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Abstract. Dictionary learning is applied to various image and video processing tasks.
However, the volume of the learned dictionary from large amounts of data leads it expen-
sive to storage and transmit in networks. In this paper, we proposed a flexible dictionary
compression scheme for face recognition. Firstly, a quantized K-SVD (Q-KSVD) algo-
rithm for each dictionary basis (or atom) is proposed. To find the optimal dictionary
subjected by the total bits, an algorithm is developed to select the bases according to their
importance, denoted by the rate-recognition slopes of all bases. Moreover, a flexible quan-
tization stepsize assignment method is proposed to further improve the compression effi-
ciency. Each dictionary basis is taken as a small image so that we can employ the mature
image coding method, and the basis quantization is integrated into various K-SVD-based
dictionary learning algorithms. The dictionary can be compressed into various scales
of bits, which is quite adaptable to the varied network environments. Face recognition
results using four K-SVD-based algorithms show that the proposed scheme can achieve
competitive performance with low bit rate.
Keywords: Dictionary learning, Sparse representation, Quantized K-SVD, Compressed
dictionary.

1. Introduction. Learning an overcomplete dictionary for sparse representation of sig-
nals has attracted growing interests in recent years. As learned from the signal directly,
the redundant dictionary can offer a sparser representation for the signal than the fixed
transforms such as the discrete cosine transform (DCT) or wavelet [1, 2, 3]. This makes
dictionary learning based sparse representation popular in various applications such as
image restoration [4, 5], image denoising [6], image/video compression [7, 8, 9, 10], image
super-resolution [11, 12], and face/object classification [13, 14]. With the popular of the
dictionary learning based spare representation, the dictionary need to be compressed in
order to transmit in the networks.

With the rapid growth of signal acquisition, the dictionary learned from large amounts
of data becomes quite large. This increases the complexity of the dictionary, as the
sparsity-based algorithms such as matching pursuit (MP) [15] and orthogonal matching
pursuit (OMP) [16], all comprise expensive dictionary-signal computations repeatedly.
On the other hand, the large volume of the dictionary is hard to storage or transmit, es-
pecially in the mobile devices which with limited storage space and computational power.
In [17], the K-SVD algorithm is proposed to effectively learn the dictionary form the
training images, and the effectiveness is shown for the image denoising and compression.
K-SVD is a popular dictionary learning algorithm and many variations or extensions have
been proposed to improve the performance of the learned dictionary. In [18], an efficient
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and flexible dictionary structure is proposed to balance the complexity and adaptability
of the dictionary, via a sparsity model of the dictionary atoms over a base dictionary. The
dictionary is assumed to be represented by a fixed dictionary with sparse coefficient, i.e.,
D = ΦA, where Φ is the so-called base dictionary and A is the sparse code of the dictio-
nary. Though the dictionary learning algorithms progressively improve the representation
performance of the learned dictionary [19, 20, 21], it is still inadequate for some special
tasks such as image classification, as only the representational capability is considered in
the dictionary learning process, while the discriminative capability is neglected which is
crucial for the recognition tasks. To deal with this problem, a variety of algorithms have
been developed to combine the discriminative power and the representative power into the
learned dictionary simultaneously. In [22], a discriminative K-SVD (D-KSVD) algorithm
is proposed to learn a discriminative dictionary for face classification. The reconstruction
error and the classification error are incorporated into the objective function together,
thus the dictionary and the classifier are learned simultaneously. Training with the clas-
sifier, the learned dictionary obtains the discriminative power implicitly. In [23, 24], the
label consistent K-SVD (LC-KSVD) algorithm is proposed, which incorporates the recon-
struction error, the discriminative sparse coding error, and the classification error into the
objective function together. It can learn the dictionary, the discriminative sparse code,
and the classifier simultaneously. The discriminative sparse coding enforce the input im-
age and the dictionary atom from the same class share a same label, thus the learned
dictionary is endowed with the discriminative power explicitly. Owing to exploiting the
label information of images, the learned discriminative dictionary can achieve more accu-
rate recognition result.
Usually, the dictionary columns (known as atoms or bases) need to be normalized to

