13)

n=0

where N is the number of music samples in a frame. Comparing Fig. 10(a)-(e), one can find that the
amplitude distribution of different triangular filter banks can be visually differentiated. In this experi-
ment, five set of triangular filter banks (Q) are estimated and then compared with the signal components
which are processed by the discrete Fourier transform (DFT). It is clear that the amplitude envelope
describes an envelope of the spectrum in the frequency domain. Note that MFCCs were calculated with
Q triangular filters (20, 50, 100, etc.). Thus, the performance using triangular filter bank with Q = 300
would outperform their corresponding performance using triangular filter bank with Q = 20 to 200.
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F1GURE 10. Comparison of five set of triangular filter banks (Q) for esti-

mating the signal components processed by the discrete Fourier transform
(DFT).

2.5. Discrete Trigonometric Transform. The discrete cosine transform (DCT) is a powerful tech-
nique which can be used to convert a signal into elementary frequency components. The discrete cosine
transform discussed here is implemented via the 4 members of the family of discrete trigonometric trans-
forms (DTTs). Among these members, DCT-II, which were categorized by Wang and are tabulated in
[18]-[20], have been played an important role in audio and speech processing. In contrast with conven-
tional methods using discrete Fourier transform (DFT), discrete Hartley transform (DHT) and discrete
wavelet transform (DWT) calculated from diagonal matrices have left- and right-multiply the DCT kernel
matrix [21], respectively. There are four common kernel matrixes Tyt = {Xnon_e, Xnon_o, X., X,}
for the discrete cosine transform, which can be computed as follow:
1) Even extension of discrete cosine transform matrix using non-orthogonal and A=2.

2p+1 T
KXnone = Acos : T 14
; cos [m ( 5 ) Q] (14)
2) Odd extension of discrete cosine transform matrix using non-orthogonal and A=2
2p+1
Xpon.o = Acos [m. <Qgt 1) -w} R (15)

where R is right diagonal matrices. In order to amplify the signal components, function (16) and (17)
can be obtained by modifying scale factor on the DCT kernel matrix as follow:
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3) Even extension of discrete cosine transform matrix using orthogonal and A = , /%.

2p+1
X, = AL cos [m( p; )g} (16)
4) Odd extension of discrete cosine transform matrix using orthogonal and A = 2//2Q — 1
2p+1
X, = ALcos [m~(zgtl>~w}R (17)

Here, L and R are left and right diagonal matrices can be defined as follow:

l(] 0 0 To 0 0
0 Iy -~~~ 0 0 r -+ 0

L=1{. . and R=| . . . (18)
0 0o --- 1271 0 0 R Y

where subscript z is number of filters in filter bank. The only thing to note here is, the scaling factors
lp and r,_; are equal to 1/v/2

2.6. Introduction to the Sparse Representation based Classification. Consider a matrix of
training samples, e.g., A = [A1, Ag, -, Ax] consists of the audio chips from N classes, where A; =
[@i 1,052, - a;n;] € R™*™. For a test sample y € R™, the problem of spares representation is to find a

T
column vector ¢; = [¢;1,¢i2,** ,Cin;]  such that
Uz
Y= E 4 jCij = Aic (19)
j=1

for some scalars ¢; ; € R,j =1,2,---n;.
Then the linear representation of y can be rewritten in terms of all training samples as

y = Ac (20)

where ¢ =1[0,---,0,¢,1,¢i 2, ,Cin;» 0, ,O]T € R"™ is a coefficients vector whose elements are zero
except those associated with the i-th class.

Due to the system y=Ac is typically underdetermined, therefore its solution is not unique. The
following [g-optimization problem can be resolved by choosing the minimum [y-norm solution. The
problem of sparse representation can be converted into

¢o = arg(min||c[|,) subject to Ac =y (21)

where |||, denotes the lp-norm of a vector, which counts the number of nonzero entries in a vector.
The problem of finding the solution to sparse representation is NP-hard due to its nature of combinational
optimization. The above linear programming problem can be solved in [22]. Tt has been proved that if
the solution ¢& is sparse enough, then the solution of the lp-minimization problem (21) is equal to the
solution to the following -/; minimization problem:

¢ = arg(min ||c||,) subject to Ac =y (22)

