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Abstract. Machine learning, especially neural network algorithm, gets more attention-
s in the last decades. With the in-depth study of intelligence algorithm and network
structure, machine learning is widely used in many aspects, such as data mining, com-
puter vision, data recognition and classification. Because of the nonlinear and complex
characters of target data, the researches above need fairly accurate characteristics space
extracted from the data space. This process relies on machine learning to perform better,
since artificial rules cant obtain the most efficient features. Researchers combine kernel
methods and deep neural network to keep their advantages and make up their defects,
then apply deep kernel learning to improve the algorithm performance in application. In
this paper, we present an overview of the research progress of deep kernel learning and
its applications. We introduce the basic theories and their fusion which form several deep
kernel learning structures to enhance algorithm properties and performance in practice.
Keywords: Kernel method, Deep neural network, Deep kernel learning.

1. Introduction. The essence of machine learning is to find out the accuracy mapping
from the sample space to the feature space, and the following applications rely on the
linearly separable of the features, which means feature extraction is one of the most im-
portant things in learning. One major direction to improve the performance of a feature
extractor is to identify flexible learning models that can discover the nature of various
types of datasets, especially nonlinear datasets, then kernel methods are proposed follow-
ing this direction to bring nonlinear ability to linear methods[1]. Kernel methods work by
mapping the data from the input space into a high-dimensional feature space, and then
building linear algorithms in the feature space to implement nonlinear counterparts in the
input space. The mapping is determined by specifying a kernel function, which computes
the inner product between each pair of data points in the feature space[2]. Kernel-based
learning algorithms, which include SVMs, kernel PCA, and Gaussian Processes, have
become well-established tools that are useful in a variety of contexts, including discrim-
inative classification, regression, density estimation, and clustering[3]. However, their
generalization ability is limited by the choice of kernel function. That means choosing the
appropriate kernel function has a crucial effect on the performance of the kernel methods
and the applications.

Multiple kernel, optimization via learning procedure[4] and data-dependent kernels[5]
are the primary approaches for optimization. Researchers attempt to solve the limitation
of simple kernel methods with MKL (multiple kernel learning). It aims at learning a
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linear (or convex) combination of a set of predefined kernels in order to determine the
best target kernel for the application. During the last decade, MKL has been widely
investigated, and many algorithms and techniques were proposed in order to improve the
efficiency of this new method[6]. Although these approaches mentioned above enhance
the learning ability of kernel methods, they are still shallow and local methods that essen-
tially limit the ability of the algorithm to adequately learn the nature of highly variable
datasets [7]. In order to solve this problem, deep learning architecture of neural networks
was proposed by Hinton first in 2006[8]. The deep learning architecture has powerful
ability to learn functions or distributions from the datasets automatically[9]. Compared
to kernel methods, it is deep and nonlocal, and thus exhibits more powerful ability to
learn the nature of highly variable datasets from fewer samples. On the other hand, the
unsupervised pre-training phase involved in the deep learning architecture regularizes the
learning procedure to produce better generalization performance. The results of recent
researches show that deep architecture is much more promising compared to the shallow
models. Deep architecture can be introduced into many learning algorithms to improve
their performance and extend their application range. Brahma and Dapeng Wu[10] have
proved the feasibility of deep architecture for learning algorithms and Fabio Anselmi[11]
demonstrates that deep convolutional networks are Hierarchical Kernel Machines.

Therefore, deep kernel learning, a new area of machine learning, was proposed in order
to apply the idea of deep learning in order to improve the kernel learning task and seek
for some new optimal methods. Deep kernel learning combines the structural properties
of deep learning architecture with the non-parametric flexibility of kernel method and our
paper is an overview of deep kernel learning based techniques and applications. The rest
of this paper is organized as follows: In section 2, we give more details for the related
work, and we show the basic theories of how deep kernel learning can be constructed in
section 3. Section 4 exhibits the combination of kernel methods and deep architectures
through their applications and extensions. The final section 5 summarizes this paper and
gives the outlook of future work in deep kernel learning.