have a unit l2-norm. The floating-point dictionary is then directly stored and used for the
following sparse decomposition. For one hand, the floating-point data type would consume
a mass of memory space; for another hand, this would bring about massive overhead and
extensive delay if the dictionary needs to communicate in the network environment. For
example, a dictionary with a size of 570× 576 learned by the K-SVD algorithm requires
about 2.5 megabytes (MB) of storage space. For an overcomplete dictionary-based light
field photography [25], the memory footprint of the learned dictionary consisting of 5,000
light field atoms is more than 110 MB. Some works attempt to eliminate the atoms with
less importance in order to reduce the atom number [26, 27, 28], however, it is still far
from adequate by saving the learned dictionary directly as floating-point numbers. Even
though the dictionary can be sparse represented [18], there is still no explicit compression
schemes for the dictionary. In [29], a quantized K-SVD (Q-KSVD) algorithm is proposed
to reduce the dictionary storage space. This method treats the dictionary atoms as small
images and uses the conventional image coding techniques to compress the dictionary
atoms during the training process. However, this method applies a fixed quantization
stepsize to all atoms, which is not optimal for different atoms, as each atom has variable
importance at the sparse coding stage. The effective way to compress the dictionary still
needs to be carefully investigated.
In this paper, we improve the compression scheme to further reduce the memory foot-

print needed to store the learned dictionary and reinforce its adaptability to the varied
network environments. The dictionary atoms are treated as small images, and we use
the conventional image method to compress them. Before normalization in the dictionary
update stage, the dictionary atom is first converted to an image with values in the inter-
val between [0 ∼ 255]. A quantization stepsize assignment method is proposed to assign
appropriate quantization stepsize for each basis, according to the contribution of the basis
in the task. The dictionary image is then compressed by the conventional image coding
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techniques with the chosen quantization stepsizes [30, 31]. In order to guarantee the va-
lidity of the dictionary after compression, we combine the dictionary encoding steps with
the update stage of the dictionary learning algorithms. Inspired by the scalable coding
method used in JPEG 2000 [32], a bit rate threshold can be imposed on the compressed
dictionary to restrict the amount of bits needed to encode the dictionary. By selecting the
bases with higher importance (e.g., bases with larger rate-recognition slopes), the com-
pressed dictionary ensures its optimality as far as the given bit rate target is attained. As
shown in the experimental results, this scheme can get the optimum number of dictionary
bases in terms of bit rate constraint, so that we can get various bit scales for differ-
ent network requirements. This is quite preferred by the mobile network applications as
the mobile network is heterogeneous and the bandwidth is vulnerable to changes. This
dictionary compression approach can applied to various K-SVD-based dictionary learn-
ing algorithms. Finally, it is the reconstructed and normalized dictionary after scaling
back that is used for the subsequent operations. The dictionary learned by the Q-KSVD
method is evaluated on the face database of Extended YaleB. The test results show the
proposed approach can come up with some sort of compromise between the recognition
accuracy and the dictionary bit rate. It can obtain acceptable recogonition accuracy at
very low bit rate of the compressed dictionary. Under some circumstances, it can even
provide more precise recognition than the original dictionary.

2. Background. For a set of m-dimensional signals Y = [y1, ..., yN ] ∈ Rm×N , to find the
sparse coefficients X of Y under a representative dictionary D with K bases, we can solve
the following problem:

< D,X > = argmin
D,X

∥Y −DX∥22, s.t. ∀i, ∥xi∥0 ≤ T, (1)

where D = [d1, ..., dK ] ∈ Rm×K is the learned dictionary (K > m), X = [x1, ..., xN ] ∈
RK×N is the coefficients, and T is the sparsity constraint for the coefficients.