Or alternatively, solve

¢é1 = arg(min||c||,) subject to || Az —y||, < e (23)

where the error tolerances € > 0
The [;-minimization algorithm can be implemented by a primal-dual interior point method called
l1-magic [23]. Therefore, the SRC procedure in [8] is shown as below.
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TABLE 1. The ISMIR2004 GENRE database used in the experiments list-
ing classes and number of titles per class

Classes Number of Number of
tracks for training | tracks for testing
Classical 320 320
Electronic 115 114
Jazz/Blues 26 26
Metal/Punk 45 45
Rock/Pop 101 102
World 122 122

Algorithm1. The sparse representation-based
Classification (SRC) Algorithm

1. Input: a matrix of training samples

A=[a, @, a,]eR™ for n classes, a test
sample y € R .
2. Normalize the columns of A to have unit ¢, -norm.
3. Solve the £, -norm minimizaton problem:
o =arg min|cf| subjectto Ac=y
4. Compute the residuals by:

)= ly-48(c.),

for i=1,...,n, where & is the characteristic function

which selects the coefficients associated with the
i-th class.

5.0utput the identity by:
identity(y) = argmin ;(y), where identity function

stands for finding the class label of y.

3. Experimental results.

3.1. Datasets. In the following experiments, a public music database named ISMIR2004 GENRE [24] is
utilized to evaluate classification performances. The ISMIR2004 GENRE database consists of 1458 music
tracks in which 729 music tracks are used for training and the other 729 tracks are applied to testing, the
pieces being unequally distributed over 6 genres, as shown in Table I. The sampling rate of the audio file
is 44.1 kHz with16-bit resolution.

3.2. Classification Results. Fig. 11 shows the average classification accuracy implemented using 12
types of window functions. Based on the above results, the proposed method chooses the function among
the 12 windows to determine the main-lobe width and side-lobe area with empirical analysis. Note that
the triangular (Bartlett) window is applied to minimize the signal discontinuities at the borders of each
frame in this paper. In addition, to investigate the importance of various discrete cosine transform types,
four types of DCT is used for music genre classification and accuracy comparison.

As shown in Fig. 12, the accuracy of Type II orthogonal DCT [19] is clearly better than that of Type
IT non orthogonal DCT [21]. Specifically, the best classification result with the Type II odd orthogonal
DTC is 89.7% , which is significantly better than the 86.69% accuracy rate of the Type II even orthogonal
DTC. Note that [19] and [21] apply the same feature set to achieve music genre classification, but method
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[19] outperforms method [21] by using orthogonal instead of non-orthogonal DTC. However, Type IT even
orthogonal DTC is the most commonly used one.
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FiGUurE 12. Comparison of the importance of various discrete cosine trans-
form for music genre classification

Furthermore, several statistical techniques are tested in order to demonstrate the superiority of the
proposed approach. Four statistical techniques (SVM, SRC, KNN and LDA) are compared over a range
of pre-selected values of the cutoff frequency C and the order of filter F, whereas number of dimensions
L in MFCC varies from 20 to 300. The comparisons of classification accuracy rate on the ISMIR 2004
Genre dataset for various features dimension (20, 50, 100, 200 and 300) as well as different classifiers
(SVM, SRC, KNN and LDA) are shown in Fig. 13 (a)-(d). It is obvious that the proposed method using
SRC classifier is significantly better than the other three methods.

These four figures correspond to the use of different frame sizes FS. (a) FS= 5944.3 ms ( 262144
samples) and overlap= 185.8 ms ( 8192 samples). (b) FS= 2972.2 ms (131072samples) and overlap=
2972.2 ms (131072samples). (c¢) FS= 2972.2 ms (131072samples) and overlap= 1486.1 ms (65536 samples).
(d) FS= 1486.1 ms (65536 samples) and overlap= 1486.1 ms (65536 samples).

It reconfirms the common belief that given the same feature set, the choice of the classifier and
frame size is important. Another interesting observation is that the classification accuracy rate could be
improved when one adopt long-term analysis for audio signals, as shown in Fig. 13 (a).



