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Abstract. The work studied chaotic characteristics and reasons of random quantity,
quasi-periodic quantity and development trend quantity in the load after wavelet decom-
position. Embedding dimension m and delay time of phase space reconstruction was
determined based on the forecast accuracy of least squares support vector machines (LS-
SVM). Meanwhile, each subsequence used LS-SVM for the forecasting of local chaos, thus
obtaining final prediction value. The measured data analysis showed that the method, with
high precision and good robustness of parameters, can obtain satisfactory results.
Keywords: Short-term load forecasting; Least squares support vector machines (LS-
SVM); Load submodel; Chaos; Predictable time

1. Introduction. It is believed that the load of power system consists of random quan-
tity, quasi-periodic quantity (such as daily and weekly periodicities), seasonal variation
quantity, and development trend quantity [1]. Meanwhile, the study shows the load has
chaotic characteristics, and some prediction methods based on chaos use the load as a
whole for forecasting [2-8]. However, unified modeling cannot well reflect the nonlinear
law of time series of load, restricting forecasting accuracy. Double periods and chaos
method are used in [9], without specific analysis of the interaction between sequences of
different time scales. The extraction of Fourier transform with double periods is suitable
for stable quantity, which affects the accuracy of calculation results.
The work analyzed interference of periodic quantity to chaos quantity, dividing them

into three prediction submodelsXrandom quantity, quasi-periodic quantity and develop-
ment trend quantity. Wavelet transform was used to extract trend quantity, periodic
quantity and random quantity in original signal. It could play a smoothing effect on the
original signal, conducive to modeling and forecasting. Scale time series was extracted us-
ing the stationary wavelet transform, comprising three subsequences according to periods
[10]. Set random time series to 0, local forecasting models of LS-SVM were constructed
based on characteristics of the other two subsequences, respectively [11], [12]. The actual
data calculation shows the rationality and correctness of analysis and method in the work.

2. Theoretical Basis.

2.1. Stationary wavelet decomposition. Stationary wavelet transform [10] performs
the interpolation between the values of filters at all levels rather than double extraction of
output coefficients of low-pass and high-pass filters. Thus, wavelet and scale coefficients
have equal length to original signal, and the signal correspond to the original signal in
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each resolution. It is important for the forecasting of time series. Set filter coefficients of
high-pass and low-pass filters of orthonormal wavelet as
Hi = [hi,1, ...hi,j...hi,J ] Gi = [gi,1, ...gi,j...gi,J ]
where subscripts i and j represent the j-th coefficient of the filter at the i-th level.

Set Hi = ZiHi−1 Gi = ZiGi−1, and Zi is the zerofill operator of interpolation, then
hi,2ij = hi−1,j; hi,j = 0; gi,2ij = gi−1,j; gi,j = 0 (j is not equal to the integral multiple of
2i). If s is the original signal sequence, and a0 = s, then the deposition of the stationary
wavelet transform is
ai+1 = Hiai, bi+1 = Giai (i = 0, ...,M)
where ai is the scale coefficient; bi the wavelet coefficient; M the maximum series of

decomposition.
Using stationary wavelet to decompose load data, different submodels can be consti-

tuted. It can not only reduce the mutual interference, but also dip the internal laws of
submodels.

2.2. LS SVM regression model.

2.2.1. SVMs. Support vector machines (SVMs) proposed by Vapnik et al. [13] is one of
the most influential outcomes in the field of machine learning. However, it needs to solve
convex quadratic programming for SVM training. The obtained solution is the unique
optimal one, but the complexity of the algorithm depends on the number of sample data.
The bigger the sample date is, the slower the computation speed. Using LS SVM is an
effective solution [14]. LS SVM improves convergence rate with better noise immunity by
solving one system of linear equation instead of quadratic programming in SVM [15].

