
Journal of Network Intelligence c©2019 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 4, Number 3, August 2019

Spatiotemporal Fusion Algorithm for Single-Time
Phase High Resolution Remote Sensing Image Based

on Sparse Representationy

Xiaoyi Wang1, Xiaofei Wang1,∗, Shu-Chuan Chu2, John F. Roddick2

11College of Electrics Engineering,
Heilongjiang University, Harbin 150080, China

773324723@qq.com, nk wxf@hlju.edu.cn

2College of Science and Engineering Flinders University,
Sturt Rd, Bedford Park SA 5042, South Australia
scchu0803@gmail.com, john.roddick@inders.edu.au

Received March 2019, Revision May 2019

Abstract. High spatiotemporal resolution remote sensing images can provide on land-
form changes information fast and accurately, which have a wide range of applications
and needs in many areas such as agricultural monitoring and urban planning and con-
struction. However, due to the limitations of sensor hardware, remote sensing images
have the phenomenon that both high spatial resolution and high temporal resolution are
not compatible. In view of the complementary advantages of information between images
from different sensors, the fusion of remote sensing images is a very meaningful direction.
Based on sparse representation theory, this paper proposes a double-layer spatiotemporal
fusion framework suitable for single-phase high-resolution remote sensing images. The
Landsat8 OLI and MODIS remote sensing image are used as experimental data to fully
analyze the method, and compared with the classical spatiotemporal fusion methods of
STARFM, and analyze the impact of down sampling the multiple of down sampled in the
double-layer on the fusion results. The experimental results show that our method has
higher prediction accuracy, and the experimental results are best when the multiple of the
down-sampled is four.
Keywords: RSparse representation, Single-phase, Spatiotemporal fusion, Landsat8
OLI, MODIS.

1. Introduction. With the continuous development of remote sensing technology, remote sensing tech-
nology can provide various information about crop ecological environment and crop growth objectively,
accurately and timely. It is an important source for accurate field data. However, under the constraints
of the hardware technical conditions of existing satellite sensors and the cost of satellite launching, re-
mote sensing satellites cannot obtain remote sensing images with multi-attribute high resolution, which
restricts the application of remote sensing images. For example, Landsat satellites obtain images with
spatial resolutions in the 30m range, whereas a 16-day return visit cycle limits its use to detect rapid
changes in land and, on the other hand, medium resolution imaging spectra carried on Terra/Aqua satel-
lites radiometer (MODIS) provides daily observations, but having a coarse spatial resolution of 250-1000
m is not conducive to monitoring land cover changes in heterogeneous landscapes. Therefore, spatiotem-
poral fusion has emerged as a method of providing satellite imagery with high temporal and spatial
resolution. During recent decades, the method of spatiotemporal fusion has been widely applied and
mentioned. Gao et al. (2006) first proposed Spatial And Temporal Adaptive Reflectance Fusion Model
(STARFM) [1] for the identification of surface cover types of fractured blocks, which can effectively
eliminate singular points and is suitable for detecting the gradual changes of the large-scale range of
space. Zhu et al. (2010) proposed Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model
(ESTARFM) based on STARFM [2], which is more accurate and efficient for complex and heterogeneous
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features. Solved the ”time smoothing” problem of STARFM algorithm. Both STARFM and ESTARFM
are weight-based spatiotemporal fusion algorithms, which are limited to fine-grained landscapes and will
reduce the accuracy of their fused images in fine-grained heterogeneous landscapes. Hilker et al. (2009)
proposed a Spatial Temporal Adaptive Algorithm for mapping Reflectance Change(STAARCH) [3] to
observe changes in forest vegetation. Although this algorithm can analyze the change of reflectivity of
input images and handle the dynamic change of land cover type, but requires two landscape Landsat
images, not suitable for areas where image acquisition is difficult. Wu et al. (2012) proposed a Spatial
And Temporal Data Fusion Approach (STDFA)[4] based on the time-varying feature of the feature for
the extraction of rice area. This algorithm also requires multi-phase image support, which limits the
application of the algorithm. With the wide application of machine learning theory in the field of im-
age processing, For example, Eric Ke Wang et al. (2019) proposed a multilayer dense attention model
for image caption[5]. Super-resolution reconstruction technology which based on machine learning has
gradually been introduced into data reconstruction research. Hong et al. (2012) proposed a Sparse
Representation-based Spatiotemporal Reflectance Fusion Model (SPSTFM) [6]. The model uses the dif-
ference images of the MODIS and Landsat image pairs of the front and back phases of the predicted
phase to train high- and low-resolution dictionaries representing time-varying features, and then uses the
MODIS image of the predicted time to generate a Landsat-like fusion image, the fusion accuracy of this
model is very high, but it is also limited by the difficulty of data acquisition; Subsequently, Song and
Huang. (2013) proposed a sparse representation spatiotemporal reflectance fusion model using only a
pair of known high and low spatial resolution image [7]. The model first uses the sparse representation
algorithm to enhance the MODIS image to obtain the intermediate transition image, and then uses the
high-pass filtering model to fuse the observed Landsat image and the transition image. This model re-
duces the number of known image pairs that need to be input, so that the algorithm can be applied in
the absence of data, and has universal applicability. The feature-based learning-based spatio-temporal
fusion method takes into account the spatial information characteristics of the changing image, and can
make more accurate predictions of the complex surface reflectance image compared to the weight-based
method. Although the fusion accuracy of this model is very high, the requirements for input data quality
are high, especially when dealing with high-resolution images, the accuracy and efficiency of dictionary
training need to be further improved. Compared with the above method, we present a spatiotemporal fu-
sion algorithm for single-temporal high resolution images based on sparse representation. The prediction
results which based on sparse representation theory with higher precision, and the use of single-phase
data pairs can also reduce the difficulty in obtaining data in ESTARFM, SRCAAH, SPSTFM and other
methods. In the second part of this section, we will briefly introduce the knowledge of theoretical sparse
representation and its application to single image super-resolution. Then, in Section 3, the method we
propose will be explained in detail. In Section 4, Landsat8 OLI images and MODIS images were used as
experimental data, and our method was compared with the experimental results of STARFM. Then, we
will conclude this article in Section 5 to discuss our findings.