2. Related work. To achieve the research of deep kernel learning, researchers mainly
proposed ideas and methods in two ways. The first direction is to combine the ker-
nel function and deep architecture and optimize with learning algorithms. Hinton and
Salakhutdinov[12] combine deep belief networks (DBNs) with Gaussian processes, show-
ing improved performance over standard GPs with RBF kernels, in the context of semi-
supervised learning. Their model is heavily relying on unsupervised pretraining of DBNs,
with the GP component unable to scale beyond a few thousand training points. Calandra
et al.[13] combine a feedforward neural network transformation with a Gaussian process,
showing an ability to learn sharp discontinuities, and the resulting model can only scale to
at most a few thousand data points. Huang et al.[14] pursue an unsupervised pre-training
procedure using deep auto-encoders, showing improved performance over GPs using stan-
dard kernels. Wilson et al.[15] combine deep feedforward and convolutional architectures
with spectral mixture covariances [16], inducing points, and local kernel interpolation[17].
They achieve scalability while retaining non-parametric model structure by leveraging
the very recent KISS-GP approach and extensions[18] for efficiently representing kernel
functions, to produce scalable deep kernels.

In order to improve the feature extraction ability, WK Wang and M Sun propose a new
feature extraction method called regularized deep Fisher mapping (RDFM)[19] , which
finds a mapping from the sample space to the feature space using a deep neural network
to enhance the separability of features according to the Fisher criterion. In recent years,
the Convolutional Neural Network is the most popular in deep learning structure. In some
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variants of CNN, SVMs have been used in the final layer to generate the output by utilizing
its wide-margin classification capabilities. Yang et al. combine convolutional networks,
with parameters pre-trained on ImageNet, with a scalable Fastfood[20] expansion for the
RBF kernel applied to the final layer[21].

The second direction is to extend kernel methods to deep kernel architecture. Re-
searchers propose some deep architecture based on kernel functions to improve the shallow
learning machines. The first kernel method using deep architecture was introduced by
Cho and Saul[22]. Their main idea consists on iteratively repeating the inputs mapping L
times and a new family of kernel functions, called arccosine kernels, was proposed; it im-
itates the computational process of the deep neural network. Some emerging works have
applied the idea of deep learning in order to improve the MKL methods. Since the deep
architecture shows high performance over the shallow one, several studies extended the
single layer of multiple kernels by learning multilayers of multiple kernels, and this frame-
work is usually called Multilayer Multiple Kernel Learning (MLMKL) which represents
a new active research area for kernel methods. These new methods tend to learn a deep
architecture by exploring the combinations of multiple weighted kernels in a multilayer
structure and the main goal is to learn the optimal kernel combinations and the decision
function. The base kernels, in each layer, are combined and used as input to the base ker-
nels in the immediate layer. Zhuang et al.[23] propose to optimize the system based on the
dual objective function. The authors were able to optimize an MLMKL of only two layers,
where the second layer is composed of a single RBF kernel. Strobl and Visweswaran [24]
optimized multiple layers of kernels over an estimation of the leave-one-out error method.

Another widely used application of kernel method called KPCA perform efficiently in
the proposed architecture called Feedforward kernel neural networks(FKNN). The number
of the layers of a FKNN network can be increased in a layer-by-layer way and a KPCA
behaves as a data transformation method in each hidden layer[25]. Wang et al. proposed a
KPCA learning architecture based FKNN networks[26]. Chao and Saul implemented deep
learning by using a special multi-layer kernel machines in[22]. Mitchell et al. [27] realized
a deep structure learning by using multi-layer linear PCAs and pointed out that their
deep structure learning framework can be used to describe the conventional Convolutional
Networks and Deep Belief Networks. With the research of the structure in depth, except
for linear PCAs more nonlinear KPCAs and more kernel functions can be involved and
more error functions can be considered within this framework.