2.2.2. LS SVM regression model. Let the training data set {xt, yt}, t = 1, ..., l. xt∈Rm
is the input mode of the t-th sample; yt∈R the desired output corresponding to the t-th
sample; l the number of training samples. LS SVM is defined as follows

y (x) = wTφ (x) + b, (1)

where non-linear transformation φ(x) maps the input data into a high dimensional feature
space. It is no need to pre-specify the dimension of w (which can be infinite). In LS SVM,
the objective function is defined as

min J(w, e) =
1

2
wTw + γ

1

2

N∑
t=1

e2t (2)

The constraint is

y(x) = wTφ(xt) + b+ et, t = 1, ..., N, (3)

The first part in Eq. (2) is regularization, and the second part the empirical risk.
The objective function only has equality constraint, and the loss function in optimiza-

tion targets is the second moment norm of error et, which will simplify the solution to the
problem. Lagrangian function is defined as

L(w, b, e, α) = J(w, e)−
N∑
t=1

αt{wTφ(xt) + b+ et − yt}, (4)

where αt is Lagrange multiplier. According to the optimal condition of Karush Kuhn Tucker
(KKT), we eliminate et and w to t=1,..., N, deriving the following linear equation.[

0 1T

1 φ(xt)
Tφ(xl) +D

] [
b
α

]
=

[
0
y

]
, (5)
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where y = [y1; ...; yN ]
T ; 1 = [1; ...; 1]T ; α = [α1; ...;αN ]

T ; D = diag[γ1; ...; γN ]. Then the
optimization problem of LS SVM is transformed into linear Eq. (5) using LS for solution.
The selected kernel function satisfies Mercer condition.

Ψ(xt, xl) = φ(xt)
Tφ(xl), t, l = 1, ...N, (6)

Finally, the following LS SVM regression model is obtained.

y(x) =
N∑
t=1

αtψ(x, xt) + b, (7)

where αt and b are the solutions of linear equation; Ψ(x, xt) represents the high-dimensional
feature space from the nonlinear mapping of input space x. The work uses the commonly
used radial basis function as the kernel function.

ψ(xt, xl) = exp(−∥x− xt∥22 /σ
2) (8)

where σ is the positive real constant.
There is similarity in the basic idea of SVM and reconstruction theory of state spaceXthe

vector of input space is extended to the high dimensional space, extracting information
and laws hidden in the system. Therefore, SVM, used for the reconstruction of phase
space, can automatically map the input vector into a high dimensional feature space. It
can realize the separable date linearity to extract information, which has achieved good
results in the forecasting of chaotic time series.

3. Construction of Three Subsequences of Load.

3.1. Load component analysis. Fig. 1 (1) is the annual load data of a city in northwest
(with sampling period of 15min); Fig. 1 (2) the power spectrum of the load (horizontal
axis is period).
Fig. 1 (2) shows the actual load periods are mainly 12h and 24h, including the periods

with smaller amplitude such as 2h, 3h, 4h, 6h and 168h. It is decomposed into 7 layers with
stationary db4 wavelet transform, reconstructing the loading value of each subsequence
(See Fig. 2). The first layer is mainly random quantity, including chaos quantity as
well. It can constitute stochastic model; the second to the sixth layers are the loads
with the period from 2h to 24h, constructing quasi-periodic model; the seventh layer,
although containing some loads with period of 24h, is unstable with considerable variation
of amplitude. Therefore, it will constitute trend model with the remaining.

3.1.1. Chaotic characteristic analysis of the subsequences of the load. Stochastic model
obtains its delay in accordance with mutual information method [16].
Time τ = 3, and embedding dimension m=11 according to Cao method [17]. Lyapunov

index is 0.0264 based on small data sets [18], revealing that it contains chaos quantity.
There are lots of random quantities difficult to forecast, so it will be set to 0.
For periodic model, we can obtain τ = 15; m=8; lyapunov index is 0.0717. The

contained chaos quantity can be used for the forecasting of chaotic way.
For trend model, we can obtain τ = 21; m=5; lyapunov index is 0.0553. The contained

chaos quantity can be used for the forecasting of chaotic way.
It is generally believed chaos quantity is “seemingly random” however, even evelopment

trend and quasi-periodic parts contain chaos quantity in the mentioned three submodels.
The difference of load record and trend (a typical daily variation curve obtained by statis-
tics, namely the basic load, is periodic quantity) is chaotic [19]. It is the reason that each
scale show chaotic characteristics. The discrete rate of given track and adjacent trajec-
tory, namely the growth rate of distance to adjacent trajectory, is calculated by Lyapunov
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Figure 1. Time series of load and its time series of load

index. In the calculation of distance, the basic loads contained by the given trajectory
points and adjacent points are mutually cancelled. Thus, it finally shows Lyapunov index
around the fluctuation of basic load, existing in each scale. E.g., the load of d6 layer
shows the period of 24h, and its Lyapunov index is 0.0242 after calculation.