2. Sparse Representation and Dictionary Learning Theory. The problem of sparse representa-
tion of images originated from the ”effective coding hypothesis” in the field of neurobiology. Relevant
researchers believe that the main function of primary visual cortical neurons is to remove the statisti-
cal correlation of input stimuli. The researchers have made this hypothesis based on this hypothesis.
A large number of related experiments to verify this hypothesis, the conclusion that the sparse repre-
sentation of the signal conforms to the human visual perception mechanism. In the field of signal and
image processing, this idea of sparse coding is widely used, for example, Zhao et al.(2016)[8] used sparse
representation and dictionary learning theory to detect text; Tang et al.(2016)[9] used NSCT sparse
representation and pulse coupled neural network to achieve multi-modal medical image fusion;Tang et
al.(2018)[10]used sparse representation to achieve automatic classification of chord information in noisy
music and multimedia signals.

2.1. Sparse representation of the image. Sparse representation of an image refers to the approxi-
mate representation of an image using a linear combination of atoms, which constitute an over-complete
dictionary. In order to simplify the solving problem of the image processing process, it is required that
the coefficient matrix of the linear combination contains as few non-zero items as possible, so it is called
sparse coding. The sparse representation theory holds that the signal can be obtained from an over
complete dictionary and its corresponding sparse coding. The expression is as follows:

x = Da (1)
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where x ∈ Rn is the signal to be processed, D ∈ Rn×m(n < m)is the over complete dictionary matrix,
and x ∈ Rm is the sparse coding matrix.

2.2. Overcomplete dictionary training. For the sparse representation of remote sensing images, the
image needs to be converted into a raster image, that is, the image is divided into image blocks

√
n×
√
n,

and these image blocks are stored in the form of column vectors to form a signal to be processedX =
[x1, x2, ..., xn], each column represents an atom, the process is the signalization of the image. Generally,
the K-SVD algorithm[11] is used to train the overcomplete dictionary . The objective function to be
solved can be expressed as:

min
D,Λ
{‖X −DΛ‖2F } (2)

Where Λ = [a1, a2, ...an], and ‖a‖0represents the number of non-zero elements in , and is the number of
non-zero elements preset.Requires that for any one ai(1 < i < n), the following conditions are met:

‖ai‖0 ≤ K0 (3)