3. Algorithm and theory. In the research of Deep Kernel Learning, the algorithms
and theories are applied to achieve three functions: feature extraction, classifier and
parameter optimization. Deep learning structure is mainly used to improve the extraction
performance and kernel applications are mainly used as classifier. When apply the deep
learning and kernel applications together, the matrix transferred between them should be
regulated and the parameters need to be optimized in appropriate ways. In this section,
we introduce the basic algorithms and theories used in deep kernel learning.

3.1. Deep learning structure. Deep neural networks (DNNs) are argued to have a
greater capacity to recognize a larger variety of visual patterns than shallow models,
because they are considered biologically plausible. Deep learning methods theoretically
exhibit powerful learning ability to discover the nature of the dataset from samples. Erhan
et al. [28] draws an important conclusion from extensive experiments of deep learning
algorithms: the unsupervised pretraining phases of the deep learning methods act as
regularizers by restricting the parameters to a relatively small region of parameter space
that corresponds to capturing structure in the input distribution.
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Figure 1. The construction of Deep Belief Network

3.1.1. DBN. The Deep Belief Network is composed of several hidden layers of hidden
units with connections between the layers but not between units within each layer. When
training the object in an unsupervised way, the DBN learns to reconstruct the object as
input vectors, and the hidden layers act as feature detectors on inputs, so that the DBN
can be used to perform classification [29]. Figure 1 shows a common construction of the
Deep Belief Network.

3.1.2. CNN. CNN is a multi-layer neural network and a common structure is shown in
Fig. X. It is an important method widely used in image recognition. Each layer of CNN
consists of many two-dimensional planes, and each plane consists of many single neurons
[30]. Each neuron of those maps defines their receptive fields [31], and the neurons only
accept the signal from local receptive fields. In general, layer C is feature extraction
layer, and each input neuron of C is connected to the local receptive field in the input and
extracts its local features and then determines the location relationship with other feature
space by those local features. Layer S is feature mapping layer that has the advantage
of position invariance. Each feature mapping is a plane, and all neurons’ weights in the
plane are equal, thus reducing the number of free parameters and reducing the complexity
of network parameters. Each feature extraction layer (layer C) will follow a subsampling
layer (layer C) which constitutes the two feature extraction, so the network has good
distortion tolerance [32].

The training of CNN is supervised, and it can be divided into three steps:
Step 1 : Through forward propagation to compute the output of each layer;
Step 2 : By the above network output, BP algorithm is used to seek the derivative of error
on the network weights;
Step 3 : Through the weight updating method to update the weights.

CNN is a kind of artificial neural network, and it is good at mining datas local features.
CNN adopts the weight sharing technique on one feature map resulting in reducing net-
work models complexity and decreasing the number of weights. These advantages make
CNNs applied to many fields in pattern recognition [33,34]. After years of research, CNNs
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Figure 2. Architecture of CNN

successfully applied in face detection, document analysis, speech detection, license plate
detection, etc. The basic architecture of CNN is shown in Figure 2.

However, Current deep learning algorithms always do not involve unsupervised regu-
larizers in the fine-tuning phase, but use early stopping strategies and tiny learning rates
to ”avoid unduly perturbing the weights found by the pre-training”. Besides, the perfor-
mance of CNN relies on the large amount of training dataset which contains millions of
images.

3.2. Kernel application. Kernel methods have been particularly successful on a variety
of sample sizes because they can enable a classifier to learn a complex decision boundary
with only a few parameters by projecting the data onto a high-dimensional reproducing
kernel Hilbert space. The basis of kernel methods is kernel function and the most common
applications are SVM and multiple kernel learning.

3.2.1. Support vector machine. Support vector machines are supervised learning models
with associated learning algorithms that analyze data used for classification and regression
analysis. The initial SVMs are used to solve linear problems and these machines can
perform nonlinear tasks with the help of kernel. Classification of images and hand-written
characters recognition can be performed using SVM. SVMs produce lower peak recognition
rates, but could be trained to reach close to those peaks using much less training data as
compared to deep learning techniques[35].