The above analysis shows the reason that the load of power system contains chaos
quantity is because daily load fluctuates around basic load. Chaos quantity is contained
due to the fluctuation in scales.

3.2. Predictable time of load. Load can be divided into load trend (periodic quan-
tity) and chaos quantity. Lyapunov index reflects the predictable time of chaos quantity
instead of load trend. Therefore, the predictable time of the load, not only determined
by Lyapunov index, should consider the influence of load trend.

Figure 2. Wavelet decomposition of load
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4. Prediction Algorithm of the Chaos Model of Three Subsequences.

4.1. Selection of sampling period. Shorter sampling period, reflecting more system
information, increases the influence of noise. Furthermore, it will contain redundant
information when the predictive step is large. The sampling period of load data is 15min
in the work.

4.2. Reconstruction of phase space. Reconstruction of phase space should select em-
bedding dimension m and delay time τ .
Embedding dimension m is not only the parameter of chaos quantity, but also the

input dimension of LS-SVM. Increasing m can increase learning capacity for LS-SVM,
thus improving learning effects and forecast accuracy. However, higher m will cause
information redundancy as well as increasing error. The optimal embedding dimension
to the actual data is derived by heuristics in the work.
Delay time τ of chaos quantity can be obtained by mutual information method. Based

on time window, delay time should be decreased to increase the input dimension of LS-
SVM.
Phase space is reconstructed.

x(1) x(2) ......x(l)
x(1 + τ) x(2 + τ) ......x(l + τ)
. .
. .
x(1 + (m− 1)τ) x(2 + (m− 1)τ) ......x(l + (m− 1)τ)


where [x(1), x(2), .........x(l + (m− 1)τ)] is the time series of load; l the number of phase

space points.

X(k) = [x(k); x(k + τ); ......x(k + (m− 1)τ)]

Current load x(k) should forecast the load after t steps, and then historical data is

{X(k − t), X(k − t− 1), · · · , X(k − t− (N − 1))}

After calculating the Euclidean distance between historical data and X(k), n points
with minimum distance are selected as input. The experiments show that n=60, and
target data is x(k + t), where t is predictive step.
Data sampling period is 15min in the work. t = 1 when we forecast the load after

15min; t = 4 when we forecast after 1h, and so on. N is the number of historical data,
and the work used the data of the first 30 days.

4.3. Parameter determination of LS-SVM. The parameters (γ, σ) are determined
by using adaptive parameter optimization method [20]. The algorithm is as follows:
a. Value ranges of parameter γ and kernel parameter sigma are determined.
b. Pair of Parameter {γi, σj : i = 1...,m, j = 1, ..., n} is constructed, namely the value

ranges of two parameters are regarded as m and n, constituting m×n pairs of parameters
{γi, σj};
c. Each pair of parameters is substituted into LS-SVM to estimate accuracy. The

parameter with the highest estimate accuracy is the optimal one {γi, σj};
d. If the error accuracy cannot meet the requirement, we take {γi, σj} as the center

to narrow the value range of parameters. Step c is repeated to constantly optimize the
parameters of LS-SVM until the required error accuracy is satisfied.
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Estimate accuracy is measured by root-mean-square error (Rmse):

Rmse =

√√√√ 1

n

n∑
i=1

[x(i)− x′(i)]2 (9)

where x is the original signal; x′ the estimate signal; n the number of data pointes[21,22].
In summary, the specific algorithm is as follows:
(1) Historical data is recognized, amending abnormal data.
(2) Stationary wavelet decomposition is performed to historical data, with the decom-

position coefficient of each layer inversely transformed into load value.
(3) Set the stochastic model to 0, periodic model and growth model are trained with

the historical data of the first 20 days, thus determining parameters.
(4) Based on current load, periodic quantity model and load trend model, the loads to

be forecasted are calculated, respectively.