Firstly, an initial dictionary is developed by K-SVD method, and then the signal to be processed is sparsely
represented based on the Orthogonal Matching Pursuit (OMP) algorithm[13]. Finally, the optimal so-
lution is approximated by iteratively updating the atoms one by one. For a well-trained overcomplete
dictionary and a known pending signal, the next main purpose is to find a sparse representation matrix
a with the fewest non-zero elements. This problem can be represented by the following sparse estimate:

∧
a = arg min

a
‖a‖0 (4)

Using to represent the tolerance, the following relationship is satisfied:

‖x−Da‖22 ≤ ε (5)

The above-mentioned sparse coding solution is an NP-hard problem, which can be solved quickly and effec-
tively by the estimation method. The commonly used Matching Pursuit(MP) (Mallat SG et al.,1993)[12]
and its enhanced orthogonal Orthogonal Matching Pursuit(OMP) (Davis G et al., 1997)[13], Basis Pur-
suit(BP)(Chen SSB et al., 2001)[14], and so on.

3. Methodology. The spatiotemporal fusion based on a single known data pair is based on the high-
resolution image H1 on t1 and the low-resolution images L1 and L2 on t1 and t2, predicting the high
resolution image H2 on t2by using high-pass modulation and super-resolution reconstruction technology
based on sparse representation. The main processing steps are as follows.

3.1. Resolution reconstruction theory. Image super-resolution needs to find a mapping relationship
between high- and low-resolution images, which includes many methods. Among them, Tsu-Yang Wu
et al. proposed a mapping method based on logistic[15] and Chebyshev generator[16]. In this paper,
the high- and low-resolution dictionary obtained by high- and low-resolution image training has the
same sparsity coefficient to achieve the mapping between high- and low-resolution effects. In the field
of image processing, low-resolution images are considered to be obtained by blurring and downsampling
high-resolution images. The model can be expressed as:

Y = SHX + C (6)

Where X is a high-resolution image, Y is a low-resolution image, H is a blur filter, S is a downsampled
model, and C is random noise.

3.2. Acquisition of transition images. It is known that Landsat-MODIS image pairs on t1 and
MODIS images on t2 (t1 < t2), Landsat images with a spatial resolution of 30m are used as high-resolution
images, and MODIS images with a spatial resolution of 500m are used as low-resolution images. It is
defined that Hi and Li is Landsat images and MODIS images at a time ti (i = 1, 2), and define the
transition image as Ti. The difference image between high-resolution and low-resolutionY1 = H1−L1) on
t1and the gradient feature image of the low-resolution image L1 which named X1 = (f ∗ L1) (where ‘∗’
represents the convolution operation) as training samples for dictionary training, gradient feature image
in patch form and this article uses 5× 5. The low-resolution overcomplete dictionary Dl can be obtained
by training X1 based on the K-SVD joint dictionary pair:

{Dl, a1} = arg min
Dl,a1

{‖X1 −Dla1‖2F } (7)

s.t.∀i, ‖a1‖0 ≤ K0
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Because the sparse representation coefficient of the high-low resolution difference image Y1 by the high-
resolution dictionary Dh is the same as the sparse representation coefficient of the low-resolution gradient
feature image X1 by the low-resolution dictionary Dl(that isa1), the high-resolution dictionary Dh can
be obtained by minimizing the approximation error of Y1 under the coefficient matrix a1:

Dh = arg min
Dh

‖Y1 −Dha1‖2F (8)

Under the condition that the coefficient matrix a1 is full rank, the above formula can directly obtain the
high-resolution overcomplete dictionary Dh by using the pseudo-inverse expression as follows:

Dh = Y1(a1)
+

= Y1a1
T (a1a1

T )
−1

(9)

Let the high and low-resolution difference image Y2 = T2-L2 on t2 and the gradient feature image
X2 = (f ∗ L2) of the low-resolution image L2, then after the high-resolution dictionary Dhand gradient
features image X2 were be obtained, the sparse coefficient matrixa2 on t2 is obtained by the OMP.
Further, the difference image Y2 can be expressed as:

Y2 = Dha2 = T2 − L2 (10)

Therefore, the transition image T2 can be expressed as:

T2 = Y2 + L2 (11)

Similarly, the transition image T1 on t1 can be obtained.

