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Abstract. The theorem of chaos synchronization has many excellent characteristics
and wide application prospect. Because the discrete components of the analog circuit
are susceptible to environmental temperature and humidity, the continuous chaotic syn-
chronization system is difficult to achieve in secure communication engineering. Based
on the current large-scale digital logic circuit applications, many digital communication
synchronization requirements are presented. In this paper, it is proved that that stability
principle of the discrete system of Euler method, which is based on the design of discrete
synchronous communication system. Three discrete synchronization methods for contin-
uous chaotic systems with simple structures and easy to be implemented by engineering
are designed, including discrete chaotic synchronization methods with driving - response,
active - passive and self-adaptive methods. And through strict mathematical derivation
proves its synchronization system can achieve asymptotically stable. In addition, A dis-
crete chaotic secure speech concealment communication system based on self-adaptive
synchronization is designed. The confidentiality and stability of the system is proved by
relevant simulation experiments, which promotes the synchronization theorem and engi-
neering application of chaotic secure communication.
Keywords: Discrete system; Chaotic synchronization; Speech confidential communica-
tion; Euler method

1. Introduction. Chaos theory, as a new subject, has some excellent characteristics,
including sensitivity to initial values, intrinsic randomness, ergodicity, topological transi-
tivity and a positive Lyapunov exponent [1-3]. These characteristics make chaotic systems
widely used in secure communication [4-8]. However, chaotic synchronization is the basis
of chaotic secure communication. Chaotic synchronization refers to two chaotic systems
starting from different initial conditions. With a change in time, the orbit of one system
will converge to the same value of the orbit of the other system. The study of chaotic syn-
chronization started in the 1990s. American scientists Pecora and Carroll proved, through
experiments, that interconnected chaotic systems can produce synchronization phenomena
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under certain conditions [9]. The methods of chaotic synchronization include the driving-
response synchronization method, active-passive synchronization method, feedback syn-
chronization method, coupled synchronization method, to self-adaptive synchronization
method, impulse synchronization, generalized synchronization method, and a synchro-
nization method based on a state observer [10-17]. Chaotic synchronization schemes also
include circuit chaos synchronization and laser chaos synchronization [18-21]. A chaotic
synchronization transceiver system also gradually expands from low-dimensional chaos
to high-dimensional chaos, since the high-dimensional chaotic system has stronger ran-
domness, higher confidentiality, larger information quantity and a higher communication
efficiency. However, the complexity of the system is also higher, and the form of chaos
synchronization begins to develop from single to cascade, both of which enrich chaos
synchronization. Research on chaos synchronization mainly includes continuous chaotic
system synchronization and discrete chaotic system synchronization, which are mainly
based on analog and digital circuits, respectively. At present, theoretical research and
simulations are dominant. Traditional chaos synchronization research mainly focuses on
continuous chaotic systems based on analog circuit design. Due to the sensitivity of
simulated chaotic circuits, unavoidable parameter value errors of the circuit elements,
environmental impacts, and interference caused by communication links, communication
schemes based on this technology show weak robustness, which hinders the application of
chaotic secure communication synchronization technology. With the rapid development of
digital circuits, especially large-scale integrated circuits, and with the wide application of
modern digital communication, the study of chaotic secure communication synchroniza-
tion is of great significance. The premise of the application of digital chaotic technology
is the realization of a discrete chaotic system. Some scholars have studied discrete chaotic
system synchronization theory since discrete chaotic systems can achieve strict matching
of parameters and have more advantages than continuous chaotic systems. In 2011, M.
Eisencraf et al. studied the effect of limited bandwidth on a master-slave synchronization
solution in discrete time [22]. It was pointed out that the study of discrete chaotic systems
is based on the practical application of a digital signal processor or microcontroller. In
2016, Rodrigo t. Fontes et al. studied a communication system using functions to encode
information in chaotic signals [23]. Based on the master-slave chaotic synchronization,
the necessary conditions of the synchronization of a k-dimensional chaotic generator were
obtained analytically, and the performance of the system was evaluated from the point of
error. In 2016, Alexey A. Koronovskiia et al. studied two unidirectional coupled power
systems of aperiodic binary sequences [15] and revealed the existence of binary generalized
synchronization through auxiliary system method and a maximum condition Lyapunov
index calculation. The mechanism of binary generalized synchronization was explained.
This research provided new application potential.