3.2.2. Multiple Kernel Learning. Multiple kernel learning consists of combining a set of
already defined base kernels so as to learn the optimal kernel. It exhibits its strength of
learning multiple kernels and its capability of combining heterogeneous data [36]. The
basic structure of MKL is shown in Fig. 3.

During the last decade, MKL has been actively investigated, in which lots of algorithm-
s and techniques were proposed in order to improve the efficiency of the MKL method
[37, 38, 39]. In [40], the authors solved MKL network using the sequential minimiza-
tion optimization (SMO) algorithm, while in [41], the authors used semi-infinite linear
programming (SILP) method for solving large-scale MKL problems. The experimental
results have shown that these methods often achieve worse prediction results than the sim-
ple average of the base kernels [42]. Although MKL approach has been widely studied,
its architecture is still ”shallow”, since it consists of a simple (linear/convex) combination
of multiple kernels. Indeed, the optimal kernel is not rich enough to solve complicated
applications.
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Figure 3. Multiple kernel method architecture

4. Applications and extensions. The applications and extensions of deep kernel learn-
ing is mainly achieved in two directions. One is the combination of deep network archi-
tecture and kernel methods, and the other is to structure the deep kernel learning with
shallow kernel algorithms. Such deep kernel learning framework aims at learning useful
features by stacking successive layers and each layer is issued from a nonlinear projection
of output of the previous layer using kernel method. In this section, we introduce several
deep kernel methods which have been proved and tested by a large amount of datasets
and experiments.

4.1. DBN and Kernel Methods. In general, there are two steps in deep learning. First,
features of each layer are pre-trained with layer-wise unsupervised learning, and these pre-
trained features are then fine-tuned throughout whole layers by supervised learning. Like
the multi-layer perceptron in [43], the whole-layer fine-tuning only utilizes global level
features, which means features from different hierarchies are intractable for classification
problems. Moreover, the study[44] suggests that globally trained features from each layer
are concatenated into single vector representations which is classified by SVM. However,
those simple concatenations have limitations as well in mathematical sense.

Multiple Kernel Learning (MKL) is proposed to optimize the combinations of kernels via
finding the suitable θ and simultaneously update the discriminative weights u. As a result,
MKL achieves the optimal combination of various kernels which measure the similarity
of input in different manner or originate from diverse sources. In short, multiple features
are able to be concatenated via MKL method. In addition, MKL can analyze the best
kernel for the given machine learning problem.

In order to combine hierarchical feature representations learned and estimated under
DBN model, the authors in [45] applied MKL in their study and choose Ultra-Fast Online
Multiple Kernel learning algorithms [46] that use the specific formation of regularization
norm. By selecting the regularization function, UFO MKL model can achieve optimal
convergence rate only depending on the logarithm of the number of kernels. The com-
binations of hierarchical feature representations are optimized by UFO MKL algorithms
and each kernel function of MKL is replaced by each level of features from DBN.

4.2. Deep kernel learning and Gaussian processes. In paper [47], the authors show
that the proposed model outperforms state of the art stand-alone deep learning architec-
tures and Gaussian processes with advanced kernel learning procedures on a wide range of
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Figure 4. Architecture of deep kernel learning

datasets, demonstrating its practical significance. Specifically, starting from a base kernel
k(xi, xj |θ ) with hyperparameters θ, they transform the inputs x as

k(xi, xj|θ)→ k(g(xi,w), g(xj,w)|θ,w) (1)

where g(x, w) is a non-linear mapping given by a deep architecture, so that the deep
neural network and kernel learning are combined and parametrized by weights w. The
popular RBF kernel is a sensible choice of base kernel, and researchers also propose to
use spectral mixture base kernel [48] for added flexibility:
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The spectral mixture (SM) kernel, which forms an expressive basis for all stationary co-
variance functions, can discover quasi-periodic stationary structure with an interpretable
and succinct representation, while the deep learning transformation g(x,w) captures non-
stationary and hierarchical structure.