To minimize the representative error under the sparsity constraint, the K-SVD algo-
rithm can find the solution of the problem efficiently by an alternative manner [17]. Firstly,
given D, the sparse coding stage tries to search for the sparse representation X through
the solution of the following problem:

i = 1, 2, ..N, xi = argmin
xi

∥Y −Dxi∥22, s.t. ∥xi∥0 ≤ T. (2)

Orthogonal matching pursuit (OMP) [16] can solve this problem efficiently. Secondly,
after finding X, the coefficients are fixed and the dictionary will be updated. The update
stage is accomplished by applying the singular value decomposition (SVD) on the bases
of D one after another.

To balance the complexity and adaptability of the learned dictionary, a sparse dictionary
structure [18] is proposed under the sparsity model of D over a base dictionary, i.e.,
D = ΦA, where Φ is fixed and called base dictionary, and A is sparse code of D over Φ.

Though many algorithms are developed to improve the representative power of the
learned dictionary, it is not enough for the image recognition tasks as the dictionary is
short of the discriminative power for different images from multiple classes. To solve this
problem, many discriminative dictionary learning algorithms are proposed to explore the
label information of the images from different classes. For example, by combining the
classification error and the reconstruction error into the objective function together, the
D-KSVD algorithm [22] is proposed as follows:

< D,W,X > = arg min
D,W,X

∥Y −DX∥22 + β∥H −WX∥22, s.t. ∀i, ∥xi∥0 ≤ T, (3)
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where H is the label matrix for images from various classes and W is the learned classi-
fier. The first penalty term ∥Y −DX∥22 denotes the reconstruction error, and the second

penalty term ∥H −WX∥22 denotes the classification error. β is a parameter to balance the
two penalty terms. By combining (Y,

√
βH) and (D,

√
βW ), Eq. (3) can be restructured

into the standard K-SVD format:

< D,W,X > = arg min
D,W,X

∥∥∥∥( Y√
βH

)
−

(
D√
βW

)
X

∥∥∥∥2
2

, s.t. ∀i, ∥xi∥0 ≤ T. (4)

Besides the representative power, the learned dictionary also obtains the discriminative
power, as the the objective function considers the representative and discriminative penal-
ties at the same time.
Furthermore, by combing the discriminative sparse code error, together with the clas-

sification error and the reconstruction error, into the objective function, the LC-KSVD
algorithm [23, 24] is proposed as follows:

< D,W,A,X > = arg min
D,W,A,X

∥Y −DX∥22 + α∥C −AX∥22 + β∥H −WX∥22,

s.t. ∀i, ∥xi∥0 ≤ T,
(5)

where C is a matrix with element ci,j = 1, if the image yi and the dictionary basis dj
share the same label (called label consistency); otherwise ci,j = 0. ∥C − AX∥22 denotes
the discriminative sparse code error, and A is a linear transform matrix, which enforces
the images from the same class to have similar sparse coefficients. Also, Eq. (5) can be
restructured into a standard K-SVD format:

< D,W,A,X > = arg min
D,W,A,X

∥∥∥∥∥∥
 Y√

αC√
βH

−

 D√
αA√
βW

X

∥∥∥∥∥∥
2

2

, s.t. ∀i, ∥xi∥0 ≤ T. (6)

Both Eq. (4) and (6) become a K-SVD problem and can be solved directly.

3. Quantized K-SVD with Flexible Quantization Stepsize. In the literature of
dictionary learning based sparse representation, each basis of the dictionary is normalized
to a unit l2-norm, and the dictionary is then simply saved in the form of floating-point
numbers. When the amount of training data is large, the dictionary trained will be with a
large number of bases, which could take up a lot of storage space. A naive way to directly
compress the learned dictionary will be not optimal and the dictionary coding error will
be susceptible to the following implementations. In this section, we consider how to make
the learned dictionary compressible by modifying the K-SVD algorithm with quantization
manipulations in the training process.
In order to reduce the memory space of the learned dictionary, the dictionary needs to

be quantized before encoding, and the reconstructed version of the compressed dictionary
is used for the following operations. As the dictionary does not need to be stored during
the training, we disregard the entropy coding at this moment. Therefore we only consider
the quantization of the dictionary during the dictionary training process.
Like the D-KSVD and LC-KSVD introducing extra discriminative and label consistent

penalty terms into the objective function, we introduce the quantization penalty term
into the K-SVD problem, and the objective function is formulated as follows:

< DQ, X > = arg min
DQ,X

∥Y −DQX∥22, s.t. ∀i, ∥xi∥0 ≤ T, (7)

where DQ indicates the quantized dictionary after being reconstructed. Considering the
quantization during the training process, the quantization distortion for the dictionary
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is constricted implicitly with the representational error, making the quantized dictionary
more resilient in the sparse coding and the following operations.

For the K-SVD algorithm and its successors, the bases of the dictionary are updated
one by one, and each basis is normalized after the update. To encode the basis of the
dictionary by the available image compression techniques, we rescale each basis before its
normalization into the interval between [0 ∼ 255] and consider it as a 2-D image. Then
we employ the transform and quantization to the rescaled basis. It is the reconstructed
versions, i.e., the de-quantized and inverse transformed dictionary bases, are put into the
following dictionary update. At the end of the dictionary training, we can entropy encode
the quantized dictionary.

Furthermore, a bit rate constraint can be imposed on the dictionary, similar to the
rate-distortion optimization problem in data compression. The objective function of the
quantized dictionary with bit rate constraint is formulated as follows:

< DQ, X > = arg min
DQ,X

∥Y −DQX∥22, s.t. ∀i, ∥xi∥0 ≤ T, R(DQ) ≤ TR, (8)

where DQ indicates the compressed dictionary after being reconstructed, R(DQ) indicates
the bits needed to encode the dictionary, and TR is the network constraint using bits
representation.

For the subsequent applications, we can decode each basis of the dictionary by the
inverse operations. Each basis of the reconstructed dictionary is then normalized to a
unit l2-norm.

It is convenient to apply a fixed quantization stepsize to the coefficients of all bases.
However, this method is not optimal as it neglects the variable significance of each basis.
Thus, a flexible quantization stepsize assignment is desired to get optimal dictionary
compression result. For this purpose, we define fi = ||xi||0, where xi is the sparse code
corresponding to the i-th basis di in the dictionary, to denote the significance of di. A
larger fi means that the corresponding di is used more frequently in the sparse coding
and of more significance, we then impose a small quantization stepsize to di to keep its
stability, and vice versa. In order to make the bit rate of the final compressed dictionary
within the given target, some bases from the original dictionary need to be discarded.
Inspired by the rate-distortion-slope algorithm utilized in JPEG 2000 [32], we define a
similar rate-recognition-slope metric to indicate the contribution of each basis for the
recognition task. The importance of the i-th basis is evaluated by the slope si between
the classification error and the bits needed to encode it:

si =
||H −W ′X ′||22

Ri
, (9)

where H is the class label matrix, W ′ is the classifier W excluding the i-th basis (column)
wi, X

′ is the sparse code X excluding the i-th row xi
T , and Ri is the bits needed to encode

di. Excluding the product of wix
i
T can reflect the contribution of the corresponding basis

di to the image classification. Note that, in this case, we need the entropy coding step
during the training, as we need the bits information to calculate the contribution of each
basis.

When all the rate-recognition slopes of the bases are calculated, we sort the slopes and
select the bases with the largest slope values, as far as the bit rate target is achieved.
The rest of the bases will be discarded. Then the next iteration of the dictionary training
will be continued with the selected bases. To speed up the convergence, we preset two
termination conditions as follows, and the algorithm will be terminated if either of them
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is reached:

RMSE(i+ 1)−RMSE(i) ≤ T1,

Recog(i+ 1)−Recog(i) ≤ T2,
(10)

where RMSE =
√
∥Y −DX∥22/(m×N) indicates the average reconstruction error,

Recog is the classification accuracy for the current training images, and T1 and T2 are
two threshold values. Finally, the Q-KSVD with flexible quantization stepsizes is sum-
marized in Algorithm 1. Note that, if a fixed quantization stepsize is assigned to all the
bases, the algorithm becomes the case of [29].