3.3. High-pass modulation. Because of the similarity between Ti and Hi, they can be considered to
have the same pixel purity at the same time. If the following linear relationship can express the transition
image at different times:

T2 = aT1 + b (12)

Then, the relationship is equally applicable to the high-resolution image Hi, i.e.:

H2 = aH1 + b (13)

Thus, the high-resolution image on t2 can be obtained by high-pass modulation fusion, expressed as:

H1 = T2 +
T2

T1
[H1 − T1] (14)

3.4. Spatiotemporal fusion based on scale progression. Traditional fusion studies have shown that
the spatial scale difference factor r ≤ 4 between high-resolution and low-resolution images can achieve
optimal results.It is necessary to use resampling and multi-layer progressive spatiotemporal fusion to
make the spatial scale difference between high-resolution image and low-resolution image r = rl/rh ≤ 4,
due to the spatial resolution difference between Landsat(30m) image and MODIS(500m) image is nearly
16 times, how to choose a reasonable intermediate resolution multiple has become a problem. Considering
that the algorithm in this paper is divided into two layers, the first layer establishes the transition image
Ti , and the second layer predicts H2p. The specific operation process is shown in Fig.1. As shown in
Fig.1., the double-layer spatiotemporal fusion network has the following points:

(1) In the first layer, superscript represents the number of layers; subscript is the phase. To train a
dictionary pair in the first layer, the high-resolution image features and low-resolution image features are
extracted from difference image space of original H1

1−L1
1 and gradient feature space of original L1

1 in patch
form (This article uses 5 × 5), then use K-SVD algorithm to train dictionary, we get a high-resolution
dictionary D1

h and low-resolution dictionary D1
l .

(2) The original low-resolution images L1
1 and L1

2 on t1 and t2 are input as low-resolution images, and
the pixel size of the original high-resolution image H1

1 on t1 is resampled by bicubic interpolation rl/2 ,
rl/4 or rl/8 to obtain high-resolution input image.

(3) Transition image T 1
1 and T 1

2 on t1 and t2 are predicted using the sparse coding technique OMP
algorithm and Equation (11).

(4) Using T 1
1 and T 1

2 resampled H1
1 as input, utilizing Equation (14) to obtain the predicted high-

resolution image H1
2P of the first layer on t2.

(5) In the second layer, the original H2
1 is downsampled by bicubic interpolation rl/2 ,rl/4or rl/8 as

L2
1, and the predicted H1

2p is taken as L2
2, which are input as low-resolution images, and the original H2

1

is input as a high-resolution image.
(6) The high-resolution image features and low-resolution image features are extracted from original H2

1

and resampled H2
1 in patch form (This article uses 5× 5), then use K-SVD algorithm to train dictionary,

we get a high-resolution dictionary D2
h and low-resolution dictionary D2

l .
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Figure 1. Flowchart of the proposed spatiotemporal fusion framework

(7) Transition image T 2
1 and T 2

2 on t1 and t2 are predicted using the sparse coding technique OMP
algorithm and Equation (11).

(8) Using T 2
1 and T 2

2 original H2
1 as input, utilizing Equation (14) to obtain the predicted high-resolution

image H2
2P of the first layer on t2. H2

2P is the final result.

4. Simulation experiments and results analysis. Three pairs of Landsat 8 and MODIS surface
reflectance images covering a 28 km by 28 km area in Coleambally, Australia, were used in this experiment.
The type of land cover is mainly farmland. This paper uses the Landsat8 OLI images of the experimental
area and the corresponding MODIS images as experimental data. Atmospheric correction is performed on
the Landsat 8 OLI image using the ENVI-Flaash Atmospheric Correction Module. Atmospheric corrected
images were geometrically corrected using a 1:10000 topographic map and reprojected to UTM-WGS84.
The coordinate system has an error of fewer than 0.5 pixels. The pixel area (with a spatial resolution of
30 m) was intercepted as an experimental analysis area. The MODIS reflection raw data is projected by
the sinusoidal projection method. Reproject the MODIS data into the same UTM-WGS84 coordinate
system as the Landsat8 OLI data using the MODIS Reprojection Tools. For ease of processing, this
paper resamples MODIS data to 480m spatial resolution during reprojection. The surface coverage type
of this area is stable, and the change in surface reflectance is considered to be determined only by the
phenological phenomena of the vegetation. Fig. 2.(a) and (b) show the Landsat and MODIS images
on June 3, 2013, respectively, and Fig. 2.(c) and (d) show the Landsat and MODIS images of the
experimental area on September 7, 2013, respectively. Both are standard false-color images, select bands
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Figure 2. (Upper row) Landsat8 OLI composited surface reflectance,
and MODIS composited surface reflectance (512×512 pixels) on June
3, 2013;(Lower row) Landsat8 OLI composited surface reflectance, and
MODIS composited surface reflectance (512×512 pixels) on September 7,
2013