The background of this paper is based on secure communication, which is suitable
for digital signal synchronous transmission as the main purpose. On this premise, we
design a synchronous transmission mode of communication from a continuous chaotic
system to a discrete chaotic system and three discrete synchronization methods for con-
tinuous chaotic systems with simple structures and straightforward engineering, including
driving-response, active-passive and self-adaptive methods. Furthermore, we verify the ef-
fectiveness of this method through a theoretical proof and numerical simulations. Lastly,
a discrete chaos obscure speech secure communication method based on self-adaptive
synchronization is designed.

2. Euler method for discrete continuous chaotic systems. The discretization meth-
ods of continuous chaotic systems mainly include Euler method and Runge-Kutta method.
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The calculation accuracy of Runge-Kutta method is high, and the algorithm takes up more
hardware resources due to complexity, which makes it difficult to design and implement
digital system. And Euler method occupies less resources and is convenient for engineering
implementation. The Euler algorithm is actually implemented according to the definition
of derivative. The Euler method is used to solve the first-order differential equation, as
shown in figure 1.

If y = f(x) is any curve, then P1(x1, y1) is a point on the tangent line over the curve
P0 and x1 = x0 + h, y1 ≈ y0 + hf(x0). While the point P2(x2, y2) is the point that goes
through P1 and is parallel to the tangent line at (x1, y1) , and x2 = x1+h, x2 = x1+h, and
x2 = x1+h, y2 ≈ y1+hf(x1) . By analogy, the approximate solution of yn(n = 0, 1, 2 · · ·N)
point can be obtained; hf (xi) = hy′ (xi) is the increment of the numerical solution
of the function; the folded line formed by points P0, P1, · · ·PN can be regarded as the
approximate curve of the solution curve y = f(x) .

Figure 1. Geometric interpretation of Euler method

According to definition of a derivative,

y(xn+1)− y(xn)

h
≈ y′(xn) ≈ f(xn)

Then y(xn+1) ≈ y(xn) + hf(xn) or

∆y(xn) = hf(xn), where ∆y(xn) = y(xn+1)− y(xn) (1)

For example, the Lorenz equation is discretized into: xn+1 = xn − 10(xn − yn)h
yn+1 = yn + (28xn − yn − xnzn )h
zn+1 = zn + (xnyn − 8

3
zn)h

(2)

And, we can get the following equation. ∆xn = −10(xn − yn)h
∆yn = (28xn − yn − xnzn )h

∆zn = z(xnyn − 8
3
zn)h

(3)
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The Euler method needs to set the step length. The step length selection is very
important in the numerical solution method. The step length is too large, and the local
truncation error generated by each step calculation is also large. The step size is small.
Although the value of truncation error calculated in each step is small, the calculation
steps that need to be completed are more when choosing a certain range, which not
only increases the calculation quantity, but causes the accumulation of calculation error.
The digital system should mainly use a small amount of calculation to achieve a certain
error requirement, and at the same time it is required to leave out a certain amount of
calculation and unnecessary error accumulation.

3. Stability principle of Euler method for discrete systems. According to the sta-
bility principle of continuous system, Lyapunov and the discrete theory of Euler method,
there are the following theories about discrete system.