Algorithm 1 Quantized K-SVD with Flexible Quantization Stepsize

Input: Y,H, TR

Output: DQ,W
1: compute D(0), X(0), W (0):
2: compute D(0), X(0) using original K-SVD;
3: compute W (0) using (11);
4: repeat
5: reshape each di into a 2-D image in the range of [0 ∼ 255], transform it by DCT;
6: compute fi = ∥xi∥0, assign a quantization stepsize to the coefficients of di accord-

ingly;
7: entropy encode the quantized coefficients;
8: compute si using (9);
9: rank si, select from atom with max si, until the total bits reach TR;
10: reconstruct DQ;
11: update DQ using original K-SVD;
12: update W using (11);
13: until convergence condition in (10)

Once the dictionary is trained by the Q-KSVD, the bases can be rescaled to 2-D images
and compressed by transform, quantization and entropy coding, just the same as the com-
pression steps during the training process. For image classification, it is the reconstructed
dictionary that is employed for the sparse coding of the test images.
The proposed dictionary compression scheme aforementioned is also suitable for other

K-SVD-based algorithms, such as the D-KSVD [22] and the LC-KSVD [23, 24]. At this
point, we only focus on the compression of the dictionary D but neglect A and W , as the
discriminative transform matrix does not need to store and the classifier does not need
to compress.

4. Experimental Results.

4.1. Image Classification. For comparison, we first use the dictionary learned by the
K-SVD algorithm for face recognition, and the classifier is learned as follows: :

W = (XXT + λI)−1XHT . (11)

where X is the sparse coefficients trained by the original K-SVD, H is the class label
matrix, and I is the identify matrix.
For D-KSVD and LC-KSVD, the trained dictionary D and classifier W cannot be

directly used for a new image, as they are normalized jointly in the learning process. The



Dictionary Compression for Network Transmission Using Flexible Quantization Steps 29

MB
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

R
ec

og
. R

at
es

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Direct Quantization
Proposed Fixed Quantization
Proposed Flexible Quantization

Figure 1. Recognition results by the direct and proposed dictionary com-
pression schems with D-KSVD [22].

expected dictionary D̂ and classifier Ŵ can be computed as follows [22]:

D̂ = { d1
∥d1∥2

...
dK

∥dK∥2
},

Ŵ = { w1

∥d1∥2
...

wK

∥dK∥2
}.

(12)

For a test image yi, the classification is based on the sparse coefficient xi, which can be
obtained by Eq. (2) with D̂. Then, we can apply the classifier Ŵ to xi and get the label
vector of yi:

l = Ŵxi. (13)

Finaly, the label of the testing image yi is determined by the index of the largest element
in l.

4.2. Results with the Extended YaleB Database. In this subsection, we incorporate
the proposed dictionary compression scheme into four dictionary learning algorithms:
K-SVD [17], D-KSVD [22], LC-KSVD1, and LC-KSVD2 [23, 24] (LC-KSVD contains
two scenerios: LC-KSVD1 does not include the classification error term in the objective
function and LC-KSVD2 includes this term). We test the proposed scheme through face
classification problem, and the Extended YaleB database is adopted for the test. The
database contains 2414 face images of 38 persons, about 64 images for each on average.
The face images are pre-cropped and normalized with a size of 192 × 168. The feature
used here is randomface [13], which projects the face image into a column with a randomly
generated matrix, and the length of the feature is set to 576. The database is randomly
splitted into two halves. One half contains 32 images per person is used for training the
dictionary and the other is used for testing. The number of the dictionary bases is 570,
and each basis has a length of 576. The weighting parameters in Eq. (3) and (5) are set
to α = 16 and β = 4. The sparsity assumed for the face image is set to T = 30. The
termination thresholds are set to T1 = −0.05 and T2 = 0.005. A lapped transform-based
codec [30, 31] with various quantization stepsizes (Qsteps) is employed for the dictionary
compression.