5, 4, 3 for Landsat8 OLI images and select bands 2, 1, 4 for MODIS images, the combination of Nir,
Red and Green bands. It can be seen that the MODIS and Landsat images on the same day are very
similar, and both images reflect the change in surface reflectance during this period. In this section,
we compare the proposed method with the well-known STARFM algorithm by using the Landsat8 OLI
images and MODIS images of the experimental area, using our method to set Landsat downsampling
multiples to 2, 4, 8 for three experiments. The predicted image is then compared to the actual observed
image, and subjective evaluations and goals are evaluated to assess prediction accuracy. Refer to the
objective evaluation indicators for image quality proposed by Qiaoyue Li et al.[17] and Chate Harold
et al[18], root mean square error (RMSE), the mean absolute difference (AAD), exponential-structural
similarity (SSIM)[19] and ERGAS [20] were chosen as objective quality evaluation indicators.

From the subjective visual observation, it can be seen that in the crop area, compared with the
proposed method, the fusion result of the STARFM method has a large fusion error, mainly because the
method searches for similar pixels near the center pixel based on the reference time. It is assumed that
adjacent similar pixels in the basic phase periods experience a similar phenological change with the center
pixel, and the reflectance of the similar pixels is used to obtain the reflectance of the center pixel of the
predicted phase. When large phenological changes occur, due to the high heterogeneity of the selected
regions, the central pixel and adjacent similar pixels have different degrees of phenological changes in
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Figure 3. Comparisons between the actual and the predicted surface re-
flectances with focus on seasonal changes: (a) Actual surface reflectance,
(b) predicted surface reflectance obtained by STARFM, (c) predicted sur-
face reflectance obtained by our method1, (d) predicted surface reflectance
obtained by our method2,(e) predicted surface reflectance obtained by our
method3
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Table 1. Accuracy evaluation of fusion results in experimental areas

the cycle, resulting in inaccurate fusion results. The comparisons in terms of AAD, RMSE, ERGAS,
and SSIM are listed in Tab.1., the average AAD values of the three bands for STARFM, Our method1,
Our method2, and Our method3 are 0.0151, 0.0134, 0.0125 and 0.0132, respectively, and the average
RMSE values of the three bands for these models are 0.0174, 0.0147, 0.0121 and 0.0136, respectively.
These indicate that our method can reconstruct the Landsat surface reflectance more precisely than
STARFM. The average SSIM values of the three bands for these methods are 0.814,0.840,0.869 and
0.860, respectively, and these indicate that our method can retrieve more precise structural details on
the surface reflectance than STARFM with smaller reflectance deviations. The ERGAS values for these
methods are 0.6518, 0.6377, 0.6115, and 0.6265, respectively, and these indicate that the spatial details
and spectral colors of our fusion result are better than this of STARFM. Also, it can be seen from the
experimental results that the multiple of down-sample has a great influence on the experimental results.
When the multiple is 4, the fusion precision reaches the optimal value, and it can be seen when the
multiple is 2, the experimental precision is lower than when the multiple is 8. It indicates that in the first
layer for transition image reconstruction, it is not suitable to use larger multiples or smaller multiples.

5. Conclusions. This paper proposes a two-layer spatiotemporal fusion model based on sparse repre-
sentation for single-phase input. Using our method to compare with STARFM, the results show that
our method has better fusion accuracy and better reconstruction of spatial details. The multiples of
the down-sampled were compared and analyzed, and it was found that too large or too small multiples
would reduce the reconstruction accuracy. Spatio-temporal fusion is the complementary advantage of
remote sensing image information, making it fully utilized in agricultural monitoring and other fields.
In the future research, on the one hand, how to make full use of remote sensing image information to
make it more widely used in various fields; on the other hand, attempts to explore spatial information of
low-resolution image MODIS more widely, in order to obtain better Landsat predicted images.
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