5. Simulation and Predictable Time on the Mutual Influence of Three Chaotic
Subsequences.

5.1. Influence of high-frequency chaos quantity on periodic quantity. The sim-
ulated quasi-periodic signal is used as follows:

x(t) = 5× (0.7× sin(2π × 50× t)
+ sin(2π × 100× t))

(10)

Chaos quantity is simulated with logistic equation.

y(t) = 4× (1− y(t− 1))× y(t− 1) y(0) = 0.41 (11)

Chaos quantity is

s(t) = x(t) + y(t) (12)

Reconstruction of phase space: Delay time τ = 2; dimension m = 2. Figs. 3 (1)-(3) show
that after reconstruction.

Figure 3. Phase diagram of each simulation quantity
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Table 1. Number of adjacent points

x(t) y(t) r(t)=x(t)+z(t) s(t)=x(t)+y(t)
394 336 245 394
254 308 366 254
334 341 265 214
374 369 394 334
234 313 386 374
274 346 225 274
314 244 346 406
354 360 353 314
214 260 333 234
294 403 285 354

Meanwhile, we calculate 10 Euclidean adjacent points of the 415th point in each phase
space (See Table 1).
Fig. 3 and Table 1 illustrate it mainly show the characteristics of the leading periodic

quantity in phase space. 80% adjacent points in x(t) and s(t) are the same, but there is
no same point in y(t) and s(t). It does not reflect the characteristics of phase space of
chaos quantity. Two components mutually affect the forecast accuracy.

5.2. Influence of seasonal variation quantity and development trend quantity
to quasi-periodic quantity. Relatively, seasonal variation quantity and development
trend quantity vary slowly, so direct current value (DC Value) is used for simulation.

z(t) = 25× t (13)

r(t) = x(t) + z(t) (14)

Fig. 2 (4) shows the 2-dimensional phase diagram ( τ = 3, and m = 2), and Table 1 shows
10 Euclidean adjacent points of the 415th point. There is only 1 same point for r(t) and
s(t), and DC Value has obvious interference on periodic quantity.

5.3. Reason that load contains chaotic characteristics and simulation of pre-
dictable time. Load trend is simulated with sine function.

p(t) = 1000× sin(2π × 50× t) (15)

Chaos quantity uses logistic equation for y(t) simulation, let

z(t) = p(t) + y(t) (16)

Obviously, p(t) is the dominant quantity in z(t). Laypunov indexes of z(t) and p(t) are
λz = 0.9732 and λp = 0.9993, respectively, almost the same. Although the load trend is
the dominant quantity, the obtained Laypunov index still fluctuates around load trend.
It proves the rationality of reason analysis that the load has chaotic characteristics.
Multi-step prediction is used for z(t), with the prediction of 96 steps (See Fig. 4). 0 is

the actual value; * the predicted value.
Mean absolute error Emape = 0.1%.
Based on the reciprocal of Laypunov index, the predictive step of z(t) is 1, inconsistent

with the prediction.
It is not difficult to find that the predictive time of load, not only determined by

chaos quantity, should consider the forecast time of load trend and chaos quantity. As
to forecast method, we cannot simply determine chaos method is suitable for the time
sequence containing chaos quantity. The other factors should be considered to select the
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Figure 4. Actual curve and predicted curve of z(t)

appropriate method. In the prediction of z(t), LS-SVM chaos prediction method is also
suitable for the prediction of p(t), thus deriving accurate prediction.

6. Case and Analysis of Load Forecasting.

6.1. Single step forecasting of 1h. The above method was used for the prediction and
simulation of load data. The data recorded the loads of 365 days in the city; with the
sampling period of 15min. Fig. 1 (1) shows the prediction of the load in the next 1h.
The 110th to 120th days were used for training, and the 121st to 150th days for test, with
the prediction of 720 points (regardless of weekdays and holidays). As a comparison, the
original data without dividing into molecular model was forecasted with the mentioned
periodic model, namely original model; the method with sampling period of 1h was called
the method (2) in the work. Performance index of prediction is defined as follows.