Theorem 3.1. for discrete systems (3-3), the Lyapunov function Vn = 1
2
x2n + 1

2
k2n where

∆Vn ≤ −ahx2n, (a > 0) , h is walking step. Then lim
t→∞

xn = 0

Proof(1): because , ∆Vn ≤ −ahx2n, (a > 0) , h is walking step, and then,

∆Vn
h
≤ −ax2n,

Thus

V̇ ≈ ∆Vn
h
≤ −ax2n

According to Barbalat lemma, and then lim
t→∞

xn = 0. Where Barbalat lemma If f(t) has

a finite limit as t→∞ and if ḟ is uniformly continuous (or f̈ is bounded), then ḟ(t)→ 0
as t→∞

Theorem 3.2. For the discrete system variable xn(t) ,where xn(t), t ∈ hN .We can get
established equation ∆x2n = 2xn∆xn

Proof: because dx2n
dt

= 2xn
dxn
dt

, according to the Euler method discrete theorem,

dx2n
dt
≈ ∆x2n

h
,
dxn
dt
≈ ∆xn

h
(4)

Then

∆x2n = 2xn∆xn

4. Discrete synchronized methods of the continuous chaos system.

4.1. Discrete chaotic synchronization based on driving - response method. Tak-
ing Lorenz chaotic system as an example, discrete chaotic synchronization of the driving-
response method is realized. The Lorenz driving system equation is discretized by Euler
method. We can obtain the following: ∆xn = σ(yn − xn)h

∆yn = h(γxn − xnzn − yn)
∆zn = h(xnyn − βzn)

(5)

When variable parameters σ = 10, γ = 28, β = 8/3, system equation is chaotic. The
chaotic at-tractor is shown in Figure 3-3, where h=0.01. The chaotic signal xn is used
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as the driving variable to transmit the signal un = xn . We can get the following Lorenz
response system equation.{

∆y′n = h(γxn − xnz′n − y′n)
∆z′n = h(xny

′
n − βz′n)

(6)

Figure 2. Discrete attractor of Lorenz chaotic system

Correspondingly, we can define system error e1n = y′n − yn, e2n = z′n − zn. Thus, the
dynamic system of synchronous error of the driving system (5) and response system (6)
is represented by the equation (7).{

∆e1n = h(−e1n − xne2n)
∆e2n = h(xne1n − βe2n)

(7)

Then, we can assume discrete Lyapunov function V (en) as follows.

V (en) =
1

2
(e21n + e22n) ≥ 0 (8)

We can get
∆V (en)

h
= e1n

∆e1n
h

+ e2n
∆e2n
h

Then

∆V (en) = e1n∆e1n + e2n∆e2n

= e1nh(−e1n − xne2n) + e2nh(xne1n − βe2n) = −he21n − hβe22n
According to theory 3.1, if β > 0 , thus ∆V ≤ 0 , The error dynamics of the driving

system and response system can be asymptotically stable, that is to say, the system (5)
and the system (6) can ach- ieve synchronization.

We use the Matlab software to achieve the system simulation, and assume the initial
value of system (5) and (6) as (x0, y0, z0) and (y′0, z

′
0). Where (x0, y0, z0) = (−1,−2, 6),
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Figure 3. synchronous error based on driving - response method

(y′0, z
′
0) = (2,−6). Then, the simulation results of synchronization error are shown in

figure 3. The synchronization error sharply approaches to zero. Thus, we can state that
the transceiver system is synchronized.

4.2. Chaotic synchronization based on active - passive method. Sending and
receiving systems of Lorenz system are driven by the similar signal s(n) = ayn . Driving
system is as follows.  ∆xn = h(−axn + s(n))

∆yn = h(cxn − xnzn − yn)
∆zn = h(xnyn − bzn)

(9)

With coping, we also get response system. ∆x′n = h(−ax′n + s(n))
∆y′n = h(cx′n − x′nz′n − y′n)
∆z′n = h(x′ny

′
n − bz′n)

(10)

Similarly, we can define system error e1n = x′n − xn, e2n = y′n − yn, e3n = z′n − zn. Thus,
the dynamic system of synchronous error of the driving system (9) and response system
(10) is represented by the equation (11). ∆e1n = −ahe1n

∆e2n = h(c e1n − xne3n − zne1n − e1ne3n − e2n)
∆e3n = h(xne2n + yne1n + e1ne2n − be3n)

(11)

Then, we can assume discrete Lyapunov function V (en) as follows.