The deep kernel of Eq. 1 is used as the covariance function of a Gaussian process to
model data D = {xi, yi}ni=1 . Conditioned on all kernel hyperparameters, the model is
interpreted as applying a Gaussian process with base kernel to the final hidden layer of a
deep network and the model is shown in Figure 4.

This deep kernel learning is a Gaussian process with a deep kernel maps D dimensional
inputs x through L parametric hidden layers followed by a hidden layer with an infinite
number of basic functions. All the deep kernel hyperparameters γ = {w, θ} are jointly
learned which include w, the weights of the network, and θ the parameters of the base
kernel, by maximizing the log marginal likelihood L of the Gaussian process.

4.3. Deep Fisher Kernel Learning. In deep fisher kernel learning, the researchers
propose a new feature extraction method called regularized deep Fisher mapping (RDFM),
which learns an explicit mapping from the sample space to the feature space using a deep
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neural network to enhance the separability of features according to the Fisher criterion.
So the deep learning architecture is used to enhance the learning ability of FDA and
optimize the Fisher criterion. For example, [49] used multilayer perceptrons to optimize
the Fisher criterion and [50, 51] also used deep neural networks to optimize the Fisher
criterion. However, Cruz’s method is not regularized by any unsupervised information
and Stuhlsatza’s method does not regularize the fine-tuning phase.

In [52] the researchers use the regularized deep learning architecture to extract effective
features for better class separability measured by the Fisher criterion and analyze the
effectiveness of unsupervised regularizers applied in both the pretraining phase and the
fine-tuning phase. The learning procedure of RDFM, which follows the deep learning
architecture in three phases, is elaborated in the following sections.

1) Unsupervised Pretraining: RBM networks are used to pretrain the network. There-
fore, when an RBM is trained, it is unrolled to form a small auto-encoder with only one
hidden layer and optimized with objective R for several steps. This trained small auto-
encoder is denoted as unsupervised belief network (UBN). Both RBM and UBN strategies
are tested and analyzed in this phase.

2) Unrolling: In the unrolling phase, the layers of neurons in the RBMs or UBNs trained
in the previous pre-training phase are united and rearranged to form one large deep auto-
encoder network, where the hidden layers of RBMs or UBNs are connected sequentially
to initialize the encoder part of RDFN, and the output layers of UBNs or the visual layers
of RBMs are connected sequentially to initialize the decoder part of RDFN.

3) Supervised Fine-Tuning: In this step, the network is fine-tuned to extract effective
features for classification by optimizing objective. The conjugate gradients method is
adopted for objective optimization, in which the gradients ∂E/∂W are computed by
backpropagation [53].

4.4. CNN and kernel methods. Besides the deep belief network, another deep network
architecture called convolutional neural network (CNN) which is famous for its outstand-
ing performance in image identification and classification. For wider applicability, CNN
techniques need to be developed to train faster on a smaller database of training samples,
particularly when sufficient training samples of target classes are not available. This ker-
nel application is a Siamese CNN with appropriate post-processing of the network output
to produce gram matrices corresponding to a reproducing kernel Hilbert space that can
be used in a support vector machine (SVM) for classification.

The authors of [54] proposed a novel model of convolutional extreme learning machine
with kernel (CKELM) which combines the CNN, ELM, and Kernel together to improve
the performance of learning machine. Extreme learning machine (ELM) proposed by
Huang et al. is a learning algorithm for single-hidden layer feedforward neural networks
(SLFNs). Extreme learning machine with kernel (KELM) is an application of extreme
learning machine which has the advantage of fast learning speed and high efficiency, as well
as the deficient in feature extraction for its single-hidden layer structure. In order to solve
the problem, The CKELM was proposed with convolutional layers and subsampling layers
alternately added to hidden layer of the original KELM to extract features and classify.
Random weights are used to adjust parameters instead of the gradient algorithm. The
architecture of ELM and CKELM are shown below.

This new model named CKELM improves the accuracy when compared with other
ELM-based methods and the time is far less than other deep learning methods. It is
worth seeking for more efficient and faster methods.