Emse =

√
1
n

n∑
i=1

(
Li−Li

′

Li

)2

×100%; Emape =
1
n

n∑
i=1

∣∣∣Li−Li
′

Li

∣∣∣×100%; Eape =
∣∣∣Li−Li

′

Li

∣∣∣×100%

where Emape is average relative error; Emse the root mean square relative error; Eape

the absolute percent error; Li and Li
′ are the actual load and forecast load at a time,

respectively.

Table 2. Parameters of models

Error Method in the work Method in the work (2) Original model
Emse(%) 1.21 1.30 1.93
Emape(%) 0.88 0.96 1.40

Maximum Eape(%) 4.99 5.60 11.74

Table 3. Error table

Error Periodic model Load trend model
Emse(%) 2.78 142.97
Emape(%) 2.19 78.13

Maximum Eape(%) 7.48 693.68

Table 2 shows the parameters of forecasting model. τ and m are the delay time and
embedding dimension calculated by mutual information method and Cao method; τ ′ and
m′ are the ones used in practice. Table 3 shows the comparison of forecast errors of two
methods. For the point of Eape > 3%, the method in the work accounts for 0.35%, and
the original model for 4.58%. Fig. 5 shows the error of each point.

The results show it improves the accuracy of original model and stability to divide the
load into submodels for forecasting, compared with that of original model. The accuracy
of the method in the work improves after increasing sampling frequency.
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Figure 5. Forecast error

6.2. Multi-step forecasting of 15min. Periodic model was performed with multi-step
forecasting of 15min for 121-123 days. Load trend model was forecasted for 121 days.
Fig. 5 shows the errors; Fig. 6 the forecast and error cures; Fig. 6 the local errors of
multi-step forecasting of trend model. The dotted line is the predicted value, and the
solid line the actual value.

Table 4. Error table

Parameter Periodic model Growth model Original model
τ / τ ’ 15/4 21/4 12/4
m / m’ 8/30 5/40 10/40

γ 3 ∗ 10 ∧ 16 3 ∗ 10 ∧ 19 3 ∗ 10 ∧ 12
σ 50 100 100

Table 4 shows periodic model can still maintain accuracy after multi-step forecasting
for 3 days. Based on the reciprocal of Lyapunov index, predictive step is 14. Figs. 5 and
6 show the error of load trend model is below 10% in the first 16 steps. According to the
reciprocal of Lyapunov index, predictive step is 18.

Figure 6. Actual curve and predicted curve of z(t)

The load trend of periodic model has strong periodicity, with weak influence from chaos
quantity. Thus, predictable time is bigger than the value determined by the reciprocal of
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Figure 7. Actual curve and predicted curve of z(t)

Lyapunov index. Load trend model has poor regularity, with bigger influence from chaos
quantity. Therefore, the actual predictable time approaches the value determined by the
reciprocal of Lyapunov index. It proves the analysis in Section 2.5.

The results showed there was short time for multi-step forecasting with the method in
the work due to poor regularity and short forecast time of load trend model. Forecast
accuracy was significantly improved for short-time forecasting within 2h.

The method in the work used training data of 10 days to forecast the load of one month,
proving the method has good stability of parameter and strong robustness.

7. Conclusions.

1. Based on the stationary wavelet decomposition, load sequence was decomposed into
three sub-sequences, revealing the load contains the law of chaos.

2. LS-SVM was used to determine m and τ reconstructed by phase space of chaos
quantity. It improved forecast accuracy to combine LS-SVM with local forecasting
method of chaos. The actual load data was not pure chaos quantity, and the method
was more practical.

3. The predictable steps of submodels and Lyapunov index showed the record data of
load had chaos quantity and periodic quantity, and Lyapunov index could only be
the predictable step of chaos quantity.

The actual data shows the method in the work, compared with undecomposed load
data, has strong robustness, high robustness, good stability and practical value.
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