V (en) =
η

2
e21n +

1

2
(e22n + e23n) η > 0 (12)

Then, we can get the following expression.

∆V (en)

h
= ηe1n

e1n
h

+ e2n
e2n
h

+ e3n
e3n
h

∆V (en) = ηe1n∆e1n + e2n∆e2n + e3n∆e3n
= h(−aηe21n + ce1ne2n − zne1ne2n + yne1ne3n − e22n − be23n)

≤ h(−aηe21n +
c2e21n+e

2
2n

2
+

m2e21n+e
2
2n

2
+

m2e21n+e
2
3n

2
− e22n − be23n)

= −h(aη − c2/2−m2)e21n − h(b− 1/2)e23n

(13)
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Where m = max(|yn|, |zn|), because equation 9 is chaotic function, thus yn, zn have a

boundary. Apparently, if η > c2

2a
+ m2

a
, b > 1

2
, and

∆V (en) ≤ −h(aη − c2/2 +m2)e21n − h(b− 1/2)e23n < 0

According to theorem 1, at this point, the system is asymptotically stable and maintains
a stable synchronous state, that is, the synchronization of two systems can be achieved.

Figure 4. Synchronous error based on active - passive method

Parameters are taken during experimental simulation. a = 10, c = 28, b = 8/3. We
can assume the initial value of system (9) and (10) as (x0, y0, z0), (x′0, y

′
0, z
′
0). Where

(x0, y0, z0) = (1, 3, 6), (x′0, y
′
0, z
′
0) = (−6, 10, 16). Then, the simulation results of discrete

synchronization error are shown in figure 4. Thus, the two systems are synchronized.

4.3. Chaotic synchronization based on self-adaptive method. The self-adaptive
method can automatically adjust the control gain, and the controller is simple and has
high practical value. Some chaotic systems can achieve single variable synchronization.
The following is an adaptive synchronization of two Chen systems through a single state
variable.

According to the Euler method, Chen system is discrete as ∆xn = ah(yn − xn)
∆yn = h(dxn − xnzn + cyn)
∆zn = h(xnyn − bzn)

(14)

Where a = 35, b = 3, c = 28, d = −7 , The system (14) has typical attractors, as shown
in figure 5. Taking system (14) as the driving system, the response system with a single
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Figure 5. Chen chaotic system discrete attractors

controller is as follows.  ∆un = ah(vn − un)
∆vn = h(dun − unwn + cvn + Un)
∆wn = h(unvn − bwn)

(15)

It can be seen from above that we can define Chen chaotic synchronized error e1n =
un − xn, e2n = vn − yn, e3n = wn − zn. We have the following theorem:

Theorem 4.1. Set the controller as Un = −kn(vn − yn) = −kne2n, (The driver system
outputs a single control variable yn), The self- adaptive law ∆kn = hθe22n, (θ > 0), then
the system (14) and (15) asymptotically synchronize.

Proof: equation (15) minus equation (14), plug the controller in above equation, and
get the dynamic system of synchronous error: ∆e1n = ah(e2n − e1n)

∆e2n = h(de1n − xne3n − zne1n − e1ne3n + ce2n − kne2n)
∆e3n = h(xne2n + yne1n + e1ne2n − be3n)

(16)

Then, we can assume discrete Lyapunov function as follows.

V (en) =
1

2
(λe21n + e22n + e23n) +

1

2θ
(kn − k∗)2 (17)

Where λ > 0, k∗ > 0, λ and k∗ are the undetermined constant.
According to Theorem 3, system error (16) and the self- adaptive law ∆kn = hθe22n, (θ >

0) . We can get the following.

∆V (en)

h
= λe1n

∆e1n
h

+ e2n
∆e2n
h

+ e3n
∆e3n
h

+
1

θ
(kn − k∗)

∆kn
h

∆V (en) = λe1n∆e1n + e2n∆e2n + e3n∆e3n + 1
θ
(kn − k∗)∆kn

= h[−aλe21n + (aλ+ d− zn)e1ne2n − (k∗ − c)e22n + yne1ne3n − be23n]
(18)
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Given the bounds of chaos, we set max (|xn|, |zn|) < m, |aλ + d− zn| < l, and get the
following expressions.