Robust Music Genre Classification Based on SR and WPT with DTT 79

| -©-LDA =#~KNN =& SVM ¢ SRC|

i i i i 5 i i i i
5%0 50 100 200 300 0 50 100 200 300

Accuracy (%)

(©) Number of dimensions L ()

FiGure 13. Classification accuracy of different features dimension as well
as different classifiers on the ISMIR2004 Genre dataset

TABLE 2. Average classification accuracy using a MF-point moving average filter

C e C C
F 1 3 5 10 F 1 3 5 10
8000 | 87.38 | 87.52 | 87.52 | 87.24 8000 | 86.56 | 87.65 | 87.38 | 87.11
p| 12000 [ 8752 | 87.79 | 87.38 | 87.24 p| 12000 8724 [87.52 |88.20 [87.52
16000 | 8738 | 87.52 | 87.52 | 8834 16000 | 87.93 | 87.11 |87.52 | 87.24
20000 | 87.93 | 88.07 | 87.38 | 87.24 20000 | 87.11 | 88.20 | 87.65 | 87.24
(a) MF=5. (b) ME=10
C C € @
F 1 3 5 10 F 1 3 5 10
8000 | 88.07 | 87.52 | 87.52 | 88.20 8000 | 86.56 | 86.69 | 87.24 | 87.24
p| 12000 | 8820 | 87.52 | 87.38 | 87.52 p| 12000 18615 [87.11 |8642 [86.56
16000 | 8889 | 88.34 | 88.75 | 88.75 16000 | 86.28 | 87.24 | 86.83 | 86.15
20000 | 89.16 | 89.71 | 89.03 | 88.07 20000 | 86.69 | 86.69 | 86.69 | 87.11
(c) MF=20 (d) ME=40

Tableshows the moving average filter MF' of the proposed methods could perform the best result with
MF=20 for the pre-selected values C = 20000 and F = 3. Thus, this paper experiments on the ISMIR 2004
Genre dataset by using 50:50 training and test set split techniques to evaluate various genre classification
systems. The best classification accuracy rate of 89.7% was obtained under the condition that feature
extraction by wavelet package transform and classification by SRC.

Tablecompares our proposed approach with other approaches [2], [10], [25], [26], [27], [28], [29], [30],
[31], [32], [33] on the ISMIR 2004 Genre dataset with the same experimental setup. It is clear that the
achieved classification accuracy rate of 89.7% outperforms all previously reported rates as shown in Table

Finally, Table shows detailed SRC performance in musical genre classification in form of confusion
matrix. The row indexes of the confusion matrix correspond to predicted genre and the column indexes
correspond to the actual genre. One could observe that the diagonal elements present the correctly
classified observations for each case, and the off-diagonal elements show the number of misclassifications.
Note that a perfect matrix only contains numbers in the diagonal.
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TABLE 3. Best results obtained on the ISMIR 2004 Genre classification
contest (50:50 training and test set split)

Authors CA
D. Ellis & B. Whitman 64.00%
T. Lidy & A. Rauber 70.37%
G. Tzanetakis 71.33%
K. West 78.33%

T. Lidy & A. Rauber [26] | 79.70%
I. Panagakis et al. [34] 80.95%

Bergstra et al. [35] 82.30%
Pampalk et al. [36] 82.30%
Holzapfel et al. [37] 83.50%
E. Pampalk 84.07%
Y. Song et al. [29] 84.77%
CRusu [39] 85.50%
Chang-Hsing et al. [32] 86.83%
Our approac 89.71%

Y. Panagakis et al. [10 93.56%
Y. Panagakis et al. [33 94.93%

TABLE 4. Genre confusion matrix on the ISMIR 2004 Genre classification
(50:50 training and test set split)

Classical | Jazz/Blue | Electronic | Rock/Pop | Metal/Punk | World

Classical 320 0 0 0 0 0
Jazz/Blue 0 26 0 0 0 0
Electronic 14 1 70 14 3 12
Rock/Pop 5 1 13 71 3 9
Metal/Punk 0 0 0 0 45 0
World 0 0 0 0 0 122

4. Conclusions. In this paper, sparse representation based classification (SRC) and wavelet packet
transform (WPT) with discrete trigonometric transforms (DTTSs) are applied to the task of music genre
classification. The music genre features used in the proposed method includes MFCC and log energy,
which can represent the time-varying behavior of music. To investigate its performance, the proposed
method is validated by comparison with various discrete cosine transform types and classification methods.
The average music genre classification accuracy rate of the proposed method is 89.7% on the ISMIR2004
Genre dataset. Numerical experiments show that sparse representation approach can match the best
performance achieved by moving average filter, Butterworth low-pass filter, and wavelet packet transform
(WPT) with discrete trigonometric transforms (DTTs). There are two directions that need to be explored
in the future. The first direction is to investigate how to improve the computational efficiency for sparse
representation approach. The second direction of our future work is to investigate how to improve the
accuracy of the average music genre classification.
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