Unlike the typical CNN which computes class probability of a single input image, the
proposed kernel CNN in paper [55] takes two images as input and is trained to compute
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Figure 5. Architecture of ELM

Figure 6. Architecture of CKELM

similarity between them and obtain the probability they belong to the same class, no
matter what that class is. And the architecture is divided into three parts:

• Training the NN with transfer learning : The neural network was trained in two
different phases to facilitate two levels of transfer learning. One for the convolutional
layers and the other for fully connected layers. In the first level of transfer learning,
one can copy the convolutional weights of a CNN trained to classify samples of non-
target classes into DESKs neural network for target classes. In the next level of
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Figure 7. The proposed kernelized convolutional neural network algorithm

transfer learning, one can train the fully connected layers on pairs of images from
non-target classes.
• From NN to kernel : The neural network output is not guaranteed to satisfy the

Mercers theorem. Therefore, before training an SVM, its necessary to make the
output symmetric and the kernel matrix positive semi-definite.
• SVM training and testing : The kernel matrix thus obtained was used in an SVM to

learn the indices and weights of the training samples that serve as support vectors.
The SVMs only hyperparameter (the slack penalty) was set using cross-validation.
The trained SVM was used for classification of testing samples using the gram matrix
of testing and training samples.

In paper [56], the authors extract CNN features on the detected object-like patches
and aggregate these patch-level CNN features to form a vectorial representation with the
Fisher vector model. The CNN model is adopted to transform the image patches into
its vectorial representationes and after that the researchers adopt the separable kernel
methods to aggregate the representations together to represent the images. One classic
separable kernel is the Fisher kernel which models the joint probability distribution of a
set of features.

This KCNN method is proposed to describe the content of complex images, and with
this method, a more robust vectorial representation is obtained. Besides the CNN struc-
ture implemented in Caffe library, there are also some other emerging CNN structures,
which can be integrated to improve the performance.

In paper [57], the CNN is used as a trainable feature extractor to extract features from
the textual data. The CNN was trained using a standard back-propagation procedure.
In this way, the last output layer of the CNN is used only for training, but for actual
decision-making, it is replaced with much more sophisticated classifiers, namely, with
SVM or MKL.

In the last few decades, researchers have developed successful kernel-based systems
for a wide range of visual recognition tasks. Those sensibly-designed kernel functions
provide an extremely valuable source of prior knowledge, which should be exploited in deep
learning. In paper [58], the researchers propose an informative kernel-based regularizer,
which makes it possible to train DNNs with prior knowledge about the recognition task.
The kernel regularizer is transformed into a loss function represented as a sum of costs by
individual examples. This results in a simple multi-task architecture where a number of
extra nodes at the output layer are added to fit a set of auxiliary functions automatically
constructed from the kernel function. Usually, machine learning is realized by minimizing
a loss function.

L(β, θ) =
n∑
i=1

l(yi, β
T
1 φi + β0) + λ‖β1‖2 (3)
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Function (4) is the result of deriving the equivalence to a kernel system, and the kernel
is computed by function (5). The network is provided with some prior knowledge, and
this prior knowledge is exploited via imposing a kernel regularization so that the learning
problem seeks

min
β,θ

L(β, θ) + γΩ(θ) (6)

The described method is applied to train convolutional neural networks (CNNs) for
a wide range of visual recognition tasks. Our results show that incorporation of prior
knowledge can boost the performance of CNNs by a large margin when the training
set is small or the learning problem is difficult. This paper also explains why bother
training with kCNN, instead of simply combining two independently trained CNN and
SVM systems. The reason is computational speed kCNN pays an extra cost to exploit
a kernel matrix in the training phase, but in the prediction phase the system uses CNN
alone.