Firstly, we test the validity of the compressed dictionary with D-KSVD [22], compared
to the direct compression method, without any bit rate constraints. For the direct com-
pression method, we compress the dictionary only once after the training of D-KSVD
with the same compression steps used in the training process, e.g., rescale the basis into
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Figure 2. Recognition results by the compressed dictionary. (a) K-SVD;
(b) D-KSVD; (c) LC-KSVD1; (d) LC-KSVD2.

an image, transform, quantization, and entropy coding. For the proposed method, we
conduct a fixed quantization method, i.e., assign a fixed stepsize to all bases, as a special
case as [29] do. For the direct and fixed quantization methods, Qsteps = (5, 20, 40, 60,
80) are slected for test, respectively. For the flexible method, the quantization stepsize
arrays which contain stepsize candidates near the given Qsteps are utilized. The results
are shown in Fig. 1. From the results we can see that, the direct compression method is
vulnerable to the coding distortion, especially at very low bit rates (or high Qsteps), as
the recognition accuracy drops down quickly. On the other hand, the proposed dictionary
compression scheme is quite robust to the coding distortion, as the recognition accuracy
keeps at a high level with the decrease of the bit rate. This is maninly owing to the
integration of the dictionary compression into the dictionary learning.
Secondly, we compress the bases with different Qsteps during the dictionary training,

under the constraint of given bit rates. We calculate the rate-recognition slopes of all
bases with the given Qstep, and select from the bases with largest slopes to meet the
bit rate target. Both fixed and flexible quantization methods are conducted here. For
fixed quantization, Qsteps = (2, 10, 50, 100) are adopted. The recognition results are
shown in Fig. 2 and Fig. 3. As can be seen from Fig. 2, different tradeoffs between
the recognition rate and the bit rate of the compressed dictionary can be achieved by the
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Figure 3. Recognition results by the compressed dictionary with different
number of bases. (a) K-SVD; (b) D-KSVD; (c) LC-KSVD1; (d) LC-KSVD2.

proposed scheme, which is convenient for the dictionary with bit rate constraint. When
Qsteps = (2, 10), and even 50, the proposed scheme can still achieve high recognition
results, compared to the original dictionary. Sometimes the recognition results can even
outperform the original ones, while the bit rates are much lower. This is may because
that the noise in the learned dictionary can be removed by quantization to some content.
However, with the increase of the quantization stepsize, the rate-recognition performance
cannot continue to improve. This may because that the dictionary compression distortion
caused by a large quantization stepsise cannot be eliminated by the training. However, the
flexible quantization method can still achieve superior performance, especially at the low
bit rate area. As can be seen from Fig. 3, the proposed scheme can adjust the dictionary
size to adapt the bit rate constraint. For Qsteps = (2, 10, 50), even the number of
dictionary bases reduced from 570 to about a half, it still achieves very high recognition
results.

5. Conclusions. We propose a dictionary compression scheme for sparse representation,
which can find the optimal dictionary when there is a bit rate constraint imposed on the
dictionary. The basis compression steps are integrated into the dictionary training process,
and the scheme is suitable for various K-SVD-based algorithms. Both fixed and flexible



32 L. Liu, Y. Zhao, C. Lin and H. Bai

quantization methods can achieve well-balanced performance. The fixed quantization
is more simplicity while the flexible quantization is more competitive at low bit rate.
Experiments on face recognition show the validity of the proposed scheme under various
bit rate constraint, which is adaptable to the network applications. Future works include
finding fine grained quantization stpsizes for different dictionary bases to further improve
the performance and conducting the compressed dictionary to various applications.
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