∆V (en) = h
[
−aλe21n + (aλ+ d− zn)e1ne2n − (k∗ − c)e22n + yne1ne3n − be23n

]
≤ h[−aλe21n + l|e1ne2n| − (k∗ − c)e22n +m|e1ne3n| − be23n]

≤ h[−aλe21n +
e21n
2

+
l2e22n

2
− (k∗ − c)e22n +

e23n
2

+
m2e21n

2
− be23n]h (19)

= h[−(aλ− 1 +m2

2
)e21n − (k∗ − c− l2

2
)e22n − (b− 1/2)e23n]

If λ = 3+m2

2a
, k∗ = c+ l2

2
+ 1, (a = 35, b = 3, c = 28, d = −7) and then

∆V (en) ≤ h[−e21n − e22n − (b− 1/2)e23n] < 0

According to Theorem 3, The system (14) and (15) are asymptotically synchronized.
Parameters are taken during experimental simulation. a = 35, b = 3, c = 28, d = −7
.We can assume the initial value of system (14) and (15) as (x0, y0, z0), (x′0, y

′
0, z
′
0). Where

(x0, y0, z0) = (1, 2, 10), h = 0.001. Then, the simulation results of discrete synchronization
error are shown in figure 6. Thus, the two systems are synchronized.

Figure 6. Chen chaotic system discrete adaptive synchronization error

5. Discrete chaos obscures speech secure communication. With the development
of chaotic secure communication research [25-27], the application of chaotic secure com-
munication to voice communication research has continuously increased [28-29]. In this
paper, a dual-channel speech secure communication system based on discrete chaotic syn-
chronization is proposed, in which the first channel is used to send the voice transmission
signal and the second channel is used to send the synchronous signal. The synchronous
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signal consists of different chaotic variables generated by the driving system, which does
not contain any information in plain text and is sent to the receiver after a function
transformation. This design uses the continuous chaotic system discretization method to
achieve speech and synchronization signal bidirectional transmission. A discrete chaotic
masking speech secret communication system is constructed by using the self- adaptive
synchronization method. System synchronization is achieved by using single state param-
eters. The step length of discrete chaos in communication can also be used as a key, which
increases the key space and improves the safety level of speech communication. More im-
portantly, the discrete synchronization system can promote the practical application of
the chaos-based secure communication process.

5.1. secure communication scheme. The speech signal m (t) is masked by the state
variables xn and zn of the discrete Chen chaotic system to form a signal M e . The state
variable yn is converted to signal f(yn) by function. The signal f(yn) and mask state
M e are transmitted to the receiving side over the common channel. If the attacker inter-
cepts the driver signal after function transformation or concealment, it cannot normally
drive the two communication systems of the transmitter and receiver, which increases
the difficulty of decoding the signal after being intercepted and improves the security of
information transmission.

On the receiving end, the function f(yn) is converted to the state variable yn by the
inverse function f−1(·), so that the discrete Chen chaotic system is synchronized with
both end. In this way, state variables xn and zn are restored as state variables x′n and z′n
on the receiving end, and then these state variables will be used to recover speech signals
m′(t) from M e .

We use the scheme indicated in figure 7 to securely encrypt and decrypt speech signals.
Consider transmitting voice signals shown in figure 8. When m (t) is concealed by the
state variables xn and zn of the discrete chaotic system (14). To increase the complexity
of the encryption rules, the following encryption rules are defined:

M e =
xn +m(t)

zn
(20)

The cover state of M e is shown in figure 9. The state variable yn in the public channel is
converted to f(yn) , and the transformation function f(yn) = y3n/1000 , which is shown
in figure 10.