4.5. Deep Multilayer Multiple Kernel Learning. Although the limitation of simple
kernel methods is solved by MKL, the property is influenced by the choice of base kernels.
So deep learning architecture is introduced for its outstanding learning ability to improve
MKL. The first attempt of Multilayer Multiple Kernel learning is a Two-Layer Multiple
Kernel Learning framework. In paper [59], the authors optimize an MLMKL of only two
layers, where the second layer is composed of a single RBF kernel. The two-layer multiple
kernel domain as follows

K(2) =

{
k(2)(xi, xj;µ) = exp

(
m∑
t=1

µtk
(1)
t (xi, xj)

)
: µ ∈ Rm

+

}
(7)

Since k(2) is positive semi-definite, the objective is convex over α. Thus it can be solved
by standard QP solvers for a fixed µ. The objective function to optimize is show:

minµmaxα
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i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjk
(2)(xi, xj;µ) +

m∑
t=1

µt (8)

Once solving the above optimization to find the solutions for α and µ, it’s straightfor-
ward to obtain the final decision function of the Two-Layer MKL machine:

f(x;α, µ) =
n∑
i=1

αiyik
(2)(xi, x;µ) + b (9)

The authors implement an MLMKL framework in which all base kernels in antecedent
layers are combined so as to form new inputs to the base kernels in subsequent layers.
Instead of using a single kernel function, a set of functions, organized in a specific struc-
ture, map the original data through several layers of kernels, and then, the final kernel is
used to learn the decision function of SVM. The structure of this framework is shown in
Fig.8.

The resultant kernel K of the multilayer multiple kernel domain is defined as follows:
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Figure 8. Structure of multiple layer multiple kernel framework

K(l) =
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Where k
(l)
k is the kth base kernel at layer l and µlk denotes the weight of the kth kernel

at layer l. The final decision function of the proposed framework is defined as:

f(x) =
n∑
i=1

αiyiK
(L)
(
K(L−1);µ(L)

)
+ b (11)

The backpropagation algorithm and the gradient ascent are applied to obtain the coeffi-
cients µ that minimize the true risk of the decision function. The alternating optimization
algorithm is developed to learn the decision function and all the network weights simul-
taneously, and this is done as follows: (1) fix α and solve µ and (2) fix µ and α solve.

The algorithm consists on combining multiple base kernels in antecedent layers to form
new inputs to the base kernels in subsequent layers, and the proposed optimization method
achieved better performance than the existing algorithms based on either the dual objec-
tive function or the estimation of the leave-one-out error. However, some improvements
need to be achieved such as combining the effectiveness of the proposed method with the
capacity of multiple classifier methods.

4.6. Deep FKNN network. In paper [61], the authors first propose an architecture,
called FKNN, of feedforward neural networks with infinitely differential kernel based ac-
tivation functions, which can include a large family of existing feedforward neural net-
works such as radial basis function (RBF) networks, sigmodial feedforward networks,
self-organizing feature map (SOM) networks and wavelet neural networks [62], and hence
can meet most practical requirements. The contributions of this work can be highlighted
in two main aspects: (1) When the number of the hidden nodes of every hidden layer
and the type of the adopted kernel based activation functions are prefixed, different from
the common understanding of learning, we prove that when all the hidden layers of such
networks are tuningfree and their parameters are randomly assigned and even may be
independent of the training data, such networks are universal approximators with proba-
bility one. Therefore, the least learning machine (LLM) [63], as a generalized version of
the extreme learning machine (ELM) [64], can be further extended into its generalized ver-
sion in the sense of adopting much more error functions instead of only the MSE function.
(2) When the proposed architecture of FKNN networks is constructed in a layer-by-layer
way, i.e., the number of the hidden nodes of every hidden layer may be determined after
the explicit execution of a KPCA, we can develop FKNNs deep architecture such that its
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deep learning has strong theoretical guarantee with the enhanced performance for image
classification. The detailed framework DLF for a deep FKNN network is described as
follow:

• Input: The given dataset; Number of the hidden layers, with their respective kernel
functions used in multi-layer KPCAs, of a deep FKNN network;
• Output: The parameters of the output layer determined by a LA, and/or the kernel

parameter vectors in every hidden layer of a deep FKNN network;
-Step1: Preprocess the given dataset form the input dataset for the deep FKNN
network; fix the number of the layers in the FKNN, and the type of a kernel function
in each hidden layer of the deep FKNN network;
-Step2: Carry out a full-rank or low-rank KPCA with the chosen kernel function and
its initial kernel parameter vector in every hidden layer, in a layer-by-layer way from
the input layer to the last hidden layer. If a full-rank KPCA is taken, the number
of the hidden nodes in a hidden layer is automatically determined by the full-rank
KPCA. Otherwise, fix the chosen top-k principal components as the number of the
hidden nodes, in terms of the extracted principal components by a low-rank KPCA.
-Step3: Carry out the chosen learning algorithm LA in the output layer on the
transformed dataset after multi-layer KPCAs such that the parameters in the output
layer are determined and the kernel parameter vectors in the last hidden layer are
optimized.
-Step4: Determine an appropriate kernel parameter vector in every hidden layer by:

(1)The grid search in every hidden layer in a layer-by-layer way from the last
hidden layer to the input layer; Or

(2)Choose certain optimization method with certain performance criterion (e.g.
MSE) and the initial kernel parameter vector to optimize the kernel parameter vector
in every hidden layer in a layer-by-layer way from the last hidden layer to the input
layer.

4.7. Arc-cosine kernels mimic neural nets. The paper [65] introduces a new kernel
function called arc-cosine kernel that mimics the computation in large, multilayer neural
nets. These kernel functions can be used in shallow architectures, such as support vector
machines (SVMs), or in deep kernel-based architectures called multilayer kernel machines.
The nth order arc-cosine kernel function via the integral representation is defined as follow:

kn(x, y) = 2

∫
dw

e−
‖w‖2

2

(2π)d/2
Θ(w · x)Θ(w · y)(w · x)n(w · y)n (12)

The integral in eq.(12) has a simple, trivial dependence on the magnitudes of the inputs
x and y, but a complex, interesting dependence on the angle between them.

kn(x, y) =
1

π
‖x‖n‖y‖nJn(θ) (13)

Jn(θ) = (−1)n(sin θ)2n+1(
1

sin θ

∂

∂θ
)
n

(
π − θ
sin θ

) (14)

This new kernel function imitates the computational process of the deep neural network.
Specifically, L layer’s architecture is the inner product after L feature mapping kernels of
the input data:

K(L)(x, y) = Φ(L)(...Φ(1)(x)) · Φ(L)(...Φ(1)(y)) (15)
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where x and y are the input vectors, Φ(L) is a feature mapping function applied L
times, and K(L) represents the final layer kernel. Unlike the basic kernel function, arc-
cosine kernel ensures the performance of kernel function in multilayer architecture. In
addition, the proposed multilayer kernel has a static architecture.

5. Conclusion and future work. The research of deep kernel learning at the present
stage is mainly processed in two directions. One direction is to combine the deep learning
structure and kernel applications, which uses the deep architectures for feature extraction
and the kernel applications as classifier. This direction is gradual developing from simple
combination to fusion deep algorithm. The other direction is to extend kernel methods to
deep kernel architecture. During the learning and optimization process, several methods
are used to optimize and adjust the parameters.

As future work, the idea is and there are several aspects to improve the performance of
this deep kernel learning. Instead of several given kernel widths, the appropriate values
should be determined by certain optimization method. Since practical applications some-
times require real-time operation, how to speed up its learning is an interesting topic.
The proposed deep kernel network can provide a wide range of feature representations
at varying levels of abstraction, how to improve current deep learning framework version
so that its learning can synthesize feature representations at varying levels of abstraction
is another interesting topic. Another interesting topic is how to improve current deep
learning framework so that it can share the common transformed data space for multiple
tasks. Although the proposed deep learning frameworks have been justified by experi-
ment results about image classification, their effectiveness should be further witnessed by
exploiting their more applications and doing comparative study with the existing deep
learning methods.
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