The receiving end receives f(yn) and M e . f(yn) is first restored to the state variable yn
by reverse-transforming f−1(·) , and then the state variable yn and y′n are used to set the
self- adaptive controller to synchronize the two discrete Chen systems. As shown in figure
6, the synchronization error e1n, e2n, e3n asymptotically approach zero. The synchronous
state of xn and zn is x′n and z′n , decrypt M e is m′(t) , and the rule is as follows.

m′(t) = M e ∗ z′n − x′n (21)

Figure 11 shows the restored signal, while figure 12 shows the error between the restored
signal and the original signal. Clearly the signal has been completely restored.

(1) Synchronization testing The driving part of discrete Chen chaotic system is as
follows.  ∆xn = ah(yn − xn),

∆yn = h(dxn − xnzn + cyn),
∆zn = h(xnyn − bzn).
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The response part of discrete Chen chaotic system is as follows. ∆x′n = ah(yn − x′n),
∆y′n = h(dx′n − x′nz′n + cy′n + Un),
∆z′n = h(x′ny

′
n − bz′n).

Where self-adaptive controller Un = −kn(y′n−yn) = −kne2n, and self-adaptive law ∆kn =
hθe22n, (θ > 0) .We can easily get the system error of Chen chaotic system, which is
shown the following. ∆e1n = ah(e2n − e1n),

∆e2n = h(de1n − xne3n − zne1n − e1ne3n + ce2n − kne2n),
∆e3n = h(xne2n + yne1n + e1ne2n − be3n).

And then select Lyapunov function as:

V(en) =
1

2
(λe21n + e22n + e23n) +

1

2θ
(kn − k∗)2

Where λ = 3+m2

2a
, k∗ = c + l2

2
+ 1, (a = 35, b = 3, c = 28, d = −7) we can easily

get ∆V(en) < 0. Thus, we can surely state that the discrete Chen chaotic system is
synchronized.

Figure 7. Speech security communication scheme

5.2. safety analysis. (a)key space, and key selection rules
In good encryption schemes, the key space should be large enough. In this scheme,

the encrypted sequences xn and zn are generated by the Chen system with the distance
discrete walking length and the parameters (a, b, c). Discrete walking length can also be
used as a key. Therefore, the key consists of four Numbers (h, a, b, c). Since these four
Numbers can be real number, the space of the key will be a four-dimensional space.

(b) key sensitivity analysis
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Figure 8. Original speech signal at the transmitter
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Figure 9. Speech signal after chaos cover up
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Figure 10. Driving signal of function transformation

The security of chaotic cryptosystem depends on the key composed of the parameters
of chaotic system or some other supplementary parameters. A good encryption scheme
should be sensitive to the key. To verify the sensitivity of the key, we assume that the
intruder intercepts the ciphertext and synchronization signal and obtains an approximate
estimate of the key, such as (h, a, b, c) = (0.00105,35,3,28), where the step size h is only
slightly mismatched. Figure 13 shows the sensitivity when the key of the communication
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Figure 11. Speech signal after restoration
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Figure 12. Error of restored speech signal and original speech signal

scheme is slightly mismatched. As we have seen, restored speech with an error key behaves
randomly and is completely different from the original speech signal. There is no doubt
that the key is secure even with the selected plaintext/ciphertext attack.

6. Conclusion. In this paper, the discrete method of continuous chaotic system is intro-
duced, and the stability principle of Euler discrete system is obtained. Three methods are
designed to realize the synchronization of discrete chaotic system through single variable
driver, including driving - response, active - passive and self-adaptive methods. Lorenz
and Chen chaotic system, for example, get the continuous chaotic system after discretiza-
tion of three methods of synchronous driving and response system. The synchronization of
the three synchronization methods under the basic conditions of synchronous control rate
and adaptive rate is proved. The above result and experimental simulation respectively
show that the error dynamics can be asymptotically stable, that is, the driving system and
the response system can achieve synchronization. In this paper, a secure digital speech
communication scheme based on chaotic two-channel cryptosystem is proposed. Finally,
the security and stability of the scheme are proved by the system security analysis.
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